
Hadoop Cluster Management
http://hadoop.apache.org/

Marco Nicosia
marco@escape.org

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 2

Marco Nicosia

First computer job in 1989 working on SimCity
Over 15 years of systems administration experience
Started in systems administration in 1991

• UC Berkeley’s Open Computing Facility
• Stretched facility from 3,000 to 10,000 drop-in users
• Deployed the first public-access on-campus web server,

hosting over 170 user group websites

First startup in 1996
• GNN, one of the first web magazines to make money selling

advertising paired with editorial-generated content

Production Engineering: Inktomi, Walmart.com
Most recently, built the Grid Ops team for Yahoo!

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 3

Building a Hadoop Service

What we really do is "Utility" computing
• Nobody knows what "utility computing" is, but everyone has

heard of “grid computing”
• Grid computing implies sharing across resources owned by

multiple, independent organizations
• Utility computing implies sharing one owner’s resources by

multiple independent customers
Ultimate goal is to provide shared compute and storage

resources
• Instead of going to hardware committee to provision

balkanized resources, a project allocates a part of its budget
for use on the cluster

• Pay as you go
• Users only use 100 computers for 15 minutes of compute time,

instead of buying 100 computers that are captive 24x7

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 4

What is a Grid Service?

Thousands of commodity computers using basic
network hardware
• It's hard to program for many machines

Clustering and sharing software
• Hadoop, (Hadoop On Demand, Torque/Maui)

• Hadoop abstracts both storage and program execution

Terabytes of data
• It's a challenge to load data from many sources

An attached development environment
• A clean, well lighted place to interact with your cluster

User support / Solutions
• Now we're cooking with gas!

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 5

Compute Model: Map-Reduce

Programming model fits "Big Data" problems
well
• Functional programming means no side effects
• Large data sets can be split up into arbitrary units

of work
• Units of work can be repeated (or even run in

competition)
• Inspired by Google and the 1970s LISP Map-

Reduce programming paradigm
• Easy access to the programmer
• A framework to run code over large data

Hadoop Overview

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 7

Hadoop is an Apache Project

Apache Software Foundation Open Source project
• Originally a sub-project of the Lucene search engine.

Now a full Apache project
• With sub-projects if its own: Core, HBase, Hive, Pig,

ZooKeeper
• Yahoo! is the major source code contributor to Core, Pig and

ZooKeeper
• Powerset (now Microsoft) has contributed HBase, a

columnar-storage database which uses HDFS
• Powerset has adapted Hadoop to run on Amazon's EC2

• Facebook has contributed Hive, an SQL-like interface on
Hadoop

• There is significant interest from other companies: Amazon
(Elastic Hadoop!), IBM (Eclipse), many start-ups, even
Google

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 8

Hadoop Distributed File System

Cannot be mounted as a “file system”
• Access via command line or Java API
• Not a Unix-like, POSIX file system

Prefers large files (multiple terabytes) to many small
files

Files are write once, read many
• Append operation available in Hadoop v0.18+

Systems Administration friendly features
• Users, Groups and Permissions (Hadoop v0.16)
• Name and Space Quotas (Hadoop v0.18 and v0.19)
• Per-user client-side trash can (Hadoop v0.12)
• Snapshot (on restart)
• Rebalance tool (Hadoop v0.16)
• Audit logs (Hadoop v0.18)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 9

Interacting with the HDFS

Simple commands: hadoop dfs -ls, -du, -rm, -rmr
Uploading files

$ hadoop dfs -put foo mydata/foo
$ cat ReallyBigFile | hadoop dfs -put - mydata/ReallyBigFile

Downloading files
$ hadoop dfs -get mydata/foo foo
$ hadoop dfs -get - mydata/ReallyBigFile | grep “the answer is”
$ hadoop dfs -cat mydata/foo
$ hadoop dfs –tail [–f] mydata/foo

Configurable Options
• Blocksize and Replication factor are configurable per file

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 10

Map/Reduce Dataflow

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 11

Map/Reduce Dataflow Details

Hadoop Installation Demo

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 13

“Small Scale” Hardware

The demo cluster is built out of dual-socket,
dual core Intel machines with 4 250GB drives,
and 3GB of RAM
• Each system is worth less than $2K
• You can now buy better systems for under $2K

For some larger clusters, specialized hardware
is required
• Big RAM NameNodes
• NFS device for metadata backup
• Flat network with big core switches

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 14

Basic Installation

Three URLs:
• http://hadoop.apache.org/core/docs/current/cluster_setup.html
• http://hadoop.apache.org/core/releases.html
• http://mirrors.kahuki.com/apache/hadoop/core/stable/hadoop-0.16.4.tar.gz

19 hosts: 1 master (NameNode and JobTracker) and 18
slaves

Simple SSH (with a key and key-agent) to distribute
code and conf

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 15

Installation Commands

These commands assume an NFS mounted directory
• There are many ways to do this, scp, rsync, curl, etc.

Copy out Java and make a symlink to it
$ for i in `cat ~/slaves`; do ssh $i '(cd /grid/0/marco; tar xzf ~/jre1.6.0_06.tgz)'; done
$ for i in `cat ~/slaves`; do ssh $i '(cd /grid/0/marco; ln -s jre1.6.0_06 jre)'; done

Copy out Hadoop (v0.16.4 in this example) and make a
symlink to that

$ for i in `cat ~/slaves`; do ssh $i '(cd /grid/0/marco; tar xzf ~/hadoop-0.16.4.tar.gz)'; done
$ for i in `cat ~/slaves`; do ssh $i '(cd /grid/0/marco; ln -s hadoop-0.16.4 hadoop)'; done

Create stub directories for HDFS and MapReduce
$ for i in `cat ~/slaves`; do ssh $i 'mkdir /grid/0/marco/data; mkdir /grid/1/marco/data;

mkdir /grid/2/marco/data; mkdir /grid/3/marco/data'; done
$ for i in `cat ~/slaves`; do ssh $i 'mkdir /grid/0/marco/mrtmp; mkdir /grid/1/marco/mrtmp;

mkdir /grid/2/marco/mrtmp; mkdir /grid/3/marco/mrtmp'; done

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 16

Configuration

$ vi hadoop-0.16.4/conf/hadoop-env.sh
< # export JAVA_HOME=/usr/lib/j2sdk1.5-sun

> # export JAVA_HOME=/grid/0/marco/jre
>
> # HADOOP_HEAPSIZE - The maximum amount of
heapsize to use, in MB e.g. 2000MB.
> export HADOOP_HEAPSIZE=512

$ vi hadoop/conf/hadoop-site.xml
> <property>
> <name>fs.default.name</name>
> <value>kry4001:9000</value>
> </property>
> <property>
> <name>mapred.job.tracker</name>
> <value>kry4001:9001</value>
> </property>

> <property>
> <name>dfs.replication</name>
> <value>3</value>
> </property>
> <property>
> <name>dfs.name.dir</name>
> <value>/grid/0/marco/name</value>
> </property>
> <property>
> <name>dfs.data.dir</name>
>
<value>/grid/0/marco/data,/grid/1/marco/data,/grid/2/
marco/data,/grid/3/marco/data</value>
> </property>
> <property>
>
<name>/grid/0/marco/mrtmp,/grid/1/marco/mrtmp,/gri
d/2/marco/mrtmp,/grid/3/marco/mrtmp</name>
> <value></value>
> </property>
> <property>
> <name></name>
> <value></value>
> </property>

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 17

Starting HDFS

Set Environment variables
$ export JAVA_HOME=/grid/0/marco/jre
$ export HADOOP_HOME=/grid/0/marco/hadoop

Disable Secondary NameNode
• cp /dev/null hadoop/conf/masters

Copy out hadoop configs
$ for i in `cat ~/slaves`; do echo -n "${i}: "; ssh $i 'cp

hadoop-site.xml hadoop-env.sh
/grid/0/marco/hadoop/conf'; echo "${i} done"; done

Start HDFS
$ bin/start-dfs.sh

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 18

start-dfs.sh output

$ bin/start-hdfs.sh
starting namenode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-namenode-kry4001.out
kry4002: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4002.out
kry4004: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4004.out
kry4009: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4009.out
kry4014: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4014.out
kry4013: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4013.out
kry4005: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4005.out
kry4008: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4008.out
kry4011: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4011.out
kry4017: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4017.out
kry4019: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4019.out
kry4015: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4015.out
kry4007: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4007.out
kry4018: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4018.out
kry4003: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4003.out
kry4020: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4020.out
kry4012: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4012.out
kry4006: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4006.out
kry4016: starting datanode, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-datanode-kry4016.out

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 19

Review NameNode WebUI

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 20

HDFS Nodes

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 21

Upload a File

Upload a 156M file (1,000 copies of Alice in
Wonderland)

$ bin/hadoop dfs -ls
Found 0 items

$ bin/hadoop dfs -put ~/1K-alice30.txt .
$ bin/hadoop dfs -ls
Found 1 items
/user/marco/1K-alice30.txt <r 3> 163218000 2008-06-19 23:19

rw-r--r-- marco supergroup

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 22

Starting Map-Reduce

$ bin/start-mapred.sh
starting jobtracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-jobtracker-kry4001.out
kry4003: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4003.out
kry4009: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4009.out
kry4007: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4007.out
kry4002: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4002.out
kry4004: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4004.out
kry4005: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4005.out
kry4017: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4017.out
kry4014: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4014.out
kry4008: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4008.out
kry4013: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4013.out
kry4011: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4011.out
kry4015: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4015.out
kry4006: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4006.out
kry4012: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4012.out
kry4018: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4018.out
kry4020: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4020.out
kry4016: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4016.out
kry4019: starting tasktracker, logging to /grid/0/marco/hadoop/bin/../logs/hadoop-marco-tasktracker-kry4019.out

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 23

Review JobTracker WebUI

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 24

Run a Job

$ bin/hadoop jar hadoop-0.16.4-
examples.jar wordcount -r 4 1K-
alice30.txt alice-wc.out

08/06/19 23:21:23 INFO mapred.FileInputFormat: Total input paths to
process : 1
08/06/19 23:21:23 INFO mapred.JobClient: Running job:
job_200806192249_0003
08/06/19 23:21:24 INFO mapred.JobClient: map 0% reduce 0%
08/06/19 23:21:34 INFO mapred.JobClient: map 27% reduce 0%
08/06/19 23:21:39 INFO mapred.JobClient: map 35% reduce 0%
08/06/19 23:21:44 INFO mapred.JobClient: map 42% reduce 0%
08/06/19 23:21:49 INFO mapred.JobClient: map 62% reduce 0%
08/06/19 23:21:54 INFO mapred.JobClient: map 63% reduce 0%
08/06/19 23:21:59 INFO mapred.JobClient: map 72% reduce 0%
08/06/19 23:22:04 INFO mapred.JobClient: map 80% reduce 11%
08/06/19 23:22:09 INFO mapred.JobClient: map 82% reduce 11%
08/06/19 23:22:14 INFO mapred.JobClient: map 90% reduce 11%
08/06/19 23:22:19 INFO mapred.JobClient: map 92% reduce 11%
08/06/19 23:22:24 INFO mapred.JobClient: map 100% reduce 11%
08/06/19 23:22:38 INFO mapred.JobClient: map 100% reduce 33%
08/06/19 23:22:39 INFO mapred.JobClient: map 100% reduce 100%

08/06/19 23:22:40 INFO mapred.JobClient: Job complete:
job_200806192249_0003
08/06/19 23:22:40 INFO mapred.JobClient: Counters: 12
08/06/19 23:22:40 INFO mapred.JobClient: Job Counters
08/06/19 23:22:40 INFO mapred.JobClient: Launched map tasks=3
08/06/19 23:22:40 INFO mapred.JobClient: Launched reduce tasks=7
08/06/19 23:22:40 INFO mapred.JobClient: Data-local map tasks=1
08/06/19 23:22:40 INFO mapred.JobClient: Map-Reduce Framework
08/06/19 23:22:40 INFO mapred.JobClient: Map input records=3853000
08/06/19 23:22:40 INFO mapred.JobClient: Map output records=28200000
08/06/19 23:22:40 INFO mapred.JobClient: Map input bytes=163218000
08/06/19 23:22:40 INFO mapred.JobClient: Map output bytes=265799000
08/06/19 23:22:40 INFO mapred.JobClient: Combine input records=28200000
08/06/19 23:22:40 INFO mapred.JobClient: Combine output records=100436
08/06/19 23:22:40 INFO mapred.JobClient: Reduce input groups=5908
08/06/19 23:22:40 INFO mapred.JobClient: Reduce input records=100436
08/06/19 23:22:40 INFO mapred.JobClient: Reduce output records=5908

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 25

Review Job

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 26

Job Progress

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 27

Validate Output

$ hadoop dfs -get alice-wc.out/*
$ ls -1sh
total 80K
20K part-00000
20K part-00001
20K part-00002
20K part-00003

$ egrep '^Alice[:space:]+' *
part-00003:Alice: 7000

Hadoop for Data Intensive Super
Computing (DISC)

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 29

Hadoop: Two Services in One

Input file split into (64MB) blocks during loading
• Data flows straight from client to DataNodes (no bottleneck)
• Bad nodes are automatically skipped

Replicas automatically streamed to other DataNodes
Map-Reduce is location aware, optimizes placement of tasks

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 30

Job Input: InputSplit

Some network traffic is likely
• M-R handles this

transparently behind the
scenes, by asking for “just
a bit” of the next block

• Unless 1st, ignore all
before 1st separator

• Read-ahead to next block
to complete last record

InputFormat
• SequenceFileInputFormat,

TextInputFormat

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 31

Map-Reduce Process Level

Job Submission
• Map Function + Reduce

Function + List of inputs
• JobTracker receives list of

inputs, breaks inputs into
discrete map tasks

• Map tasks are marshaled to
long-running TaskTrackers

• Map outputs are collected
by Reducer tasks (not
shown) sorted, and fed to
the reduce function

• Reduce outputs (not shown)
are stored back to the
HDFS

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 32

Map-Reduce Process Level (2)

TaskTracker is responsible for handling inputs/outputs
• Map inputs are read (typically from HDFS) and fed, record by

record, to each task
• Map outputs are collected in memory, and if necessary, spilled to

local disk
• Partitioned outputs are typically retrieved by TaskTrackers hosting

reduce tasks, and those outputs are typically stored back in HDFS

Hadoop Programming APIs

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 34

Java: MapperClass

 public static class MapClass extends MapReduceBase
implements Mapper {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(WritableComparable key, Writable value,
 OutputCollector output,
 Reporter reporter) throws IOException {
 String line = ((Text)value).toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 reporter.incrCounter(Counter.WORDS, 1);
 }
 }
 }

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 35

Java: CombinerClass / ReducerClass

 public static class Reduce extends MapReduceBase implements
Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += ((IntWritable) values.next()).get();
 reporter.incrCounter(Counter.VALUES, 1);
 }
 output.collect(key, new IntWritable(sum));
 }
 }

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 36

Java: Launcher

public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(WCMap.class);
 conf.setCombinerClass(WCReduce.class);
 conf.setReducerClass(WCReduce.class);

 conf.setInputPath(new Path(args[0]));
 conf.setOutputPath(new Path(args[1]));

 JobClient.runJob(conf);
}

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 37

Streaming Map-Reduce Demo

$ run jar hadoop-streaming.jar
 -numReduceTasks 4
 -input /data/news/20070218
 -output wc-streaming.out
 -mapper "perl -ane 'print join(\"\n\", @F), \"\n\"'”
 -reducer "uniq -c”

Currently, combiner only available as a JavaClass,
cannot provide shell command as a combiner
(HADOOP-4842, Hadoop v0.21)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 38

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 39

Pig

A high-level declarative language (similarity to SQL)
• Pig Latin is a simple query algebra that lets you express

data transformations such as merging data sets, filtering
them, and applying functions to records or groups of
records. Users can create their own functions to do special-
purpose processing.

A SW layer above MR, implementing a grouping syntax

grunt> A = load '1K-alice30.txt' using
TextLoader()

grunt> W = foreach A generate
flatten(TOKENIZE(*));

grunt> G = GROUP W BY $0;
grunt> C = FOREACH G GENERATE group, COUNT(W);
grunt> store C into 'alice-wc.pig’;

Systems Concerns

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 41

Flat Networking

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 42

System Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 43

System Configuration

Memory (typically) dictates how many task slots
per node
• Nodes need not be homogenously configured

Drives can be configured either as RAID0 or
JBOD
• RAID0 theoretically faster
• Losing a single drive in RAID0 means losing an

entire node’s worth of replicas (which may be
tolerable)

• Creating a RAID0 stripe allows for larger single-
task outputs than if restricted to a single drive

HDFS Advanced Topics

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 45

HDFS Process Level

NameNode and DataNodes run
continuously
DataNodes report status to
NameNode via heartbeats
NameNode inspects state of the
file system, instructs
DataNodes to perform
operations on blocks (replicate,
delete) via heartbeat responses
Metadata (file creation, new
block, etc) is logged by the
NameNode
HDFS clients run on or off the
HDFS nodes
Block replicas are pipelined (not
shown) from the first DataNode
to subsequent nodes

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 46

NameNode Overview

Namespace
• HDFS supports a traditional hierarchical file organization
• A user or an application can create directories and store files

inside these directories
Block Replication

• NameNode is responsible for keeping track of which
datanodes all block replicas are stored on, and maintaining
replication policy

• Datanodes only track what blocks they have on local disk,
and report to NameNode. They don’t know anything about
replication policy or file metadata

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 47

HDFS fsck

Usage: hadoop fsck [GENERIC_OPTIONS] <path> [-move | -delete | -
openforwrite] [-files [-blocks [-locations | -racks]]]

<path>
• Start checking from this path.

-move
• Move corrupted files to /lost+found

-delete
• Delete corrupted files.

-openforwrite
• Print out files opened for write.

-files
• Print out files being checked.

-blocks
• Print out block report.

-locations
• Print out locations for every block.

-racks
• Print out network topology for data-node locations.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 48

HDFS Safemode

hadoop dfs [-safemode enter | leave | get | wait]

During start up Namenode loads the filesystem state from fsimage and
edits log file. It then waits for datanodes to report their blocks so that it
does not prematurely start replicating the blocks though enough
replicas already exist in the cluster. During this time Namenode stays in
safemode. A Safemode for Namenode is essentially a read-only mode
for the HDFS cluster, where it does not allow any modifications to
filesystem or blocks. Normally Namenode gets out of safemode
automatically at the beginning. If required, HDFS could be placed in
safemode explicitly using 'bin/hadoop dfsadmin -safemode' command.
Namenode front page shows whether safemode is on or off. A more
detailed description and configuration is maintained as JavaDoc for
setSafeMode().

Note: Recent versions have a confusing bug:
 “The ratio of reported blocks 1.0000 has not reached the threshold

1.0000” (HADOOP-5650)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 49

Hadoop DFS Upgrades

Upgrade Process
• Enable safemode
• Run fsck, lsr, and dfsadmin –report, save outputs
• stop-dfs.sh
• Restart NameNode only to digest edits
• Install new Hadoop version
• start-dfs.sh –upgrade
• Run fsck, lsr, and dfsadmin –report, save outputs

Later
$ bin/hadoop dfsadmin –finalizeUpgrade
• Must be run while the HDFS is up!

OR
$ bin/start-dfs.h -rollback

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 50

DataNode Lists

slaves
• Used by start-*.sh/stop-*.sh

dfs.include and dfs.exclude
• IPs or FQDNs of hosts allowed/ignored in the

HDFS
Active datanode list: include list - exclude list

• Dead list in NameNode Status

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 51

Optional HDFS Configuration

dfs.datanode.du.reserved
• Reserved space in bytes per volume. Always leave this

much space free for non dfs use.
dfs.datanode.du.pct

• When calculating remaining space, only use this percentage
of the real available space

dfs.hosts
• Names a file that contains a list of hosts that are permitted to

connect to the namenode. The full pathname of the file must
be specified. If the value is empty, all hosts are permitted.

dfs.hosts.exclude
• Names a file that contains a list of hosts that are not

permitted to connect to the namenode. The full pathname of
the file must be specified. If the value is empty, no hosts are
excluded.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 52

Primary NameNode state

During normal operation, all state is kept in memory
• A subset of state is stored on disk in a file called ‘fsimage’
• This on-disk copy is used to persist state data across

NameNode restarts
• All other state is dynamically regenerated after restart

All metadata transactions (adds, deletes, renames, etc)
are also logged to disk
• Edits are committed to a file called, ‘edits’

The Primary NameNode cannot digest the edits log into
the image file without restart
• Allowing the edits log to get large isn’t dangerous, but

possibly risky
• A large edits file means very long restart times as primary

digests large edits file
• Admin command saveNamespace (HADOOP-4826, v0.20)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 53

NameNode SPOF

The chances of a single node in 1,000 failing are very high
The chances of a specific node in 1,000 failing are pretty rare

• NameNodes don't fail very often
We run our NameNode with no RAID

• NameNode has a feature to write image/edits to multiple
locations
• dfs.name.dir

• Determines where on the local filesystem the DFS name node
should store the name table. If this is a comma-delimited list of
directories then the name table is replicated in all of the
directories, for redundancy.

• Upon startup the NameNode automatically consults all
configured locations of its state and reads the most up to
date image and journal. If all of the Namenodes copies of
data are unavailable state can be (mostly) recovered from
the secondary Namenode using the ‘-importCheckpoint’
switch. (HADOOP-2585)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 54

NameNode SPOF (2)

• Second location is an NFS device which has RAID
• Moving to a different NameNode is easy

• Copy image and edits from NFS device
• Move VIP
• Restart HDFS (Optional)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 55

Secondary NameNode

Offline digestion of edits file for the Primary NN
• Process requests both edits and image file from Primary.
• Primary closes current edits file, starts writing to edits.new.
• Nice side-benefit: Keeps at least one copy of the image and

edits file

NOT a suitable choice for Primary NameNode failover
• If you need to fail over primary to a second server, you still

want the secondary to function normally
• Generally a bad idea to run both on the same machine

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 56

Secondary NameNode (2)

Two configuration options:
• fs.checkpoint.period, set to 1 hour by default,

specifies the maximum delay between two
consecutive checkpoints

• fs.checkpoint.size, set to 64MB (we use 2GB) by
default, defines the size of the edits log file (in
bytes) that forces an urgent checkpoint even if the
maximum checkpoint delay is not reached.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 57

Standby NameNodes

Streaming edits to a standby NameNode
(HADOOP-4539, v0.21.0)
• Introduces Backup node
• Replaces Secondary NameNode with Checkpoint

node

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 58

HDFS Permissions

Hadoop client draws user and group membership from
client OS
• Implementation is naive, can be easily fooled

dfs.permissions - Optional feature
• Permissions are tracked throughout the system regardless
• Only permissions enforcement is optional

dfs.permissions.supergroup
• The name of the group of super-users.

dfs.umask
• The umask used when creating files and directories.

Decimal, not octal! (Yahoo! uses 63.)
dfs.web.ugi

• The user account used by the web interface. (We use
gopher,gopher, effectively “anonymous.”)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 59

Hadoop Authentication

Hadoop has no HDFS or job client authentication
• Breathe. Relax.

Hadoop is still not 1.0
• Intention is to go to GSSAPI (Kerberos, HADOOP-1741)
• Code is not written yet

Currently handled by a 'Systems Engineering' solution
• Users are only given Unix login to a set of 'gateway'

machines
• Only admins are given access to compute nodes
• Compute nodes run IP Tables rules to only accept HDFS

and job submit from gateways
• Crude, but has allowed Dev team to focus on other pre-1.0

features for more than a year

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 60

HDFS Audit Logs

Undocumented! (HADOOP-3336, v0.18.0)
This is one of your best tools to identify a

(D)DOS “attack” against the NameNode
• Usually a well meaning but oblivious user

Add/Uncomment these lines to your
NameNode’s log4j.properties file:

log4j.logger.org.apache.hadoop.fs.FSNamesystem.audit=INFO,DRFAAUDIT
log4j.additivity.org.apache.hadoop.fs.FSNamesystem.audit=false
log4j.appender.DRFAAUDIT=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/hadoop-audit.log
log4j.appender.DRFAAUDIT.DatePattern=.yyyy-MM-dd
log4j.appender.DRFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.DRFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 61

Hadoop Rack Awareness

The HDFS and the Map-Reduce components are rack-
aware (HADOOP-692, v0.11.0)
• The API resolves the slave's DNS name (also IP address) to

a rack id.
• Configure topology.script.file.name.

• If topology.script.file.name is not set, the rack id /default-rack is
returned for any passed IP address.

• Additional configuration in the Map-Reduce part is
mapred.cache.task.levels
• Determines the number of levels (in the network topology) of

caches.
• So, for example, if it is the default value of 2, two levels of

caches will be constructed - one for hosts (host -> task
mapping) and another for racks (rack -> task mapping)

3 replicas
• Local, different node on same rack, node on different rack

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 62

Decommissioning Nodes

hadoop dfsadmin -refreshNodes
• Replicates blocks from any live nodes in the exclude list
• Do not decommission too many nodes (200+) at once! It’s

easy to saturate the NameNode.
• Decommissioned nodes will show up in “dead” list on dfs

WebUI after they’ve completed and shut down

 “Each entry defined in dfs.hosts and also in dfs.host.exclude
is stopped from decommissioning if it has aleady been
marked for decommission. Entires not present in both the
lists are decommissioned.”

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 63

Space Management

Older versions of Hadoop produce very
confusing space reports. Two bugs address
tehse issues: HADOOP-2816 WebUI,
HADOOP-4281 dfsadmin -report, v0.19

Datanode heartbeat reported capacity
information is: sum of all the diskspace of
data directories minus the reserved space
configured using dfs.datanode.du.reserved
config param

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 64

Cluster Summary

Configured Capacity: Sum of the file system capacity of
all the data directories - reserved space

Present Capacity: Represents the present capacity
available for DFS use. This is sum of DFS Remaining
and DFS Used

DFS Used%: Calculated based on Present Capacity
Node data columns

• Last Contact, Admin State, Capacity (TB), Present Capacity
(TB) Used (%), Used (%) Remaining (TB), Blocks

• Capacity: Sum of file system capacity of all the data
directories - reserved space

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 65

HDFS Quotas

HDFS will become unusable (and possibly unstable)
when approaching the maximum capacity limits
• If jobs cannot write output, cluster is effectively down

To prevent rogue users or jobs from affecting the whole
cluster, HDFS has name space (v0.18) and disk
space (v0.19) quotas
• Quotas are applied to directory trees, not users!

• Allows multiple users to share a single, quota’d project directory
• Quotas must always be manually set, there is no way to

specify a default
• Setting quotas will fail if the directory tree already exceeds

the specified quota
• There is also no way to audit quotas, only to report on

quotas currently configured on a directory (HADOOP-5290)
$ hadoop dfs -count -q <directory>...<directory>

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 66

HDFS Name Space Quotas

To keep metadata transactions fast, the entire
namespace is held within NameNode RAM.
• If NameNode has insufficient RAM, or users are

creating needlessly small files, NameNode RAM
capacity may artificially limit HDFS capacity

$ hadoop dfsadmin -setQuota <N>
<directory>...<directory>
• Largest quota of <N> is Long.Max_Value

$ hadoop dfsadmin -clrQuota
<directory>...<directory>

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 67

HDFS Disk Space Quotas

A limit on the number of bytes used by a directory tree
• Each replica of a block counts against the quota

• Changing the replication factor for a file will credit or debit
quotas

• A quota of zero will allow files and directories to be created
(no disk space used) but no blocks can be committed

$ hadoop dfsadmin -setSpaceQuota <N>
<directory>...<directory>
• N can also be specified with a binary prefix for convenience, for

e.g. 50g for 50 gigabytes and 2t for 2 terabytes etc.
$ hadoop dfsadmin -clrSpaceQuota <directory>...<directory>

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 68

HDFS Archive Tool

Quotas are complemented by ‘Hadoop archives’, which
are a tool for users to manage their namespace
consumption. A large number of files can be
converted into a Hadoop archive using a
Map/Reduce utility. A Hadoop archive is basically an
HDFS directory with a small number of data files that
consist of files from the original set concatenated
together. An index stores the location of each file
from the original set. Individual files in an archive can
be accessed using a special URI with the ‘har’
schema. (HADOOP-3188, v0.18.0)

$ hadoop archive -archiveName name <src>* <dest>

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 69

HDFS Trash

fs.trash.interval
• Number of minutes between trash checkpoints. If zero,

the trash feature is disabled
Implementation is not intuitive for users and admins

• Solely a means to allow users to recover from their
own mistakes

• Only enabled when files are removed via the Hadoop
dfs command line
• Files removed via the Java API, externally or within a job

are immediately lost
• Deleted files are actually moved to Trash/Current

within user’s homedir on HFDS

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 70

HDFS Trash (2)

• fs.trash.interval affects the frequency by which the
NameNode moves the contents of Current to a
timestamped directory within Trash

• Timestamped directories over 6 hours are removed by
the NameNode.
• Not configurable
• This means that when users delete files, no space is freed

for 6 hours unless manually deleted from Trash directories

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 71

HDFS Rebalancer

HADOOP-1652, v0.16.0
Important when adding nodes to an existing HDFS

• Spreads data evenly across all nodes
• Improves performance by spreading data across racks
• Gives more breathing room for Map-Reduce jobs

Use with caution – we’re still discovering bugs
• Improvements have been implemented in Hadoop v0.18

Do not run directly on NameNode, but a host nearby
$ bin/start-balancer.sh [-threshold threshold]

• Threshold is max percentage of over/under-utilization per
data node (0 = perfect balance, balancer will likely never
finish)

• Each data node has a limited bandwidth for rebalancing. The
default value for the bandwidth is 5MB/s (perhaps 1MB/s,
the documentation conflicts)

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 72

Copy Between Clusters: DistCp

Distributed tool for large inter-cluster copies
$ hadoop distcp hdfs://nn1:8020/<srcpath>

hdfs://nn2:8020/<dstpath>
• Use hftp://<dfs.http.address>/<path> to copy from a different

version of HDFS (HFTP is read-only)
Many useful options (see manual on website)

-p {rbugp}: Replication, Block size, User, Group, Permissions
-i: Ignore failures (continue with remaining copies)
-log <logdir>: Write logs
-m <num_maps>: More maps isn’t always faster
-overwrite: Overwrites pre-existing files in dstpath
-update: Source replaces destination file if they differ
-delete: Delete files existing in dstpath, but not srcpath

Map-Reduce Topics

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 74

JobTracker

As you’ve seen earlier, JobTracker runs 24/7
and is responsible for supplying TaskTrackers
with tasks

Without an advanced scheduler, running and
queued jobs are not durable across restart

Simple queue, available via web page
• There is no corollary to dfsadmin -report
• Job history logs are available

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 75

Job Submission

User code is typically responsible for job submission,
including setting up job configuration
• Relevant files (jar, config) are uploaded to HDFS and

automatically set to replication 10
• Use DistributedCache to automatically upload additional

required files

All files and job tasks are contained by a temporary
directory
• ${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid
• Temporary directories are cleaned up after task exits and

map outputs have been collected
• It is possible, but ill-advised for user code to write outside of

that directory

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 76

Memory Management

Users/admins can also specify the maximum
virtual memory of the launched child-task,
and any sub-process it launches recursively,
using mapred.child.ulimit. Note that the value
set here is a per process limit. The value for
mapred.child.ulimit should be specified in kilo
bytes (KB). And also the value must be
greater than or equal to the -Xmx passed to
JavaVM, else the VM might not start.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 77

Scheduling

Three different types of scheduling
• Simple JobTracker queues

• The core of Hadoop job execution
• Simple queue to supply TaskTrackers with map and reduce

tasks
• Plug-in Schedulers (Fair Share, Capacity)

• Additional layer on top of JobTracker queue, to allow advanced
configuration of queue management

• Hadoop-On-Demand
• Dynamically allocates a private set of machines to a user
• Deprecated, requires Torque (and Maui)
• Allocates dynamic Map-Reduce clusters on top of static (or

dynamice) HDFS
• Good for handling explosive growth, bad for overall utilization

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 78

JobTracker Queue

The JobTracker maintains a simple queue of
jobs that have been submitted, and assigns
map and reduce tasks to TaskTrackers when
slots become available

All of the map tasks from the first job in the
queue will be scheduled before any map
tasks from subsequent jobs

Frequently, map (and even reduce tasks) can
run in open slots while reduce tasks from
previous jobs continue to run
• Entire jobs can sneak through while a job’s mega-

reducers grind away on a (relatively) few nodes

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 79

Plug-in Schedulers

Schedulers are an attempt to automate fine(r)-grain
control over the JobTracker’s queue
• Very recent technology, Hadoop v0.20 and v0.21
• I don’t have enough concrete experience with these to

document them well, see the guides on the Hadoop website

Available as jar files
• Must make sure HADOOP_CLASSPATH includes path to jar
• Also configure hadoop-site.xml to include:

<property>
 <name>mapred.jobtracker.taskScheduler</name>
 <value>org.apache.hadoop.mapred.SchedulerName</value>
</property>

• Choose one of FairScheduler or CapacityTaskScheduler

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 80

Fair Share Scheduler

• When there is a single job running, that job uses
the entire cluster. When other jobs are submitted,
tasks slots that free up are assigned to the new
jobs, so that each job gets roughly the same
amount of CPU time. Fair sharing can also work
with job priorities - the priorities are used as
weights to determine the fraction of total compute
time that each job should get.

• Fair Scheduler allows assigning guaranteed
minimum shares to pools, which is useful for
ensuring that certain users, groups or production
applications always get sufficient resources.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 81

Capacity Scheduler

• Supports multiple queues which are guaranteed a
fraction of the capacity of the cluster. Free
resources can be allocated to any queue beyond
its guaranteed capacity, and can be returned to a
queue within N minutes of needing them.

• Queues optionally support job priorities. Within a
queue, jobs with higher priority will have access to
the queue’s resources before jobs with lower
priority. Queues also support a percentage limit of
resources allocated to any one user at a given
time.

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 82

Hadoop on Demand (HOD)

Deprecated

Before advanced schedulers were written, Yahoo!
Implemented, “Hadoop on Demand.”
• The cluster ran only HDFS processes
• Using Torque/Maui, users allocated sets of nodes from the

cluster, and deployed temporary Map-Reduce clusters onto
them

• Users then had a private JobTracker to submit their jobs to,
thus allowing many users to share many nodes

• High cost: Mapper nodes idle while relatively few reduces
continue to run before releasing all nodes when job finishes

Still possibly useful for Test/QA environments?

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 83

Map-Reduce Configuration

mapred.child.java.opts=-Xmx640m
mapred.reduce.parallel.copies=30
mapred.tasktracker.map.tasks.maximum=2
mapred.tasktracker.reduce.tasks.maximum=2
io.sort.factor=100
io.sort.mb=256
io.file.buffer.size=131072
mapred.compress.map.output=false
fs.inmemory.size.mb=256
mapred.map.tasks.speculative.execution=false
mapred.reduce.tasks.speculative.execution=false
ipc.client.idlethreshold=8000
ipc.client.connection.maxidletime=30000
ipc.client.connect.max.retries=5

Best Practices

Hadoop Cluster Management

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 85

Best Practices - HDFS

Run fsck and dfsadmin -report regularly, save
the output
• Alarm any time HDFS is not HEALTHY

• Any file missing all three replicas of one or more blocks
will be considered CORRUPT

• Be especially aware of chronically under-
replicated blocks - Hadoop v0.18 and later have
complex append code that cause occasional
unrecoverable replicas
• These broken blocks must be handled manually; usually

the file must be deleted or recreated
• Some versions of Hadoop will consider 0-byte blocks (ie,

blocks opened for append) as CORRUPT

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 86

Best Practices - Monitoring

Use SLAs
• Minimum number of gateways responding
• Minimum number of Datanodes participating in

HDFS
• NameNode available for HDFS transactions
• JobTracker available for job submission

Use two levels of monitoring
• A low-level monitoring system to track the health

of the worker nodes - no alarms
• A high-level monitoring system to track the SLAs

mentioned above - alarm based on availability

June 15, 2009 Marco Nicosia - Hadoop Cluster Management - USENIX 2009 87

New Features

HDFS proxy (HADOOP-4575)
• An HTTP server for allowing files to be read by

non-HDFS clients
Distributed ch{mod,own} (HADOOP-4661)

• Changing lots of file permissions using -R option
can take days

Synthetic Load Generator for NameNode
testing (HADOOP-3992, HADOOP-4142)

http://hadoop.apache.org/

Marco Nicosia
marco@escape.org

