
Oknet (Chao Xu)
xuchao@skyguard.com.cn

oknet@apache.org

SkyGuard�

� Since Jan 2015
� Products / Solutions

�  Inside Threat Protection
� Data Loss Prevention
� UEBA
� CASB
�  Secure Email Gateway
�  Secure Web Gateway (based on ATS)

About me�

�  Jan 2015
�  Touch the ATS code
� Review code line by line and write code

reading note on Github
�  https://github.com/oknet/atsinternals

� Sep 2016
�  ATS committer and PMC member

� Mainly focus on the stability and quality
of the code, then performance.

Start from

Insecure HTTP Proxy�

Insecure HTTP Proxy

Client Side Explicit HTTP Proxy

*(7�KWWSV���ZZZ�[[[�FRP�ORJLQ��+773���[
5HT�	�5HVS�DUH�ERWK�LQ�SODLQ�WH[W

Client Side Explicit HTTP Proxy

&211(&7�ZZZ�[[[�FRP�����+773���[
5HT�KRVWQDPH�LQ�SODLQ�WH[W

Proxy Server Parent HTTP Proxy

&211(&7�ZZZ�[[[�FRP�����+773���[
)RUZDUG�&211(&7�UHTXHVW�LQ�SODLQ�WH[W

Deal with CONNECT method�

Deal with CONNECT method

@startuml
 box "Client Side" #DDDDFF
 actor Client
 end box

 box "TrafficServer" #DDFFDD
 entity "User Agent\nVConn" as lvc
 participant "HttpSM / HttpTunnel" as httpsm
 entity "Origin Server\nVConn" as rvc
 end box
 box "Server Side" #DDDDFF
 participant "Origin Server" as Server
 end box

 Client -> lvc : TCP connect and Allocate VC
 activate lvc
 lvc -> httpsm : Probe then new HttpSM
 Client -> httpsm : HTTP CONNECT
 httpsm -> httpsm : Parse request then do OSDNS lookup
 httpsm -> Server : TCP connect
 Server -> rvc : Established then Allocate VC
 activate rvc
 rvc -> httpsm : Attach to HttpSM
 httpsm -> httpsm : Build Response
 note over lvc,rvc : Setup Bidirectional Blind Tunnel
 httpsm -> Client : Send Response [HTTP/1.1 200 Connection Established]

 note over Client, Server : At this point data can flow between the Client and Server
over the Blind Tunnel as a virtual connection, including any TLS handshake.

 Client <--> Server
 Client <--> lvc : TLS handshake
 lvc <-> httpsm : <&arrow-thick-left> Move data <&arrow-thick-right>
 httpsm <-> rvc : <&arrow-thick-left> Move data <&arrow-thick-right>
 rvc <--> Server : TLS handshake
@enduml

Why�

� Did the employee
�  download malware ?
�  receive phishing email ?
�  visit a malicious website ?
�  leak important information ?

�  For the risk
� Detect and prevent early.

How�
�  Extend ProtocolProbeSessionAccept

�  Learn from IDS
�  Detect and identify certain protocols by signatures. Includes:
○  SSLv2, SSLv3, TLS1, …
○  Socksv4, Socksv5

�  Detect and identify certain protocols by tcp ports. Includes:
○  FTP(21), FTPS(990)
○  SMTP(25, 587), POP3(110), IMAP(143), …
○  SMTPS(465), POP3S(995), IMAPS(993), …

�  Combine the two methods to get more accurate result
�  Introduce ProfileSM

�  Pull low level I/O operations from UnixNetVC
�  Pull SSL handshake and encrypt/decrypt from SSLNetVC
�  Create tcpProfileSM and sslProfileSM as NetVC's helper to

perform these operations.

Handle SSL from Blind Tunnel 1�

Handle SSL from Blind Tunnel 2�

Handle SSL from Blind Tunnel 3�

Handle SSL from Blind Tunnel 4�

Handle SSL from Blind Tunnel with SslProfileSM

@startuml
 box "Client Side" #DDDDFF
 actor Client
 end box

 box "TrafficServer" #DDFFDD
 entity "User Agent VConn\nProbeSessionAccept" as lvc
 participant "Client\nSSL ProfileSM" as lvcssl
 participant "HttpSM / HttpTunnel" as httpsm
 participant "Server\nSSL ProfileSM" as rvcssl
 entity "Origin Server\nVConn" as rvc
 end box
 box "Server Side" #DDDDFF
 participant "Origin Server" as Server
 end box

 Client -> lvc : TCP connect and Allocate VC
 activate lvc
 lvc -> httpsm : Probe then new HttpSM
 activate httpsm
 Client -> httpsm : HTTP CONNECT
 httpsm -> httpsm : Parse request then do OSDNS lookup
 httpsm -> Server : TCP connect
 Server -> rvc : Established then Allocate VC
 activate rvc
 rvc -> httpsm : Attach to HttpSM
 httpsm -> httpsm : Build Response
 httpsm -> Client : Send Response [HTTP/1.1 200 Connection Established]
 rvc -> lvc : Attach server_vc to client_vc
 deactivate httpsm
 Client -> lvc : TLS ClientHello
 lvc -> lvcssl : Probe then attach SSL ProfileSM
 activate lvcssl
 Client <-->lvcssl : TLS Handshake
 Client -> lvc : HTTP GET in TLS Tunnel
 lvc -> lvcssl : Decrypted from TLS Tunnel

 lvcssl -> lvc : HTTP GET in plain
 lvc -> httpsm : Probe then new HttpSM
 activate httpsm
 note over Client, httpsm : At this point data can flow between the Client and HttpSM

over the client_vc, and decrypt/encrypt by SSLProfileSM.
 Client <--> httpsm
 httpsm -> httpsm : Parse request
 note over httpsm : At this point request can be remaped, or do lookup cache, etc ...
 httpsm -> httpsm : Do OSDNS lookup
 lvc -> httpsm : Pickup server_vc from client_vc
 httpsm -> rvcssl : attach SSL ProfileSM
 activate rvcssl
 httpsm -> rvc : Forward HTTP GET request
 rvcssl -> rvc : TLS handshake triggered by do_io_write()
 rvc -> Server : TLS ClientHello
 rvcssl <--> Server : TLS Handshake
 note over httpsm, Server : At this point data can flow between the HttpSM and Server

over the server_vc, and decrypt/encrypt by SSLProfileSM.
 httpsm <--> Server
 rvc -> Server : HTTP GET in TLS Tunnel
 Server -> rvc : HTTP Response in TLS Tunnel
 rvc -> rvcssl : Decrypted from TLS Tunnel
 rvcssl -> httpsm : Parse response hdr
 httpsm -> httpsm : Build response
 note over lvc, rvc : Setup response HttpTunnel
 httpsm -> lvcssl : Forward HTTP RespHdr
 lvcssl -> Client : HTTP RespHdr in TLS Tunnel
 note over Client, Server : At this point data can flow from the Server to the Client over

the HttpTunnel, and decrypt/encrypt by SSLProfileSM(s).
 Client <-- Server
 rvc <- Server : Data in TLS Tunnel
 rvcssl <- rvc : Decrypt data
 lvcssl <- rvcssl : Forward data (with or without transform)
 lvc <- lvcssl : Encrypt data
 Client <- lvc : Data in TLS Tunnel
@enduml

Secure HTTP Proxy�

Client Side Explicit HTTPs Proxy

*(7�KWWSV���ZZZ�[[[�FRP�ORJLQ��+773���[
5HT�	�5HVS�DUH�ERWK�HQFU\SWHG�E\�66/

Client Side Explicit HTTPs Proxy

&211(&7�ZZZ�[[[�FRP�����+773���[
5HT�KRVWQDPH�LV�HQFU\SWHG�E\�66/

Proxy Server Parent HTTPs Proxy

&211(&7�ZZZ�[[[�FRP�����+773���[
5HT�KRVWQDPH�LV�HQFU\SWHG�E\�66/

TLS Tunnel in TLS Tunnel�

Client Side Explicit HTTPs Proxy

Client Side Explicit HTTPs Proxy

7/6�7XQQHO
ZLWK�+773V�3UR[\

Client Side Explicit HTTPs Proxy

&211(&7
ZZZ�[[[�FRP����

Origin HTTPs Server

7&3�&RQQHFWLRQ
ZLWK�RULJLQ�VHUYHU

*(7��ORJLQ�SKS�+773���[
7/6�LQ�7/6

Origin HTTPs Server

*(7��ORJLQ�SKS�+773���[
7/6�7XQQHO

SSLinSSLNetVConnection ?

Use ProfileSM to

How�
� SSL Read

� Decrypt the encrypted content
� SSL Write

�  Encrypt the plaintext content
�  sslProfileSM

� Handle SSL Handshake
� Data transform between NetVC and HttpSM

�  It is just a content transform operation, but
there are some differences:
�  Bidirectional (Read and Write).
�  Stateful (Handshake and Transfer).

ProfileSM�
�  In the life of NetVConnection, it may has multiple

stages: new born, pre-transfer, transfer, pre-close.
�  For TCP
○  New born: none, Pre-transfer: none,
○  Transfer: read or write, Pre-close: linger close

�  or SSL
○  New born: initial CTX, Pre-transfer: handshake
○  Transfer: encrypt or decrypt, Pre-close: SSL shutdown

�  State:
�  New born: do some initialize
�  Pre-transfer: do authorize, ssl handshake
�  Transfer: read/write socket, move data, transform data
�  Pre-close: do linger close, ssl shutdown

sslProfileSM::
shutdownEvent

sslProfileSM::
mainEvent

sslProfileSM::
handshakeEvent

sslProfileSM::
startEvent

New
born

Hand
shake Transfer

Renegotiate
(not support)

Shut
down Close

tcpProfileSM::mainEvent
tcpProfileSM::

startEvent

New
born

Transfer Close

ProfileSM - stateful�

Setup
ProfiileSM

according to
the purpose.

Perform an
SSL

handshake
with the peer.

Encrypt and
Decrypt data.

Send SSL
shutdown message

to the peer.

Send/receive raw data to/from the peer.

sslProfileSM – bidirectional�

tcpProfileSM

sslProfileSM

MIOBuffer
(read_buffer)

HttpSM

-

UnixNetVC

-
Socket FD

read.vio

NetHandler(read & write)_ready_list
(non-Atomic | Internal Queue)

while ((vc = read_ready_list.dequeue()))
vc->profileSM->

handleEvent(EVENT_READ, vc)

tcpProfileSM::recv()

6<6�&DOO�UHFY����

profileSM

while ((vc = write_ready_list.dequeue()))
vc->profileSM->

handleEvent(EVENT_WRITE, vc)

sslProfileSM::handle_write()

sslProfileSM::mainEvent()

sslProfileSM::mainEvent()

sslProfileSM::handle_read()

MIOBuffer
(read_buffer)

lowProfileSM->send()

SSL rBIO

SSL Read

SSL wBIOMIOBuffer
(write_buffer)

tcpProfileSM::send()

6<6�&DOO�VHQG����

lowProfileSM->recv()

SSL Write

MIOBuffer
(write_buffer)

-

write.vio - 1

Encrypted content

Plaintext content

Plaintext content

Encrypted content

ProfileSM chain�

� NetVConnection is a framework for data
transmission between socket fd and IOBuffer.

� ProfileSM as the helper to define how to
�  Send/receive data
�  Transform data if necessary

�  Like Transform Plugin, ProfileSM can be
chained one by one, but it is bidirectional.

Socket FD ßà tcpProfileSM ßà sslProfileSM ßà HttpSM

NetVC + ProfileSM�
�  NetVC + tcpProfileSM = UnixNetVC

�  NetVC + tcpProfileSM + sslProfileSM = SSLNetVC

�  NetVC + tcpProfileSM + sslProfileSM + sslProfileSM
= SSL in SSL Tunnel

�  NetVC + udpProfileSM = UDPNetVC

�  NetVC + udpProfileSM + dtlsProfileSM = DTLSNetVC

Based on 6.0.x branch

Oct 2020 Updated

Agenda�

� AIO Sub-system & Native AIO
� DNS Sub-system
�  TransformVConnection

AIO Sub-system�
�  AIO_Reqs per file description

�  AIO_Reqs *aio_reqs[MAX_DISKS_POSSIBLE]
�  MAX_DISKS_POSSIBLE = 100
�  aio_reqs[] is protected by `insert_mutex’

�  An AIO_Reqs has
�  8 AIO threads: proxy.config.cache.threads_per_disk
�  An atomic queue: aio_temp_list
�  A sort (by priority) queue: aio_todo, http_aio_todo (p == 0)
○  Protected by aio_mutex and aio_cond

AIO Sub-system (cont.)�
�  The AIO loop is blocked by one of the following operations

�  Disk I/O operations
�  Conditional wait

�  Therefore, each AIO loop consumes only one I/O task from
the queue.

�  Create multiple AIO Threads to support concurrent I/O
operation on specify file description (block device)

AIO Task Queue and AIO Thread Group

ET_AIO [0:filedes]

 ET_AIO [���:filedes]

ET_AIO [X:filedes]

Unlocked part

Locked part

L M P

UOC

Unlocked part

Locked part

L M P

UOC

Unlocked part

Locked part

L M P

UOC

one of
Raw Disk

AIO_Reqs

req->aio_temp_list
(Atomic | External Queue)

req->aio_todo (prio > 0)
req->http_aio_todo (prio == 0)

(non-Atomic | Internal SortQueue)

req->aio_temp_list.
enqueue (req)

push

ink_aio_read / write (ATS AIO) Continuation AIO_EVENT_DONE

move

Write

Read

Write

Read

Write

Read

AIO Thread Loops

 AIO_Reqs

Unlocked part

Locked part

AIO_Reqs::
aio_mutex

req->aio_temp_list
(Atomic | External Queue)

req->aio_todo (prio > 0)
req->http_aio_todo (prio == 0)

(non-Atomic | Internal SortQueue)

aio_move (req)

popall aio_insert

popLOCK (req->aio_mutex)

op = aio_todo.pop()
op = http_aio_todo.pop()

UNLOCK (req->aio_mutex)

not
empty

cache_op (op)
(pread / pwrite loop)callback op

DEDICATED
AIO THREAD START

req->aio_temp_list.
enqueue (req) ink_aio_read / write (ATS AIO)

State Machine Raw Disk

readwriteAIO_EVENT_DONE

push

COND_WAIT
(req->aio_cond, req->aio_mutex) empty

VLJQDO

AIO Thread Loops

 AIO_Reqs

Unlocked part

Locked part

AIO_Reqs::
aio_mutex

req->aio_temp_list
(Atomic | External Queue)

req->aio_todo (prio > 0)
req->http_aio_todo (prio == 0)

(non-Atomic | Internal SortQueue)

aio_move (req)

popall aio_insert

popLOCK (req->aio_mutex)

op = aio_todo.pop()
op = http_aio_todo.pop()

UNLOCK (req->aio_mutex)

not
empty

cache_op (op)
(pread / pwrite loop)callback op

DEDICATED
AIO THREAD START

req->aio_temp_list.
enqueue (req) ink_aio_read / write (ATS AIO)

State Machine Raw Disk

readwriteAIO_EVENT_DONE

push

COND_WAIT
(req->aio_cond, req->aio_mutex) empty

VLJQDO

Native AIO�

� Native AIO is similar to epoll system
�  io_setup() VS epoll_create()
�  io_getevents() VS epoll_wait()
�  io_submit() VS epoll_ctl()
�  iskHandler VS NetHandler

Native AIO (cont.)�
�  Similar to NetHandler, DiskHandler is also

in every ET_NET threads
�  Different from NetHandler, DiskHandler bundle

to its EThread.
�  It shares mutex with its EThread.

�  I/O tasks queue : DiskHandler::ready_list
�  EThread local queue
�  Access from current EThread only

�  The level of concurrent I/O operations is
controlled internally by Native AIO.

DNS Sub-system�
� DNS Task Queue : DNSHandler::entries

�  Pending Entry
○  New queries / retry queries
○  Create an unique Query ID for each DNS

request
○  Once DNS requests send out, It will be set to

“In flight”
○  Lookup them by domain name

�  In flight Entry
○  DNS requests waiting for response
○  Lookup by domain name / Query ID

DNS Sub-system (cont.)�

� Duplicate Queue : DNSEntry::dups
�  Share DNS results for tasks which lookup for

the same domain name.
�  Save duplicate tasks.
�  Traverse the dups queue and call back

continuation one by one.

DNS Sub-system (cont.)�
�  ET_DNS Thread Group

�  Only one EThread: ET_DNS[0]
�  2 Key components: DNSHandler and

NetHandler
�  If ET_DNS[0] shares EThread with ET_NET[0]
○  There is DNSHandler in ET_NET[0]

�  DNSHandler bundle to ET_DNS[0]
○  It shares mutex with EThread.

�  Polling on DNSConnection (UDP socket fd)
�  Only on ET_DNS[0] or ET_NET[0]
�  DNSConnection con[MAX_NAMED],

MAX_NAMED = 32

TransformVConnection�
�  What is TransformVConnection ?

�  TVC is a pipe/chain that is connected by one or
more INKVConnInternals.

�  TVC is a unidirectional pipe
�  The 1st INKVConnInternal is the input
�  he TransformTerminus is always attached to

the tail as the output
�  When the TransformTerminus received any data

from its upstream, it will send
TRANSFORM_READ_READY event to the
owner of TVC.

TransformVConnection

TransformVCChain
TransformVConnection

HttpSM

……INKVConnInternal

Input MIOBuffer
(read_buffer) MIOBuffer

m_write_vio

output_vc

INKVConnInternal

…

- ()- -

MIOBuffer

output_vc

TransformTerminus

MIOBuffer

m_write_vio

- ()- -

)- -)

m_transform m_terminus

m_read_vio

…

m_write_vio

…

- ()- -

Output MIOBuffer
(read_buffer)

VC_EVENT_WRITE_READYVC_EVENT_WRITE_READYVC_EVENT_WRITE_READY

TRANSFORM_READ_READY
m_cont

)- -

TVC::do_io_write()

m_transform->
do_io_write()

TVC::do_io_shutdown()

m_transform->
do_io_shutdown()

TVC::do_io_read()

m_terminus->
do_io_read()

TVC::do_io_close()

m_transform->
do_io_close()

TransformProcessor::
open(this, HooksList)

Transform
Plugin 1

Transform
Plugin …

Transform
Plugin X

TransformVC and Tunnel Chain�

�  TVC as both a consumer and a
producer, connecting two tunnels

�  he two tunnels are chained in order to
drive the data stream from TVC’s input
to output

�  It is a complete pipe from the source VC
to the target VC (for example: from client
VC to server VC).

TransformVConnection and Tunnel Chain

TransformVCChain
TransformVConnection

HttpTunnel 1HttpTunnel 0

Source VC
HttpTunnel
Producer

HttpTunnel
Producer

HttpSM

……INKVConnInternal

Input MIOBuffer
(read_buffer) MIOBuffer

m_write_vio

output_vc

INKVConnInternal

…

) ,)) -

MIOBuffer

output_vc

TransformTerminus

MIOBuffer

m_write_vio

) ,)) -

(,)) - ,

m_transform m_terminus

m_read_vio

…

m_write_vio

…

) ,)) -

Output MIOBuffer
(read_buffer)

VC_EVENT_WRITE_READYVC_EVENT_WRITE_READYVC_EVENT_WRITE_READYVC_EVENT_WRITE_READY

TRANSFORM_READ_READY
m_cont

Target VC

read.vio

Socket FD

(,)) -

,)) - ,
write.vio

Socket FD

,)) -

TVC::do_io_write()

m_transform->
do_io_write()

TVC::do_io_shutdown()

m_transform->
do_io_shutdown()

TVC::do_io_read()

m_terminus->
do_io_read()

TVC::do_io_close()

m_transform->
do_io_close()

TransformProcessor::
open(this, HooksList)-

- .

Tunnel Chain

Transform
Plugin 1

Transform
Plugin …

Transform
Plugin X

Req and Resp Transform�
�  Request Transform

�  For POST and PUT methods, accept chunked and non-chunked content.

�  The 1st HttpTunnel only verifies the integrity of the chunks but not de-chunk
them. Therefore, HttpTunnel sends raw chunked content to the
TransformVC.

�  The plugin should identify the encoding type and decode chunked content by
itself. The plugin should not change the encoding type.

�  The downstream requires the exact length of content, which means the
plugin should collect all chunks and get the length of raw content before write
any data to downstream if the incoming content is encoded in chunked.

�  It is easy to get the exact length of content if the plugin could get the value of
`Content-Length` from the request.

Req and Resp Transform (cont.)�
�  Response Transform

�  For any request which has a payload with response, accept chunked
and non-chunked content.

�  The 1st HttpTunnel identify the encoding type and decode chunked
content automatically. Therefore, HttpTunnel always sends de-chunked
content to the TransformVC.

�  The plugins always receives de-chunked content and sends de-
chunked content to downstream.

�  The INT64_MAX can be the length of content which means the content
length is currently uncertain. The plugin should update
`write_vio.nbytes` with the exact length if all content is collected.

�  The 2nd HttpTunnel will chunking the content automatically according to
the capability of he user agent.

