Apache Drill

Interactive Analysis of Large-Scale Datasets

Tomer Shiran

Latency Matters

• Ad-hoc analysis with interactive tools

• Real-time dashboards

- Event/trend detection
 - Network intrusions
 - Fraud
 - Failures

Big Data Processing

	Batch processing	Interactive analysis	Stream processing
Query runtime	Minutes to hours	Milliseconds to minutes	Never-ending
Data volume	TBs to PBs	GBs to PBs	Continuous stream
Programming model	MapReduce	Queries	DAG
Users	Developers	Analysts and developers	Developers
Google project	MapReduce	Dremel	
Open source project	Hadoop MapReduce	+	Storm and S4
	ntroducing	Apache Dri	II

GOOGLE DREMEL

Google Dremel

- Interactive analysis of large-scale datasets
 - Trillion records at interactive speeds
 - Complementary to MapReduce
 - Used by thousands of Google employees
 - Paper published at VLDB 2010

- Authors: Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis
- Model
 - Nested data model with schema
 - Most data at Google is stored/transferred in Protocol Buffers
 - Normalization (to relational) is prohibitive
 - SQL-like query language with nested data support
- Implementation
 - Column-based storage and processing
 - In-situ data access (GFS and Bigtable)
 - Tree architecture as in Web search (and databases)

Google BigQuery

- Hosted Dremel (Dremel as a Service)
- CLI (bq) and Web UI
- Import data from Google Cloud Storage or local files
 - Files must be in CSV format
 - Nested data not supported [yet] except built-in datasets
 - Schema definition required

Compose Query ?

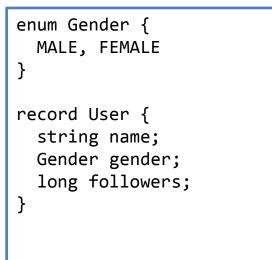
SELECT timestamp, title, COUNT(*) as cnt FROM publicdata:samples.wikipedia WHERE LOWER(title) CONTAINS 'speed' AND wp_namespace = 0 GROUP BY title, timestamp ORDER BY cnt DESC LIMIT 20;

RUN QUERY

Query complete (4.1s elapsed, 11.5 GB processed)

Query Results

Download as CSV Save as Table


 \times

Row	timestamp	title	cnt
1	1196276720	New Hampshire Motor Speedway	2
2	1187028345	Speedway World Team Cup	2
3	1043861144	Speed of gravity	2

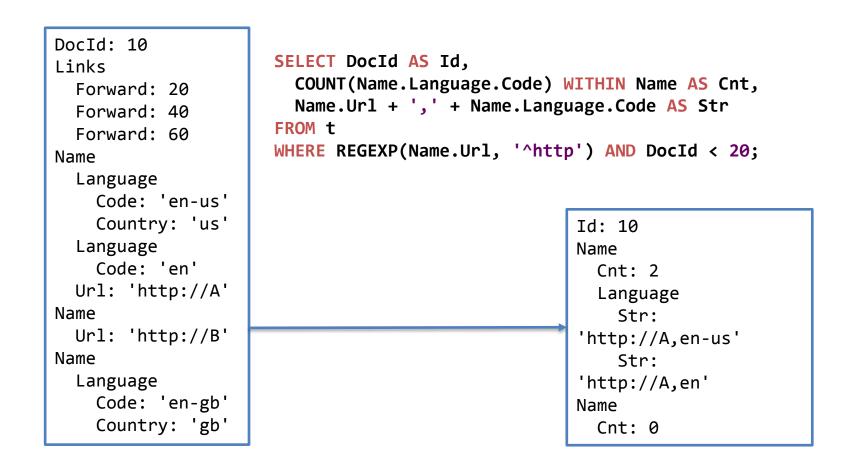
APACHE DRILL

Nested Data Model

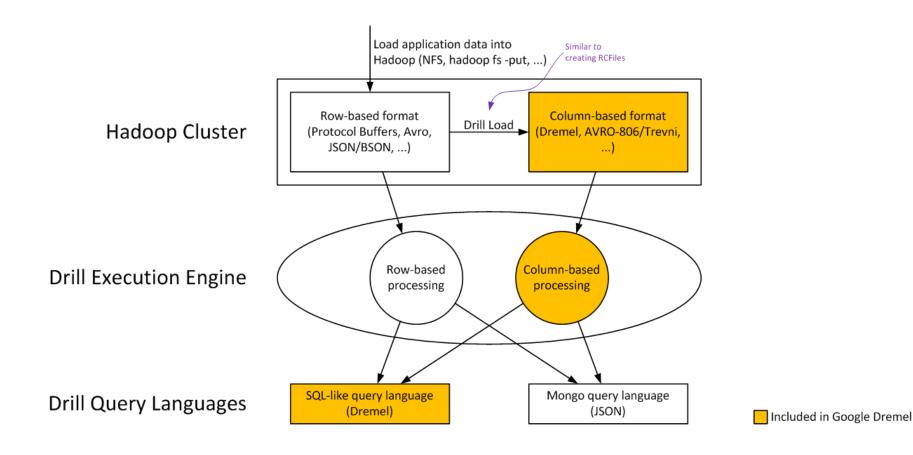
- The data model in Dremel is Protocol Buffers
 - Nested
 - Schema
- Apache Drill is designed to support multiple data models
 - <u>Schema</u>: Apache Avro, Protocol Buffers, ...
 - <u>Schema-less</u>: JSON, BSON, ...
- Flat records are supported as a special case of nested data
 - CSV, TSV, ...

Avro IDL

JSON


"name": "Tomer", "gender": "Male", "followers": 100 } { "name": "Maya", "gender": "Female", "followers": 200, "zip": "94305"

Nested Query Languages


- DrQL
 - SQL-like query language for nested data
 - Compatible with Google BigQuery/Dremel
 - BigQuery applications should work with Drill
 - Designed to support efficient column-based processing
 - No record assembly during query processing
- Mongo Query Language

 {\$query: {x: 3, y: "abc"}, \$orderby: {x: 1}}
- Other languages/programming models can plug in

DrQL Example

Data Flow

Architecture

- Nested query languages
 - Pluggable model
 - DrQL
 - Mongo Query Language
- Distributed execution engine
 - Extensible model (eg, Dryad)
 - Low-latency
 - Fault tolerant
 - Column-based and row-based processing
- Nested data formats
 - Pluggable model
 - <u>Column-based</u> (Dremel, AVRO-806/Trevni, RCFile) and <u>row-based</u> (Protocol Buffers, Avro, JSON, BSON, CSV)
 - <u>Schema</u> (Protocol Buffers/Dremel, Avro/AVRO-806/Trevni, CSV) and <u>schema-less</u> (JSON, BSON)
- Scalable data sources
 - Pluggable model
 - Hadoop
 - NoSQL

Design Principles

Flexible

- Pluggable query languages
- Extensible execution engine
- Pluggable data formats
 - Column-based and row-based
 - Schema and schema-less
- Pluggable data sources

Easy

- Unzip and run
- Zero configuration
- Reverse DNS not needed
- IP addresses can change
- Clear and concise log messages

Dependable

- No SPOF
- Instant recovery from crashes

Fast

- C/C++ core with Java support
- <u>Min</u> latency and <u>max</u> throughput (limited only by hardware)
- Full column-based data support including operators

Hadoop Integration

- Hadoop data sources
 - Hadoop FileSystem API (HDFS/MapR-FS)
 - HBase
- Hadoop data formats
 - Apache Avro
 - RCFile
- MapReduce-based tools to create column-based formats
- Hive-based query language and optimizer
- Table registry in Hcatalog
- Run long-running services in YARN

