
Cache Promote
Optimizing Cache Hit Rate and Disk Churn


for Big Working Set Sizes

Miles Libbey







Phenomenal Cosmic Power!! 
Itty Bitty Living Space



Big Working Set, 
Small Cache

• Disk churn increases — SSD life concerns


• Popular objects churned out of cache —> Cache hit rate 
suffers



Cache Promote 
Plugin

Don’t just cache everything the origin tells you to



Cache Promote 
Plugin

Don’t tell me how to live my life



Decision Policies

• Random Chance


• Number of hits



Random Chance

• Popular objects get many tries


• 1 hit wonders, get 1 shot —
Some make it in. 



Number of hits

• Track each inbound url, with the number of hits its gotten


• Table is limited to N urls — “Bucket Size”


• Table eviction policy — Least Recently Used


• When the url gets X hits, allow it into cache





But, what should I use for the number of hits?







Lets try the “knee of the curve”



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Lets try the “knee of the curve”



Data Gathering … for each 
property on a cache node

• Group URLs by number of hits 


• Get the sum of their file sizes


• Sort by the number of hits descending


• Find the Cumulative File Size and Requests for each row









No knees?

• Cache Hit change wasn’t repeatable


• Churn wasn’t repeatable


• Why?


• Didn’t consider the cache size


• Optimized each individual property, not the total cache





• Best combination of things to put in your knapsack


• Maximize value [Bandwidth]


• Without going over [cache size]



Almost…

• Doesn’t quite fit classic problem


• Assumes item independence



Customize it
• Use the same data files from knees


• Test “all” the combinations


• First line from 1st file, 


• with first line of 2nd file … 


• with first line of last


• with second line of last


• …


• Add the bandwidths together, and track bandwidth records


• Final record is the answer


• Ignore all combinations where the sum of the cache sizes is too big



A few optimizations — 
reduce the combinations

• Only look at big properties


• Aggregate the onsie-twosie lines together — to get some 
minimal cache size per line

Group these!

And these!



Buckets/Table Size





Perhaps the number of unique 
urls the property sees in the 

desired churn time?



Experiment

• Apply the settings to one machine


• Don’t apply the settings to its brother with the same traffic



Start 

Disk Churn dropped …

Stop 



Bandwidth Cache Hit Rate 
increased

Start Stop



Before and After…



Before and After…



Before and After…



Before and After…



Before and After…



Before and After…



Future Work

• Bucket Size


• How to define a “Big” property


• Would a different eviction algorithm for the tracking table 
be better?


