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Abstract

With the advent of Java, object-oriented technology has become mainstream. To
make object-oriented applications reliable requires supporting technologies to be avail-
able in object-oriented form too, avoiding an impedance mismatch between different
technologies as frequently seen in the database world.

Existing approaches to provide reliability for object-oriented applications have as-
sumed that reliability can be added to an application after the fact, and that it should
be as transparent as possible, resulting in frameworks that impose a pre-defined relia-
bility strategy upon users. However, many applications do not need or do not want full
transparency and therefore cannot use these frameworks.

A more promising approach to achieve reliability seems to be the toolkit approach.
Toolkits provide a number of fine-grained classes of different abstraction levels, matching
the varying requirements of applications. Such an approach does not force any specific
kind of thinking on the user, but leaves it to the programmer which classes to choose
and which not.

Process groups [Bir96] are seen as a viable solution to tackle reliability issues in
distributed systems. The core idea is to have critical components created redundantly so
that when a component fails other components can take over (replication). Additionally,
groups can be used to load-balance service requests over a number of servers, and to
divide larger problems into smaller ones which can be processed concurrently by different
process group members. A major task of group communication is to support quality
of service properties on the communication between group members, e.g. ensuring that
messages sent to the group are received by all members in the same, well-defined order.

A Java-based toolkit for reliable group communication is currently developed at
Cornell University. This paper presents its design and implementation.



1 Motivation

In today’s distributed systems, the concept of groups is very common: Usenet news uses
discussion groups to categorize areas of common interests, email sent to a distribution list
will be sent to all members subscribed to that list, objects in a management domain behave
according to a certain policy set forth for that domain, the MBone sends live data streams to
all members subscribed to the same channel and most modern air planes have their mission
critical systems replicated to tolerate failures.

In the latter example, a replicated service provides availability or fault-tolerance to its clients
as long as there is at least one member (or a majority of members) left in the group. At
the same time, upgrading such a service is easy: each member is shut down, upgraded and
restarted in turn without negative impact on the availability of the service as a whole.
Furthermore, groups are also used to load-balance requests between members of a group,
reducing the load on a single process, and to break a large task into smaller pieces, distributing
them to the group members which can work on it concurrently and - when done - assembling
the results and returning them to the client.

With the advent of Java, the need has arisen to make group communication toolkits available
which a) integrate seamlessly with the language and b) exploit Java’s advantages: portability
allows a Java program to run unchanged on any architecture, dynamic code loading gives
the client the possibility to download both classes and instances at runtime (e.g. a whole
protocol stack), and reflection makes certain kinds of designs feasible, as will be explained
later in the paper.

Previous work in reliable group communication has produced a number of toolkits ([MPS92,
BR94, VRBM96, GG97a, Hay98, MS97]). However, most of these cannot be accessed from
Java, and if they do  compromise Java’'s platform independence by requiring some
platform-specific executable or process. Also, due to the fact that most of them are not
written entirely in Java (with the exception of iBus), their code cannot be dynamically
downloaded to a client, as is the case when downloading an applet. The iBus toolkit [ibu98]
is one of the few group communication toolkits available (as of November 98) that are written
entirely in Java. Whereas iBus’ primary goal is reliable message dissemination based on the
publish-subscribe philosophy and focuses less on abstractions, our goal is to find and catalog
patterns in group communication settings. iBus has been integrated with our work (see be-
low), so it can be used as a reliable group transport.! On the other hand, our collection of
patterns could be easily ported to work directly over iBus.

This paper presents a reliable group communication toolkit, called JavaGroups, written en-
tirely in Java. It is modeled after Ensemble [Hay98] and Horus [VRBMO96], but tries to
exploit the benefits of Java. The goals we pursue are manifold: first, having a pure Java
implementation allows us to experiment with new designs for group communication. Second,
such a toolkit serves as a test-bed for the development of new Java-based protocols. Finally,
a major focus of this work is to find recurring design elements (patterns), categorize them
and capture them in class form. We are mainly interested in two kinds of patterns: struc-
tural and behavioral. Structural patterns are about how objects and classes are composed
to form larger structures and capture group communication elements such as protocol layers
or messages. Behavioral patterns deal with recurring communication exchanges, such as the
transfer of state from an existing member to a joining one, or a protocol to elect a new leader
when the old one has died.

The structure of this paper is as follows: first, an overview of the architecture is given. Then
we present the JavaGroups interface as seen by a programmer who wants to build group
communication applications. A number of (mostly structural) patterns is described in this
section. Finally, a brief overview of the protocol stack architecture is given.

1A secondary goal of our work is to provide a reliable group communication substrate, cf. section 4.



2 Architecture
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Figure 1: Overview of the JavaGroups Architecture

The architecture of JavaGroups can be divided into two parts: the API, i.e. the interfaces used
by an application to make use of group communication, and the classes used to implement
group communication, i.e. the protocol stack.? The API will be discussed in section 3, the
protocol stack architecture in section 4.

Central to the JavaGroups architecture is the concept of a channel, which can be seen as a
handle to a group. Each channel has a name and channels with the same name form a process
group. The channel interface is very small and offers only the basic functionality to connect
to a group, send and receive messages, get the members of a group and to be notified when
members join or leave. Applications may use this interface if they require efficient low-level
socket-like group communication functionality.

However, programming at this low abstraction level requires application code to handle more
sophisticated tasks, such as correlating responses with their corresponding request or simu-
lating synchronous message calls on top of the inherently asynchronous channel.

One of the goals of JavaGroups is to provide patterns [GHIJV95] to handle tasks on a higher
abstraction level than the channel. They offer a collection of structures and algorithms often
encountered in group communication in the form of Java classes. Structural patterns may
for example be a synchronous message call as represented by SyncCall in fig. 1. Algorith-
mic (or behavioral) patterns capture frequently occurring communication schemes between
participants in group communication settings, such as for example the election of a new co-
ordinator when the old one has crashed, or the implementation of a state transfer protocol
to bring a joining member up to date. They may be used both for application and proto-
col development. Developers are free to pick the level of abstraction best suited for their
application.

The value of patterns is that they are thoroughly tested, frequently used pieces of design,
captured in a single place (a class). They should be adaptable to suit various needs, and at
the same time small and sufficiently independent from other patterns to give the application
programmer the freedom to choose which patterns to pick and which not. Small granularity

2The protocol stack architecture allows to write new protocols, or change existing ones, and use them
without modifying its code.



of patterns gives the user a choice of replacing single patterns if they do not suit the ap-
plication’s need (and cannot be configured to do so) with their own implementation, which
is considerably easier than to rewrite large-grain patterns. Finally, use of patterns reduces
development time of new applications or protocols.

Some of the patterns offered by JavaGroups require a channel underneath them, whereas
others are completely independent from channels. Also, the channel interface is sufficiently
simple and small to be ported over different reliable group communication protocol stacks, so
that the patterns — which rely only on an implementation of the (abstract) channel interface
— can probably be used on most instances of group communication transports.

An actual instance of a channel has to implement the channel interface, providing reliable
group communication according to the properties required by that channel. Properties are
specified in string form when instantiating a channel and define the quality of service a
channel has to provide; for example a property may require loss-less, totally ordered delivery
of messages, whereas another one may only require unreliable UDP communication between
channels. Properties translate to a specific setup of the underlying protocol stack (see section
4).

As shown in fig. 1, JavaGroups currently supports three different kinds of channels. The
first (EnsChannel) interfaces to Ensemble to provide reliable group communication. The
properties defined when creating an Ensemble channel directly map to regular Ensemble
properties [Hay98]. JavaGroups spawns an Ensemble process and connects to it via TCP.
Client calls to an Ensemble channel are forwarded to that process, making EnsChannel
essentially a client stub front-end to Ensemble. The advantage of such a solution is that
a proven and well-tested reliable group communication toolkit can be used directly from
JavaGroups. The downside is that the requirement to install a platform-specific executable
may defeat some of the purposes of Java: using this scheme it is for example not possible
to dynamically download reliable group communication classes to a client. However, for
applications that do not require such functionality, using EnsChannel is a feasible way to
write reliable group applications.

The second implementation of a channel is based on iBus [ibu98], a pure Java-based toolkit for
reliable group communication. Class IbusChannel is only a thin veneer over iBus, mapping
a JavaGroups channel to an iBus Stack.

Finally, our own implementation of a channel (JChannel) provides a protocol stack configured
according to the properties argument when creating the channel, and consisting of a list of
bidirectionally linked protocol layers. It will be shown that some of the JavaGroups patterns
can be used profitably to implement protocol layers. The design of JChannel is described in
more detail in section 4.

3 Patterns

In this section some of the major patterns provided by JavaGroups will be presented. As
JavaGroups is work in progress, this is by no means an exhaustive enumeration of all available
patterns and we are convinced that during the development of additional protocols and
JavaGroups functionality, new patterns will emerge and existing ones may be removed or
merged with others to create patterns of higher genericity, moving towards a core collection
of stable and frequently used patterns.?

3A pattern is defined in [GHJV95] as a piece of design used and refined over and over again. Our patterns
do not entirely fit this definition as they have not yet been refined by frequent use. We nevertheless use the
term as our intent is to eventually live up to the definition. We see the process of finding and refining good
patterns as a gradual, open-ended one, similar to finding a good design, which may not happen at the first
try.



3.1 Channel

A channel represents the group endpoint over which messages can be sent to all (or a subset)
of the group members and over which messages multicast to group members can be received.
It is on purpose designed to be as simple as possible, similar to BSD sockets.

Each channel has a name. Channels with the same name form a group, that is, messages
sent by a channel will be received by all other channels with the same name.

To use a channel, a client first has to connect to it. When the channel is no longer needed,
the user should disconnect from it. Only one client is permitted to be connected to the same
channel at the same time.* When connected, messages received by the channel will be stored
in a queue until Receive is called, which returns the oldest message by removing it from the
queue. All messages will be deleted from the queue when the client disconnects.

The main reason for the need to connect to a channel before using it is that this serialization
of access to the channel 'resource’ prevents clients from removing messages from the channel
without other clients seeing them. That is, multiple clients of a channel would not see the
same sequence of messages.?

A client may send a message to (1) a single channel, (2) a number of channels, or (3) all of
the channels of the same group using the Send (1,2) or Cast (3) methods. To find out the
other channels in the group, method GetMembers can be used, which returns the addresses
of all members in the group. Since these addresses will typically vary in their form and
content, depending on the transport (i.e. the channel implementation) used, they are only
returned in the most general form of Object. Each channel implementation has to narrow
such an address to the form used by it. Users of JavaGroups must not be concerned about
the contents and real class of an address, as this is opaque. They receive addresses as result
of method calls and subsequently use them as target addresses in sending messages to a single
channel or a set of channels.

Channels use the Half-Sync/Half-Async pattern [SC97] in that they present a synchronous
interface to the caller (Receive), but internally use asynchronous message reception and
message queues to block and awake callers. There are two reasons for using a pull-style
for receiving messages on a channel: first, it is similar to what programmers are used to
when receiving data from a socket, and second, by not calling user code, channels cannot get
blocked by code that takes a long time to complete or that even recursively calls a method
of the channel.

If a push-style of message reception is desired, other patterns on top of channels can be used
(such as PullPushAdapter (3.2) or Dispatcher (3.7)).

3.1.1 Example

The sample code in fig. 2 shows how pull-style channels work. The sample creates an
Ensemble channel (EnsChannel), connects to it and casts a number of messages before exiting.
When started, a separate thread is created which retrieves and displays incoming messages
from the channel (pull-style). A receiver thread is required when messages need to be sent
and received simultaneously.

3.2 PullPushAdapter

This class is a converter (or adapter, as used in [GHJV95]) between the pull-style of actively
having to receive messages and the push-style where clients register a callback method which
is invoked whenever a message is received.

4However, a client may have multiple channels (even with the same name).
5This would be different in a push-style channel, where all clients are notified when messages arrive.



public class ChannelTest implements Runnable {
private Channel channel=null;
private String props="Gmp:Sync:Heal:Frag:Suspect:Flow:Total";

public void Start() throws Exception {
channel=new EnsChannel("TestChannel", props);
channel.Connect(0);
new Thread(this).start();
for(int i=0; i < 10; i++) {
channel.Cast(new String("This is msg #" + i).getBytes());
Thread.currentThread().sleep(1000);
}
channel.Disconnect();
channel.Destroy();
}

public void run() {
while(true) {

try {
Message msg=channel.Receive(0); // no timeout
System.out.println(new String(msg.GetBuffer()));

}

catch(NotConnected conn) {break;}

catch(Exception e) {System.err.println(e);}

}

public static void main(String args[]) {
try {new ChannelTest().Start();}
catch(Exception e) {System.err.println(e);}

Figure 2: Channel sample

A PullPushAdapter is always created with a reference to a class that implements interface
Transportable® (e.g. a channel). Clients interested in being called when a message is
received can register with the PullPushAdapter using method AddListener. They have to
implement interface MessageListener, whose Receive method will be called when a message
arrives.

Upon creation, an instance of PullPushAdapter creates a thread which constantly calls the
Receive method of the underlying Transportable instance (e.g. a channel)”. When a
message is received, if there is a registered message listener, it will be called (that is, its
Receive method will be invoked).

As clients are notified when a message is received (vs. actively having to pull messages from a
channel), a PullPushAdapter eliminates the need for the clients to allocate a separate thread
for receiving messages.

3.2.1 Example

The sample code in fig. 3 shows a push-style PullPushAdapter. Contrary to the pull-style
channel shown in fig. 2, the sample application’s Receive method will be called whenever a
message is received, eliminating the need for a separate message receiver thread. Note that
the code uses a JChannel instead of an EnsChannel in the previous example.

6This interface contains only two methods: one for receiving and one for sending messages. Most of the
patterns presented here actually need only a reference to a class implementing this interface.
"Note that the channel currently has to be connected, otherwise an error message is issued.



public class PullPushTest implements MessageListener {
private Channel channel;
private PullPushAdapter ad;

public void Receive(Message msg) {
System.out.println("Received msg: " + msg);

}

public void Start() throws Exception {
channel=new JChannel("PullPushTest", null); // use default props
ad=new PullPushAdapter(channel, 1);
channel.Connect (1000);
ad.AddListener(this);
for(int i=0; i < 10; i++) {
channel.Cast(new String("Hello world").getBytes());
Thread.currentThread() .sleep(1000);
}
channel.Disconnect();
channel.Destroy();
}

public static void main(String args[]) {
PullPushTest t=new PullPushTest();
try {t.Start();}
catch(Exception e) {System.err.println(e);}

Figure 3: PullPushAdapter sample

3.3 Synchronous Message Call

A synchronous call object sends an asynchronous message to a group and waits for the first,
the first n, or all responses. The caller is blocked until a response is returned. The application
program does not need to deal with correlation of response(s) to corresponding request, but
this functionality is included in SyncCall.

SyncCall objects are intended to be used on objects that implement the Transportable
interface. They emulate synchronous message exchange on top of an asynchronous message
transport, that is the sending of a message to a group (or a single member) and the reception
of the result in one step. When sending messages to a group, there might be none, one or
more responses. The SyncCall interface allows to specify how many responses should be
returned (one, none, n, or all). Additionally, a timeout defines the maximum amount of time
to wait for the arrival of a message.

To implement a synchronous message call, SyncCall is given an object that implements
interface Transportable (e.g. a channel). This interface contains a Send and a Receive
method, which allows SyncCall to send a request and wait for the corresponding response(s).
Other patterns such as RemoteMethodCall (3.5) make use of SyncCall.

3.4 MethodCall

This class represents a local method call. It is created giving the name of the method to
be invoked (later) and a number of arguments. Arguments can also be added separately
(they have to be added in the order of their formal parameters). Method Invoke takes as
argument the target object on which the method is to be invoked. It selects (using Java’s
Core Reflection APT [Sun96]) the correct method of the target object according to the target
object’s type, the number and types of its arguments, invokes it and returns an Object,



which is either a return value (can also be null), or an exception. MethodCall is extended
by RemoteMethodCall (3.5) to invoke methods in remote objects.

Finding the correct method to be invoked can be a complex process. The default method
resolution mechanism implemented by method Class.get [declared]Method follows a min-
imalistic approach which in certain cases might not produce the desired result.® [Ban98]
describes a more flexible approach to dynamic method lookup, similar to the method resolu-
tion approach used in CLOS [Ste90].

3.5 RemoteMethodCall

RemoteMethodCall extends MethodCall with the ability to invoke methods in remote objects.
Its constructors additionally accept a transport (Transportable) (e.g. a channel) over which
the method call will be sent to the remote object.

As a remote method call to a process group may return more than a single response, two
methods are added which use SyncCall (3.3) to send a request to the remote object and return
the first or n responses: SendGetFirst invokes the remote method in all group members and
returns the first response received as an object (or exception), or null, if a timeout occurred.
SendGetN invokes the remote method in all group members and returns n responses, or null, if
a timeout occurred (and no response has been received). If n is 0, no responses are expected,
essentially making the remote method call one-way.

RemoteMethodCall is used on the client side. Its equivalent on the server side is
MethodInvoker (3.6).

In its dynamic way of invoking methods of remote objects, RemoteMethodCall bears similarity
to JEDI [ADMRY7]. However, JEDI focuses on unicast communication.

3.6 MethodInvoker

Q Object
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Figure 4: Architecture of MethodInvoker
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A MethodInvoker is used on the server side to invoke methods sent by a client (using
RemoteMethodCall).

As shown in fig. 4, a method invoker uses a transport to receive method invocations and to
send responses. Upon instantiation it creates an instance of PullPushAdapter with which
it registers. Whenever the PullPushAdapter receives a message, it will call the method
invoker’s Receive method. The latter extracts a MethodCall object from the message’s byte
buffer and invokes it against its registered object. When the return value is an exception,
it will be thrown, otherwise the return value will be returned to the caller, i.e. the method
invoker uses the transport to send the response back to the caller.

8 Also, dynamic method resolution (at runtime) does not semantically conform to static method lookup
(compile-time).



Note that client and server roles may be switched at will, as processes in the server role (using
MethodInvoker) may themselves become clients (using RemoteMethodCall) and clients may
become servers at any time (by registering themselves with an instance of MethodInvoker).
The combination of MethodInvoker in the server role and RemoteMethodCall in the client role
make up for simple and light-weight remote method invocation communication mechanism.
However, if more than a single object needs to be registered in a server, or more than one
group needs to be joined, and / or client and server roles need to be combined in a single
pattern, then class Dispatcher (section 3.7) can be used.

3.7 Dispatcher
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Figure 5: Architecture of Dispatcher

A Dispatcher maintains a number of channels and allows clients to join one or more of those
channels, and send and receive messages to/from channels. When an object joins a channel
(given the channel name), it will receive all messages of that channel as method invocations.
Note that in order to receive all messages correctly, an object should implement the methods
required by the group (application-specific), e.g. if a member multicasts method "Foo",
then all members must contain a method called "Foo". It may itself invoke methods on all
members of the channel.

Note that an object that has not previously called Join() is nevertheless able to send messages
to the group members and receive responses, but requests dispatched to the group members
will not be received by it.

The Dispatcher class is a replacement for classes RemoteMethodCall (client role) and
MethodInvoker (server role). Instead of using two classes, client-server applications can
more conveniently be written using the dispatcher. Its main advantage is that, instead of
assuming one client and one server, it allows multiple clients to issue requests and register to
get their methods invoked. In one line, the dispatcher is a more sophisticated class offering
the combined interfaces of both RemoteMethodCall and MethodInvoker and allows multiple
objects to be registered.

The architecture of the Dispatcher is shown in fig. 5. A hashtable maintains a name and a
channel entry (ChannelEntry) for each channel created in the dispatcher. Clients wishing to
send messages have to specify which channel to use (by giving its name).

A client does not have to create a new channel explicitly, but may just call the dispatcher’s
Join method. When the channel already exists, the caller will be added to the channel’s
object list, otherwise a new channel will be created (ChannelEntry) and added to the dis-
patcher’s hashtable with the channel’s name as key.



A ChannelEntry consists essentially of a channel, a PullPushAdapter, a message correlator
(a pattern not discussed here) and a MethodInvoker. Sending a message using the dispatcher
involves the following steps: first the ChannelEntry corresponding to the name given in the
call is retrieved. Then a Message is created and registered with the message correlator
instance under its message ID. Subsequently the message is sent (1), using the channel as
transport. Finally, the result (or results) is retrieved using the message correlator (2).

The previous description applies to a caller in the client role. The server role process is as
follows: when a message is received by the PullPushAdapter, it will be forwarded either
to the message correlator if it is a response, or to the MethodInvoker if the message is a
request.” The case of a response was treated above (2), when a request is received (3), the
method invoker constructs a MethodCall and applies it to all of the target objects listening
to that channel in turn. The response is sent back using the channel (4).

3.7.1 Example

public class DispatcherTest {
public Date GetDate() {return new Date();}

public static void main(String args[]) {
DispatcherTest objl, Object d;
Dispatcher disp=new Dispatcher(new JChannelFactory(), null);

try {
objl=new DispatcherTest();
disp.Join("GroupA", objl);

while(true) {
d=disp.SendGetFirst("GroupA", "GetDate", null, 3000);
if(d !'= null)
System.out.println("Received response: " + d);
Thread.currentThread() .sleep(2000);
}
}
catch(Exception e) {System.err.println(e);}

Figure 6: Dispatcher sample

The code demonstrates that an object acting in the server role (offering method GetDate)
can at the same time also act in the client role by invoking GetDate on all members of the
group and displaying the first result returned.

By creating a dispatcher, we are able to invoke remote methods on all members of a group
(in this case "GroupA”) and receiving return values. By joining a group, we are additionally
able to act as a server for method GetDate.

It is clearly seen here that the value of a dispatcher lies in the simplicity with which methods
can be invoked; providers (servers) of methods do not have to receive messages, find out the
correct method to invoke, generate a result and use a transport to send the result back to
the caller. Instead, all of this is automatically performed by the Dispatcher class.

9Whether a message is a request or a response is determined by a flag in the message itself.
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4 Protocol Stack

The protocol stack is JavaGroups’ default transport (c.f. fig 1), written entirely in Java.
Similar to [PHOAR89, VRBI5], it uses micro-protocols in its implementation. A micro-protocol
(from now on called layer) enforces a part of the quality of service properties guaranteed by
the protocol stack as a whole. The properties desired by the user of a stack are achieved by
creating a layer for each property and stacking them on top of each other. Each layer has the
same interface (by subclassing a common superclass), which allows to stack any layer on top
of any other. However, random stacking of layers will probably not make sense semantically
in most cases.

All layers are instances of Java classes and are maintained by a ProtocolStack object which
itself is connected to an instance of JChannel (cf. fig. 1). Adjacent layers are connected
by two queues, one for storing messages to be sent down the stack, and the other one for
messages traveling up the stack, which guarantees FIFO delivery of messages between layers.
A message sent by JChannel is simply passed to the protocol stack, which in turn forwards it
to the top-most layer. Each layer performs some computation and then passes the message
on to the layer below it. The bottom-most layer typically puts the message on the network.
In the reverse direction, the bottom-most layer of a different protocol stack will receive the
message from the network and pass it on to the layer above it. This layer will perform some
computation (possibly strip a header from the message) and pass it on to the layer above
it. The message travels up the stack until it is received by the protocol stack object, which
puts it in a queue for client applications to receive. The message will be removed when
JChannel.Receive is called.

Messages are simple Java classes and contain a destination- and source address and a byte
buffer. Headers of arbitrary data can be added to a message and removed again later by the
corresponding layer of a different stack, allowing layers to add protocol specific data, such
as a checksum or a key for encryption. A message traveling down the stack would typically
accumulate a number of headers (possibly one per layer); the corresponding layers would
then remove them again from a message traveling up the stack.

The value of layers is that they are self-contained small pieces of functionality, independent
from other layers, although, since they are only a small part of the whole stack, they of
course depend on other layers to be present as they require their functionality. Since layers
are relatively small, they can be verified for correctness more easily than large chunks of
(interdependent) code. Also, the concept of layering forces better structuring; as code for a
certain type of functionality is localized in one place, layers can be easily replaced/upgraded
with new versions.

A protocol layer typically either modifies a message (e.g. by adding a header), or it may delay
its delivery, for example to preserve ordering in a FIFO layer in case the message arrived out
of sequence.

When it is a protocol layer instead of the JChannel object that sends a message, it will in
most cases not need to travel up all the way to the JChannel object in the receiving stack,
but it should probably be caught by the corresponding layer and be processed there. To this
purpose, each message has a layer type tag, describing the layer from which it originated. A
layer generating a message stamps it with its type (all types in a stack have to be unique).
Each layer checks whether a message’s layer type matches its own. If this is the case, the
message will be processed by the layer (and then possibly discarded), otherwise it will just
be passed on to the next layer.

The interface of a protocol layer contains methods to process messages from layers above or
below (Down or Up) which will be called when a message travels 'through’ that layer. There
are also methods to start and stop a layer and to initialize it with data, these are invoked
when setting up a new protocol stack or when shutting down an old one (e.g. when a member
leaves).

Protocol layers are created by the protocol stack (using a configurator) according to a proper-
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ties argument defined when creating an instance of JChannel. A properties string might be
"UDP (mcast_addr=228.2.2.5) :NAK: FRAG(size=8096) : FIF0:GMS". The configurator parses
the string, creates the corresponding instances ("UDP", "NAK", "FRAG", "FIFO" and "GMS"),
sets their initial data ("mcast_addr=228.2.2.5", "size=8096") and connects them to each
other. The top layer will be connected to the protocol stack object. Then the configurator it-
erates through the protocol stack and starts each layer in turn. When shutting down a stack,
the configurator stops each layer in turn, giving it time to process outstanding messages and
then destroys the stack.

5 Conclusion and Future Work

JavaGroups is an early version of a reliable group communication toolkit written entirely
in Java. Its major goal is the establishment of a library of frequently used structural and
algorithmic patterns to facilitate the development of group applications and protocols. When
developing the Java protocol stack, more patterns were identified, merged with existing ones
and integrated into the pattern hierarchy. The value of patterns is that they are well-tested,
small pieces of recurring software design, making new applications/protocols more robust
and reducing development time through reuse.

Some of the patterns make extensive use of Java’s advantages. The property of a protocol
stack is defined as a string, which results in Java instances being created based on the protocol
layers’ class names present in the string, drawing on Java’s ability to create instances given
their class name at runtime. Patterns such as MethodCall and MethodInvoker use Java’'s
reflection API to dynamically assemble method calls and dispatch them at runtime. Also,
we will investigate into dynamically downloading code to a client in applications (something
that is done today only in applets), e.g. downloading a protocol stack, so that the client does
not need to have the protocol classes available when started.

JavaGroups is work in progress and future work will include capturing more patterns, refining
existing ones and merging multiple patterns to achieve higher abstraction levels. Most of the
patterns discussed in this paper are centered around reliable group RPC-like communication.
However, we are more and more focused on behavioral patterns, which capture higher level
communication exchanges often encountered in protocol design. An example is distributed
commit which can be used e.g. in the implementation of a flush protocol [VRB95]. Another
example is a state exchange protocol that can be used to update a joining member with the
state of the group, without stopping communication between group members. Higher level
patterns could even model primary-backup or coordinator-cohort replication schemes [Bir96,
pp. 331-334].

Our work draws from previous research on abstractions/patterns for reliable group communi-
cation such as Consul [MS92], Coyote [Coy97], Cactus [Cac98] and BAST [GGI7h, GGITa].
All focus to some extent on structuring the development of reliable distributed systems
through modularization. Consul provides relatively coarse-grained abstractions, whereas its
successors Coyote and Cactus strive to make them more fine-grained. BAST already focuses
on patterns for building reliable protocols. It provides patterns of different reliability guar-
antees, letting the user choose the level of reliability required. Patterns include for example
reliable message passing at the lowest reliability level, and at a higher level, consensus and
atomic broadcast which inherit the properties of their superclasses.

However, whereas Consul, Coyote and Cactus are based on C++, BAST uses Smalltalk,
and none of them is (yet) based on Java. In contrast, our work focuses on Java, striving
to integrate reliable group communication seamlessly into the language, exploiting Java’s
advantages wherever possible. Patterns are the center of our work, which contrasts to other
work, which either focuses on patterns, but is not based on Java, or which is based on Java,
but does not exclusively focus on patterns.

When a new toolkit for group communication becomes available, it should be straight-forward
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to integrate it with JavaGroups, so that existing applications based on our collection of pat-
terns can continue to work, using the new toolkit. Note that since most patterns that
depend on a message transport only need a function for sending and one for receiving mes-
sages (interface Transportable), it should be easy to port the patterns to a different group
communication toolkit, without needing to port the entire JavaGroups toolkit.

When developing behavioral patterns, one particular interest is how they can be used by
clients and servers'? without having to modify client or server code. We are currently ex-
perimenting with code that can be dynamically ’glued’ to clients and servers, adding new
(protocol) functionality to them without need for modification.

More information about JavaGroups is available at
http://www.cs.cornell.edu:/home/bba/javagroups.html.
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