
WebWork in Action
A hands-on look at the future of Struts

Who is Patrick?

• Founder of Autoriginate, Inc.

• Previously worked for Jive Software

• Founder of OpenQA - open source QA
tools

• President of OpenSymphony Group, Inc.

• Author of WebWork in Action (free copies!)

Introduction

• Overview of WebWork

• Comparison to other frameworks

• About the Struts merger

• WebWork basics: validation, tags, and more

• Rapid development with WebWork

• AJAX Support

Overview: WebWork...

• Is built upon the Command Pattern

• Works directly with POJOs

• Uses OGNL for expression language and data binding

• Has an advanced validation framework

• Includes an extensible widget system

• Supports JSP, Velocity, FreeMarker, Jasper Reports, XSLT, and
other view technologies

Core Concepts

• Three key pieces:

• Actions (POJOs, ActionSupport)

• Results

• Interceptors

• No “form beans”: the action is the model

• Value stack allows loose coupling

Getting Started

• Two options:

• Standard Servlet (2.3) container

• Built in QuickStart server (more later)

• Both methods are compatible

• develop in QuickStart and deploy in a
standard container

Setting up the Filter

<filter>
 <filter-name>webwork</filter-name>
 <filter-class>
 com...FilterDispatcher
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>webwork</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Configuration

• Actions, Interceptors, and Results configured
in xwork.xml

• Support for packages and package
inheritance

• Optional mapping to namespaces

• Additional files can be included using
<include>

Example xwork.xml
<xwork>
 <include file=”webwork-default.xml”/>
 <package name=”default”
 extends=”webwork-default”>
 <action name=”listPeople”
 class=”ListPeople”>
 <result>listPeople.jsp</result>
 </action>
 </package>
</xwork>

Example xwork.xml
<xwork>
 <include file=”webwork-default.xml”/>
 <package name=”default”
 extends=”webwork-default”>
 <action name=”listPeople”
 class=”ListPeople”>
 <result>listPeople.jsp</result>
 </action>
 </package>
</xwork>

Example xwork.xml
<xwork>
 <include file=”webwork-default.xml”/>
 <package name=”default”
 extends=”webwork-default”>
 <action name=”listPeople”
 class=”com...ListPeople”>
 <result>listPeople.jsp</result>
 </action>
 </package>
</xwork>

Example xwork.xml
<xwork>
 <include file=”webwork-default.xml”/>
 <package name=”default”
 extends=”webwork-default”>
 <action name=”listPeople”
 class=”com...ListPeople”>
 <result>listPeople.jsp</result>
 </action>
 </package>
</xwork>

Interceptors

• Provide the very core features for WebWork

• Logging

• Applying HTTP request parameters

• Invoking the validation framework

• Can also provide advanced features

• Automatic “Please wait...” pages for long-running
requests

• Prevent double click problems

Value Stack

• All expressions (OGNL) work against the
value stack

• Actions are pushed on the stack before
anything else happens

• Additional objects, such as those in an
iterator, can be pushed on to the stack

• Allows for loose couple of web components

Comparisons

• WebWork vs Struts?

• WebWork vs Ruby on Rails?

• Action vs Component?

• WebWork vs JSF?

• Can’t we all just get along?

Java Web Frameworks

• Action frameworks

• URL binding

• WebWork, Struts Action, RIFE, Stripes,
Spring MVC

• Component frameworks

• Event binding

• JSF, Tapestry, Shale, Seam

About the Merger

• Struts Action 2.0 == WebWork 2.2 + some
Struts features

• WebWork will cease to be actively
developed

• Code, developers, and community moves to
Struts

• Future focus on development productivity

Struts: No Longer a
Framework

• Struts is not a framework, it is a community

• Two frameworks:

• Action: Action model

• Shale: Component model

• Action and Shale will share code as much
as possible

• Various sub-projects, such as Tiles

WebWork Basics

• UI Tags

• Validation

• Data Binding

• Continuations

UI Tags

• Platform to create reusable UI widgets

• Form controls provided out of the box

• Groups of templates form “themes”

• The “xhtml” theme is a simple two-column
layout

• Themes can extend each other

• ajax -> xhtml -> simple

Example
<ww:form method="post">
 <ww:textfield label="Name"
 name="name"/>
 <ww:textfield label="Age"
 name="age"/>
 <ww:select label="Favorite color"
 name="color"
 list="%{
 { ‘Red’, ‘Blue’,
 ‘Black’, ‘Green’ }
 }"/>
 <ww:submit action="quiz"/>
</ww:form>

The xhtml theme extends
the simple theme and
provides a standard two-
column layout…

Demo

Validation

• Abstracts validation rules from core code

• Common rules already created (required,
regex, date range, etc)

• Same rules work with client side validation
using AJAX

• Rules can defined in XML or with
annotations

Example
<validators>
 <field name="age">
 <field-validator type="int">
 <param name="min">13</param>
 <param name="max">19</param>
 <message>
 Only people ages 13 to
 19 may take this quiz
 </message>
 </field-validator>
 </field>
</validators>

Data Binding

• HTTP is not aware of data types... but Java is!

• WebWork helps with this mismatch by letting
you work with your raw POJOs rather than
type-less strings

• Can support basic objects, lists, maps, sets, and
more

• Binding rules are based on generics and
annotations

Examples

• String -> int

• <input name=”id”/>

• String[] -> List<String>

• <input name=”name”/>

• Complex types

• <input name=”person.id”/>

• <input name=”people[0].id”/>

• <input name=”person.friends.name”/>

Continuations

• Is a native feature in some languages, but not
Java

• Lets you define application flow as Java code

• State is stored as simply local method
variables

• WebWork uses byte-code manipulation to
emulate continuations in the Java language.

Example
int answer = ...;

while (answer != guess && tries > 0) {
 pause(SUCCESS);

 if (guess > answer) {
 addFieldError("guess",
 "Too high!");
 } else if (guess < answer) {
 addFieldError("guess",
 "Too low!");
 }

 tries--;
}

Demo

Rapid Development

• What makes development “rapid”?

• Why is Ruby on Rails so popular?

• J2EE productivity fallacies

• QuickStart: bringing scripting benefits to Java
web apps

QuickStart

• Is the quickest way to get started

• Is inspired by AppFuse, Ruby on Rails

• Is powered by a built-in Jetty server

• Automatically compiles your source files

• Gets you started in three steps:

• Unzip webwork-2.2.2.zip

• cp -R webapps/starter webapps/showcase

• java -jar webwork.jar quickstart:showcase

Class (re)Loading

• Java can support the same edit-refresh style
development that scripting languages have

• Commons-JCI is used, which delegates to
Janino, Eclipse compiler, and others

• To be done properly, libraries and
frameworks need to get out of the edit-
compile-package-deploy-wait-refresh
mindset

Demo

AJAX Support

• WebWork provides basic building blocks for
AJAX development:

• Remote divs

• Remote forms

• Validation

• Builds on top of Dojo and DWR

Validation
<ww:form method="post" theme="ajax"
 validate="true">
 <ww:textfield label="Name"
 name="name"/>
 <ww:textfield label="Age"
 name="age"/>
 <ww:textfield label="Favorite color"
 name="answer"/>
 <ww:submit/>
</ww:form>

Demo

Remote Forms
<ww:head/>
...
<ww:form id="myForm"
 cssStyle="border: 1px solid black;"
 action="myAction"
 method="post"
 theme="ajax">
 <ww:textfield name="..."/>
 ...
 <ww:submit resultDivId="myForm"/>
</ww:form>

Remote Forms

<button type="submit"
 dojoType="BindButton"
 formId="myForm"
 value="Submit"
 targetDiv="myForm">
 Submit
</button>

Questions?

Questions?

Questions?

Questions?

Questions?

Questions?

Questions?

Questions?

Out of stock, please
try Amazon.com :)

