
Outbound
Refactoring
“I’ll clean it up when it works” and other jokes we tell ourselves.

Aaron Canary • ATS Summit Fall 2019

Why you (might) care?

Refactoring of core TS code

Making HttpSM dev friendly

Required for Http2-to-Origin

Required for Layer 7 Routing

Agenda

1. Cleanup

2. UML

3. Refactor Http1 (WIP)

4. Propose Http2 Work

5. Propose Layer 7 Work

6. Follow up on Thursday

I want you to understand how these are related and build off one another.

Cleanup

● Renaming files & classes

○ HttpServerSession -> Http1ServerSession

○ ProxyClientTransaction -> ProxyTransaction

● Replaced ProxyTxn::outbound vars with accept::options

● Moved ProxyTxn::host_res_style to

http_sm::t_state.dns_info

● Removed ProxyTxn::restart_immediate

But I never could see, or wrap my head around what was happening.

When you have clean
declarations

Thank you to the Http3 Team.

This is the entire definition if H3Session
interface. Once I read this, its crystal clear I
needed to clean up the H1 and H2 headers
before continuing any further work.

Cleanup (cont.)

● Renaming ProxySession members

○ proxy_ssn -> _proxy_ssn

○ current_reader -> _sm

○ sm_reader -> _reader

● Moved all function definitions to .cc

This is a simplified class diagram of some of
the transaction and session classes we have.
H1 in pink, H2 in green, H3 in blue, and
abstract classes in yellow.
The point I’m making is that there is a lot
here. Before making any changes here I
wanted to clean up. Rename variables and
methods. Remove the cruft. Moved all code
the .cc file.

When I say simplified, I mean that I collapsed all trivial accessor methods, and abbreviated method signatures. So this puts a steep learning
curve on this system.

Http1 Refactor
In Progress

● Maintain Parity

● Http1ServerSesson derive

from ProxySesson

● Abstract Http1 code out of

SM, into Http1Sesson

● Feature branch: h1outbound

○ Merge into 9.1+

Goals:

● Simplify HttpSM

● Foundation for outbound

logic (i.e. H2-to-Origin)

10

Refactor In
Progress

Feature branch

Same class diagram w/o the functions and
members. Just looking at inheritance. You
can see the H1ServerSession is the only
outbound and it does not have any layers of
abstraction between it and the vConnection.

Post
Http1 Refactor

HttpSM only interfaces
with ProxyTransaction

Now that HttpSM only interfaces with
ProxyTransactions, it will be much easier to
add outbound transaction logic, which we will
do for H2-to-origin and Layer 7 routing.

Http2 Refactor

● Abstract Http2Session
from Http2ClientSession

● Write Http2ServerSession

Http2 Outbound

1. Write H2StreamVacancy

 Management layer to allocate streams on existing H2 connections

2. Outbound Session Start/End Hooks

 Expands API

3. Test H2-to-Origin

 Merge into ATS 9.x

Pre-L7R Cleanup Interest

1. Class Allocators -> new/delete w/ jemalloc

2. create/destroy() -> class constructor/destructor

3. HttpVCTable -> ~ProxyTranaction()

4. TxnArgs -> Extendible

5. Create Object Oriented Storage w/ Plugin API

6. HostDB -> HostObj

Layer 7 Refactoring

1. Isolate Upstream Selection Logic from HttpSM

2. Health Check Plugin using NetChasm daemon

3. Parent Selection Plugin

4. CDN Routing Config

Questions

Lets talk on Thursday

