
OpenWhisk Tech Interchange
2/19/20 host: rodric @rabbah

• New features, Pull request status & help needed

• Release plans

• Containerless functions (preliminary results, next steps)

Notable Updates
• Enhancements to “action loop” proxy implemented in Go

https://github.com/apache/openwhisk-runtime-go/pull/121
https://github.com/apache/openwhisk-runtime-python/pull/82

- Add asynchronous handshake between proxy and runtime

- Better detection of failed function init

- Normalizes log extraction to match “old” style

- Applies improved proxy to Python 2,3,3ai runtimes

• Native support for TypeScript
https://github.com/apache/openwhisk-runtime-nodejs/pull/160

- Pending final comments

https://github.com/apache/openwhisk-runtime-go/pull/121
https://github.com/apache/openwhisk-runtime-python/pull/82
https://github.com/apache/openwhisk-runtime-nodejs/pull/160

PRs, ready to merge?

• CosmosDB indexing PR 4807 (ready to merge?)

• Elastic store for activations PR 4724 (small nits, ready to merge?)

• Metrics for web action results PR 4726 (ready to merge?)

• Encrypt parameters PR 4756 (pending final review)

• Java 11 PR 4706 (performance concern on dev list, merge?)

PRs, help needed

• waitTime for sequences PR 4819 (help with review needed)

• Admin interface to change runtimes PR 4790 (pending tests, status?)

• Invoker health check PR 4698 (status?)

• Optional activation results PR 4659 (status?)

Release Plans

• Dave Grove to review remaining items for core release

Containerless Functions

Serverless Elasticity
resource isolation and provisioning

isolates containers
5ms 500ms

Cloudflare Workers

V8 vs. WASM

Summary of What we’ve done

• Credits: Perry Cheng & Rodric Rabbah (Nimbella), Dragos Haut & Chetan Mehrotra & Tyson Norris (Adobe)

• What are isolates:
- Strong memory isolation
- String in, String out
- Must widen interface (trampoline) for “fetch”, “promise”, “timeout”
- Trampolines are attack surfaces

• What we wanted to know:
- Under load, quantity performance and latency vs. containers
- Quantify impact of isolate reuse on performance
- Assume one function per isolate

• What we have done:
- Load generator
- Proof of concept integration with OpenWhisk Standalone Controller

• What’s next:
- POEM-2 (thanks Dominic for POEM-1 http://bit.ly/wsk-poem-1)

http://bit.ly/wsk-poem-1

Architecture

Load
Generator

worker 1 (port 3000)

.

.

.

.

worker 2 (port 3001)
……

worker 1 (port 3000)

worker 2 (port 3001)
……

4 core VM

4 core VM

16 core VM

Full Transaction Log

Stats
Processor

http

Load Generator
• Custom Golang load generator and stats processor

• First tried wrk, hey, … but each had deficiencies

• Configurable with a json file specifying IP, URI+Verb,
weight

• Not a load balancer

• 16 cores to support 100K req/sec without perturbation

• Since 4 core VM can sustain only 55-60K req/sec

Worker
• Written in javascript node.js with express as the server

• /status endpoint immediately responds as a health check and establish
rate limit

• /eval endpoint will accept a function name, function parameters, and a
mode

• unsafe = javascript’s unsafe eval

• fresh = a fresh V8 isolate for every eval

• isolate = reuse V8 isolate if possible

• Run multiple instances per VM since javascript is single-threaded

Sanity Check
• Initial scaling is linear proving

out the load generator’s use
of concurrency

• Leveling off at 230K is also
expected since 16 core VM
is rate limited based on core
count

• Conclusion: For testing thing
up to 100K (or even 150K),
this framework is performant.

Rough Upper Bound

• Unsafe “eval” is almost as
fast as expected at 220

• Test Function: Given a
number, multiply by another
number.

• Execution time still dwarfed
by “eval” and not actual
function

Lower Bound
• A fresh isolate for each

function call is created and
destroyed.

• 32K at 50VM means we need
about 160VMs to achieve
100K

• Conclusion: Isolate creation
is much faster than container
creation but will still remain
the bottleneck for short-
running functions.

Full Reuse
• We maintain a cache map of

all isolates indexed by the
function.

• Need about 20 (4 core) VMs
to get to 100K req/sec

• Conclusion: Reuse is very
important for running short-
short-running functions
because isolate CRUD is
still the bottleneck.

