
Design and Implementation of a Reliable GroupCommunication Toolkit for JavaBela BanDept. of Computer ScienceCornell Universitybba@cs.cornell.eduAbstractWith the advent of Java, object-oriented technology has become mainstream. Tomake object-oriented applications reliable requires supporting technologies to be avail-able in object-oriented form too, avoiding an impedance mismatch between di�erenttechnologies as frequently seen in the database world.Existing approaches to provide reliability for object-oriented applications have as-sumed that reliability can be added to an application after the fact, and that it shouldbe as transparent as possible, resulting in frameworks that impose a pre-de�ned relia-bility strategy upon users. However, many applications do not need or do not want fulltransparency and therefore cannot use these frameworks.A more promising approach to achieve reliability seems to be the toolkit approach.Toolkits provide a number of �ne-grained classes of di�erent abstraction levels, matchingthe varying requirements of applications. Such an approach does not force any speci�ckind of thinking on the user, but leaves it to the programmer which classes to chooseand which not.Process groups [Bir96] are seen as a viable solution to tackle reliability issues indistributed systems. The core idea is to have critical components created redundantly sothat when a component fails other components can take over (replication). Additionally,groups can be used to load-balance service requests over a number of servers, and todivide larger problems into smaller ones which can be processed concurrently by di�erentprocess group members. A major task of group communication is to support qualityof service properties on the communication between group members, e.g. ensuring thatmessages sent to the group are received by all members in the same, well-de�ned order.A Java-based toolkit for reliable group communication is currently developed atCornell University. This paper presents its design and implementation.

1



1 MotivationIn today's distributed systems, the concept of groups is very common: Usenet news usesdiscussion groups to categorize areas of common interests, email sent to a distribution listwill be sent to all members subscribed to that list, objects in a management domain behaveaccording to a certain policy set forth for that domain, the MBone sends live data streams toall members subscribed to the same channel and most modern air planes have their missioncritical systems replicated to tolerate failures.In the latter example, a replicated service provides availability or fault-tolerance to its clientsas long as there is at least one member (or a majority of members) left in the group. Atthe same time, upgrading such a service is easy: each member is shut down, upgraded andrestarted in turn without negative impact on the availability of the service as a whole.Furthermore, groups are also used to load-balance requests between members of a group,reducing the load on a single process, and to break a large task into smaller pieces, distributingthem to the group members which can work on it concurrently and - when done - assemblingthe results and returning them to the client.With the advent of Java, the need has arisen to make group communication toolkits availablewhich a) integrate seamlessly with the language and b) exploit Java's advantages: portabilityallows a Java program to run unchanged on any architecture, dynamic code loading givesthe client the possibility to download both classes and instances at runtime (e.g. a wholeprotocol stack), and reection makes certain kinds of designs feasible, as will be explainedlater in the paper.Previous work in reliable group communication has produced a number of toolkits ([MPS92,BR94, VRBM96, GG97a, Hay98, MS97]). However, most of these cannot be accessed fromJava, and { if they do { compromise Java's platform independence by requiring someplatform-speci�c executable or process. Also, due to the fact that most of them are notwritten entirely in Java (with the exception of iBus), their code cannot be dynamicallydownloaded to a client, as is the case when downloading an applet. The iBus toolkit [ibu98]is one of the few group communication toolkits available (as of November 98) that are writtenentirely in Java. Whereas iBus' primary goal is reliable message dissemination based on thepublish-subscribe philosophy and focuses less on abstractions, our goal is to �nd and catalogpatterns in group communication settings. iBus has been integrated with our work (see be-low), so it can be used as a reliable group transport.1 On the other hand, our collection ofpatterns could be easily ported to work directly over iBus.This paper presents a reliable group communication toolkit, called JavaGroups, written en-tirely in Java. It is modeled after Ensemble [Hay98] and Horus [VRBM96], but tries toexploit the bene�ts of Java. The goals we pursue are manifold: �rst, having a pure Javaimplementation allows us to experiment with new designs for group communication. Second,such a toolkit serves as a test-bed for the development of new Java-based protocols. Finally,a major focus of this work is to �nd recurring design elements (patterns), categorize themand capture them in class form. We are mainly interested in two kinds of patterns: struc-tural and behavioral. Structural patterns are about how objects and classes are composedto form larger structures and capture group communication elements such as protocol layersor messages. Behavioral patterns deal with recurring communication exchanges, such as thetransfer of state from an existing member to a joining one, or a protocol to elect a new leaderwhen the old one has died.The structure of this paper is as follows: �rst, an overview of the architecture is given. Thenwe present the JavaGroups interface as seen by a programmer who wants to build groupcommunication applications. A number of (mostly structural) patterns is described in thissection. Finally, a brief overview of the protocol stack architecture is given.1A secondary goal of our work is to provide a reliable group communication substrate, cf. section 4.2



2 Architecture

JChannel

TOTAL

GMS

FIFO

UDP

PullPushAdapter

RemoteMethodCall MethodInvoker

Dispatcher

DistrHashtable

Queue Message

MethodLookup

StateTransfer

MethodCall MessageCorrelator

EnsChannel IbusChannel

Ensemble

TCP iBus Toolkit

C h a n n e l

SyncCall

RepUnicast

Application

ProtocolStackFigure 1: Overview of the JavaGroups ArchitectureThe architecture of JavaGroups can be divided into two parts: the API, i.e. the interfaces usedby an application to make use of group communication, and the classes used to implementgroup communication, i.e. the protocol stack.2 The API will be discussed in section 3, theprotocol stack architecture in section 4.Central to the JavaGroups architecture is the concept of a channel, which can be seen as ahandle to a group. Each channel has a name and channels with the same name form a processgroup. The channel interface is very small and o�ers only the basic functionality to connectto a group, send and receive messages, get the members of a group and to be noti�ed whenmembers join or leave. Applications may use this interface if they require e�cient low-levelsocket-like group communication functionality.However, programming at this low abstraction level requires application code to handle moresophisticated tasks, such as correlating responses with their corresponding request or simu-lating synchronous message calls on top of the inherently asynchronous channel.One of the goals of JavaGroups is to provide patterns [GHJV95] to handle tasks on a higherabstraction level than the channel. They o�er a collection of structures and algorithms oftenencountered in group communication in the form of Java classes. Structural patterns mayfor example be a synchronous message call as represented by SyncCall in �g. 1. Algorith-mic (or behavioral) patterns capture frequently occurring communication schemes betweenparticipants in group communication settings, such as for example the election of a new co-ordinator when the old one has crashed, or the implementation of a state transfer protocolto bring a joining member up to date. They may be used both for application and proto-col development. Developers are free to pick the level of abstraction best suited for theirapplication.The value of patterns is that they are thoroughly tested, frequently used pieces of design,captured in a single place (a class). They should be adaptable to suit various needs, and atthe same time small and su�ciently independent from other patterns to give the applicationprogrammer the freedom to choose which patterns to pick and which not. Small granularity2The protocol stack architecture allows to write new protocols, or change existing ones, and use themwithout modifying its code. 3



of patterns gives the user a choice of replacing single patterns if they do not suit the ap-plication's need (and cannot be con�gured to do so) with their own implementation, whichis considerably easier than to rewrite large-grain patterns. Finally, use of patterns reducesdevelopment time of new applications or protocols.Some of the patterns o�ered by JavaGroups require a channel underneath them, whereasothers are completely independent from channels. Also, the channel interface is su�cientlysimple and small to be ported over di�erent reliable group communication protocol stacks, sothat the patterns { which rely only on an implementation of the (abstract) channel interface{ can probably be used on most instances of group communication transports.An actual instance of a channel has to implement the channel interface, providing reliablegroup communication according to the properties required by that channel. Properties arespeci�ed in string form when instantiating a channel and de�ne the quality of service achannel has to provide; for example a property may require loss-less, totally ordered deliveryof messages, whereas another one may only require unreliable UDP communication betweenchannels. Properties translate to a speci�c setup of the underlying protocol stack (see section4).As shown in �g. 1, JavaGroups currently supports three di�erent kinds of channels. The�rst (EnsChannel) interfaces to Ensemble to provide reliable group communication. Theproperties de�ned when creating an Ensemble channel directly map to regular Ensembleproperties [Hay98]. JavaGroups spawns an Ensemble process and connects to it via TCP.Client calls to an Ensemble channel are forwarded to that process, making EnsChannelessentially a client stub front-end to Ensemble. The advantage of such a solution is thata proven and well-tested reliable group communication toolkit can be used directly fromJavaGroups. The downside is that the requirement to install a platform-speci�c executablemay defeat some of the purposes of Java: using this scheme it is for example not possibleto dynamically download reliable group communication classes to a client. However, forapplications that do not require such functionality, using EnsChannel is a feasible way towrite reliable group applications.The second implementation of a channel is based on iBus [ibu98], a pure Java-based toolkit forreliable group communication. Class IbusChannel is only a thin veneer over iBus, mappinga JavaGroups channel to an iBus Stack.Finally, our own implementation of a channel (JChannel) provides a protocol stack con�guredaccording to the properties argument when creating the channel, and consisting of a list ofbidirectionally linked protocol layers. It will be shown that some of the JavaGroups patternscan be used pro�tably to implement protocol layers. The design of JChannel is described inmore detail in section 4.3 PatternsIn this section some of the major patterns provided by JavaGroups will be presented. AsJavaGroups is work in progress, this is by no means an exhaustive enumeration of all availablepatterns and we are convinced that during the development of additional protocols andJavaGroups functionality, new patterns will emerge and existing ones may be removed ormerged with others to create patterns of higher genericity, moving towards a core collectionof stable and frequently used patterns.33A pattern is de�ned in [GHJV95] as a piece of design used and re�ned over and over again. Our patternsdo not entirely �t this de�nition as they have not yet been re�ned by frequent use. We nevertheless use theterm as our intent is to eventually live up to the de�nition. We see the process of �nding and re�ning goodpatterns as a gradual, open-ended one, similar to �nding a good design, which may not happen at the �rsttry.
4



3.1 ChannelA channel represents the group endpoint over which messages can be sent to all (or a subset)of the group members and over which messages multicast to group members can be received.It is on purpose designed to be as simple as possible, similar to BSD sockets.Each channel has a name. Channels with the same name form a group, that is, messagessent by a channel will be received by all other channels with the same name.To use a channel, a client �rst has to connect to it. When the channel is no longer needed,the user should disconnect from it. Only one client is permitted to be connected to the samechannel at the same time.4 When connected, messages received by the channel will be storedin a queue until Receive is called, which returns the oldest message by removing it from thequeue. All messages will be deleted from the queue when the client disconnects.The main reason for the need to connect to a channel before using it is that this serializationof access to the channel 'resource' prevents clients from removing messages from the channelwithout other clients seeing them. That is, multiple clients of a channel would not see thesame sequence of messages.5A client may send a message to (1) a single channel, (2) a number of channels, or (3) all ofthe channels of the same group using the Send (1,2) or Cast (3) methods. To �nd out theother channels in the group, method GetMembers can be used, which returns the addressesof all members in the group. Since these addresses will typically vary in their form andcontent, depending on the transport (i.e. the channel implementation) used, they are onlyreturned in the most general form of Object. Each channel implementation has to narrowsuch an address to the form used by it. Users of JavaGroups must not be concerned aboutthe contents and real class of an address, as this is opaque. They receive addresses as resultof method calls and subsequently use them as target addresses in sending messages to a singlechannel or a set of channels.Channels use the Half-Sync/Half-Async pattern [SC97] in that they present a synchronousinterface to the caller (Receive), but internally use asynchronous message reception andmessage queues to block and awake callers. There are two reasons for using a pull-stylefor receiving messages on a channel: �rst, it is similar to what programmers are used towhen receiving data from a socket, and second, by not calling user code, channels cannot getblocked by code that takes a long time to complete or that even recursively calls a methodof the channel.If a push-style of message reception is desired, other patterns on top of channels can be used(such as PullPushAdapter (3.2) or Dispatcher (3.7)).3.1.1 ExampleThe sample code in �g. 2 shows how pull-style channels work. The sample creates anEnsemble channel (EnsChannel), connects to it and casts a number of messages before exiting.When started, a separate thread is created which retrieves and displays incoming messagesfrom the channel (pull-style). A receiver thread is required when messages need to be sentand received simultaneously.3.2 PullPushAdapterThis class is a converter (or adapter, as used in [GHJV95]) between the pull-style of activelyhaving to receive messages and the push-style where clients register a callback method whichis invoked whenever a message is received.4However, a client may have multiple channels (even with the same name).5This would be di�erent in a push-style channel, where all clients are noti�ed when messages arrive.
5



public class ChannelTest implements Runnable {private Channel channel=null;private String props="Gmp:Sync:Heal:Frag:Suspect:Flow:Total";public void Start() throws Exception {channel=new EnsChannel("TestChannel", props);channel.Connect(0);new Thread(this).start();for(int i=0; i < 10; i++) {channel.Cast(new String("This is msg #" + i).getBytes());Thread.currentThread().sleep(1000);}channel.Disconnect();channel.Destroy();}public void run() {while(true) {try {Message msg=channel.Receive(0); // no timeoutSystem.out.println(new String(msg.GetBuffer()));}catch(NotConnected conn) {break;}catch(Exception e) {System.err.println(e);}}}public static void main(String args[]) {try {new ChannelTest().Start();}catch(Exception e) {System.err.println(e);}}} Figure 2: Channel sampleA PullPushAdapter is always created with a reference to a class that implements interfaceTransportable6 (e.g. a channel). Clients interested in being called when a message isreceived can register with the PullPushAdapter using method AddListener. They have toimplement interface MessageListener, whose Receivemethod will be called when a messagearrives.Upon creation, an instance of PullPushAdapter creates a thread which constantly calls theReceive method of the underlying Transportable instance (e.g. a channel)7. When amessage is received, if there is a registered message listener, it will be called (that is, itsReceive method will be invoked).As clients are noti�ed when a message is received (vs. actively having to pull messages from achannel), a PullPushAdapter eliminates the need for the clients to allocate a separate threadfor receiving messages.3.2.1 ExampleThe sample code in �g. 3 shows a push-style PullPushAdapter. Contrary to the pull-stylechannel shown in �g. 2, the sample application's Receive method will be called whenever amessage is received, eliminating the need for a separate message receiver thread. Note thatthe code uses a JChannel instead of an EnsChannel in the previous example.6This interface contains only two methods: one for receiving and one for sending messages. Most of thepatterns presented here actually need only a reference to a class implementing this interface.7Note that the channel currently has to be connected, otherwise an error message is issued.6



public class PullPushTest implements MessageListener {private Channel channel;private PullPushAdapter ad;public void Receive(Message msg) {System.out.println("Received msg: " + msg);}public void Start() throws Exception {channel=new JChannel("PullPushTest", null); // use default propsad=new PullPushAdapter(channel, 1);channel.Connect(1000);ad.AddListener(this);for(int i=0; i < 10; i++) {channel.Cast(new String("Hello world").getBytes());Thread.currentThread().sleep(1000);}channel.Disconnect();channel.Destroy();}public static void main(String args[]) {PullPushTest t=new PullPushTest();try {t.Start();}catch(Exception e) {System.err.println(e);}}} Figure 3: PullPushAdapter sample3.3 Synchronous Message CallA synchronous call object sends an asynchronous message to a group and waits for the �rst,the �rst n, or all responses. The caller is blocked until a response is returned. The applicationprogram does not need to deal with correlation of response(s) to corresponding request, butthis functionality is included in SyncCall.SyncCall objects are intended to be used on objects that implement the Transportableinterface. They emulate synchronous message exchange on top of an asynchronous messagetransport, that is the sending of a message to a group (or a single member) and the receptionof the result in one step. When sending messages to a group, there might be none, one ormore responses. The SyncCall interface allows to specify how many responses should bereturned (one, none, n, or all). Additionally, a timeout de�nes the maximum amount of timeto wait for the arrival of a message.To implement a synchronous message call, SyncCall is given an object that implementsinterface Transportable (e.g. a channel). This interface contains a Send and a Receivemethod, which allows SyncCall to send a request and wait for the corresponding response(s).Other patterns such as RemoteMethodCall (3.5) make use of SyncCall.3.4 MethodCallThis class represents a local method call. It is created giving the name of the method tobe invoked (later) and a number of arguments. Arguments can also be added separately(they have to be added in the order of their formal parameters). Method Invoke takes asargument the target object on which the method is to be invoked. It selects (using Java'sCore Reection API [Sun96]) the correct method of the target object according to the targetobject's type, the number and types of its arguments, invokes it and returns an Object,7



which is either a return value (can also be null), or an exception. MethodCall is extendedby RemoteMethodCall (3.5) to invoke methods in remote objects.Finding the correct method to be invoked can be a complex process. The default methodresolution mechanism implemented by method Class.get[declared]Method follows a min-imalistic approach which in certain cases might not produce the desired result.8 [Ban98]describes a more exible approach to dynamic method lookup, similar to the method resolu-tion approach used in CLOS [Ste90].3.5 RemoteMethodCallRemoteMethodCall extends MethodCallwith the ability to invoke methods in remote objects.Its constructors additionally accept a transport (Transportable) (e.g. a channel) over whichthe method call will be sent to the remote object.As a remote method call to a process group may return more than a single response, twomethods are added which use SyncCall (3.3) to send a request to the remote object and returnthe �rst or n responses: SendGetFirst invokes the remote method in all group members andreturns the �rst response received as an object (or exception), or null, if a timeout occurred.SendGetN invokes the remote method in all group members and returns n responses, or null, ifa timeout occurred (and no response has been received). If n is 0, no responses are expected,essentially making the remote method call one-way.RemoteMethodCall is used on the client side. Its equivalent on the server side isMethodInvoker (3.6).In its dynamic way of invoking methods of remote objects, RemoteMethodCallbears similarityto JEDI [ADMR97]. However, JEDI focuses on unicast communication.3.6 MethodInvoker
PullPushAdapter

Transportable (Channel)

Object

MethodInvoker

MethodCall

Send
ReceiveFigure 4: Architecture of MethodInvokerA MethodInvoker is used on the server side to invoke methods sent by a client (usingRemoteMethodCall).As shown in �g. 4, a method invoker uses a transport to receive method invocations and tosend responses. Upon instantiation it creates an instance of PullPushAdapter with whichit registers. Whenever the PullPushAdapter receives a message, it will call the methodinvoker's Receive method. The latter extracts a MethodCall object from the message's bytebu�er and invokes it against its registered object. When the return value is an exception,it will be thrown, otherwise the return value will be returned to the caller, i.e. the methodinvoker uses the transport to send the response back to the caller.8Also, dynamic method resolution (at runtime) does not semantically conform to static method lookup(compile-time). 8



Note that client and server roles may be switched at will, as processes in the server role (usingMethodInvoker) may themselves become clients (using RemoteMethodCall) and clients maybecome servers at any time (by registering themselves with an instance of MethodInvoker).The combination of MethodInvoker in the server role and RemoteMethodCall in the client rolemake up for simple and light-weight remote method invocation communication mechanism.However, if more than a single object needs to be registered in a server, or more than onegroup needs to be joined, and / or client and server roles need to be combined in a singlepattern, then class Dispatcher (section 3.7) can be used.3.7 Dispatcher
MessageCorrelator MethodInvoker

PullPushAdapter

Channel

Dispatcher

Channels

"Foo"

"Bar"

"Test"

Clients

ChannelEntry

1 2

Response Request

3 4

Request Response

Group Members

Figure 5: Architecture of DispatcherA Dispatchermaintains a number of channels and allows clients to join one or more of thosechannels, and send and receive messages to/from channels. When an object joins a channel(given the channel name), it will receive all messages of that channel as method invocations.Note that in order to receive all messages correctly, an object should implement the methodsrequired by the group (application-speci�c), e.g. if a member multicasts method "Foo",then all members must contain a method called "Foo". It may itself invoke methods on allmembers of the channel.Note that an object that has not previously called Join() is nevertheless able to send messagesto the group members and receive responses, but requests dispatched to the group memberswill not be received by it.The Dispatcher class is a replacement for classes RemoteMethodCall (client role) andMethodInvoker (server role). Instead of using two classes, client-server applications canmore conveniently be written using the dispatcher. Its main advantage is that, instead ofassuming one client and one server, it allows multiple clients to issue requests and register toget their methods invoked. In one line, the dispatcher is a more sophisticated class o�eringthe combined interfaces of both RemoteMethodCall and MethodInvoker and allows multipleobjects to be registered.The architecture of the Dispatcher is shown in �g. 5. A hashtable maintains a name and achannel entry (ChannelEntry) for each channel created in the dispatcher. Clients wishing tosend messages have to specify which channel to use (by giving its name).A client does not have to create a new channel explicitly, but may just call the dispatcher'sJoin method. When the channel already exists, the caller will be added to the channel'sobject list, otherwise a new channel will be created (ChannelEntry) and added to the dis-patcher's hashtable with the channel's name as key.9



A ChannelEntry consists essentially of a channel, a PullPushAdapter, a message correlator(a pattern not discussed here) and a MethodInvoker. Sending a message using the dispatcherinvolves the following steps: �rst the ChannelEntry corresponding to the name given in thecall is retrieved. Then a Message is created and registered with the message correlatorinstance under its message ID. Subsequently the message is sent (1), using the channel astransport. Finally, the result (or results) is retrieved using the message correlator (2).The previous description applies to a caller in the client role. The server role process is asfollows: when a message is received by the PullPushAdapter, it will be forwarded eitherto the message correlator if it is a response, or to the MethodInvoker if the message is arequest.9 The case of a response was treated above (2), when a request is received (3), themethod invoker constructs a MethodCall and applies it to all of the target objects listeningto that channel in turn. The response is sent back using the channel (4).3.7.1 Examplepublic class DispatcherTest {public Date GetDate() {return new Date();}public static void main(String args[]) {DispatcherTest obj1, Object d;Dispatcher disp=new Dispatcher(new JChannelFactory(), null);try {obj1=new DispatcherTest();disp.Join("GroupA", obj1);while(true) {d=disp.SendGetFirst("GroupA", "GetDate", null, 3000);if(d != null)System.out.println("Received response: " + d);Thread.currentThread().sleep(2000);}}catch(Exception e) {System.err.println(e);}}} Figure 6: Dispatcher sampleThe code demonstrates that an object acting in the server role (o�ering method GetDate)can at the same time also act in the client role by invoking GetDate on all members of thegroup and displaying the �rst result returned.By creating a dispatcher, we are able to invoke remote methods on all members of a group(in this case "GroupA") and receiving return values. By joining a group, we are additionallyable to act as a server for method GetDate.It is clearly seen here that the value of a dispatcher lies in the simplicity with which methodscan be invoked; providers (servers) of methods do not have to receive messages, �nd out thecorrect method to invoke, generate a result and use a transport to send the result back tothe caller. Instead, all of this is automatically performed by the Dispatcher class.9Whether a message is a request or a response is determined by a ag in the message itself.
10



4 Protocol StackThe protocol stack is JavaGroups' default transport (c.f. �g 1), written entirely in Java.Similar to [PHOA89, VRB95], it usesmicro-protocols in its implementation. A micro-protocol(from now on called layer) enforces a part of the quality of service properties guaranteed bythe protocol stack as a whole. The properties desired by the user of a stack are achieved bycreating a layer for each property and stacking them on top of each other. Each layer has thesame interface (by subclassing a common superclass), which allows to stack any layer on topof any other. However, random stacking of layers will probably not make sense semanticallyin most cases.All layers are instances of Java classes and are maintained by a ProtocolStack object whichitself is connected to an instance of JChannel (cf. �g. 1). Adjacent layers are connectedby two queues, one for storing messages to be sent down the stack, and the other one formessages traveling up the stack, which guarantees FIFO delivery of messages between layers.A message sent by JChannel is simply passed to the protocol stack, which in turn forwards itto the top-most layer. Each layer performs some computation and then passes the messageon to the layer below it. The bottom-most layer typically puts the message on the network.In the reverse direction, the bottom-most layer of a di�erent protocol stack will receive themessage from the network and pass it on to the layer above it. This layer will perform somecomputation (possibly strip a header from the message) and pass it on to the layer aboveit. The message travels up the stack until it is received by the protocol stack object, whichputs it in a queue for client applications to receive. The message will be removed whenJChannel.Receive is called.Messages are simple Java classes and contain a destination- and source address and a bytebu�er. Headers of arbitrary data can be added to a message and removed again later by thecorresponding layer of a di�erent stack, allowing layers to add protocol speci�c data, suchas a checksum or a key for encryption. A message traveling down the stack would typicallyaccumulate a number of headers (possibly one per layer); the corresponding layers wouldthen remove them again from a message traveling up the stack.The value of layers is that they are self-contained small pieces of functionality, independentfrom other layers, although, since they are only a small part of the whole stack, they ofcourse depend on other layers to be present as they require their functionality. Since layersare relatively small, they can be veri�ed for correctness more easily than large chunks of(interdependent) code. Also, the concept of layering forces better structuring; as code for acertain type of functionality is localized in one place, layers can be easily replaced/upgradedwith new versions.A protocol layer typically either modi�es a message (e.g. by adding a header), or it may delayits delivery, for example to preserve ordering in a FIFO layer in case the message arrived outof sequence.When it is a protocol layer instead of the JChannel object that sends a message, it will inmost cases not need to travel up all the way to the JChannel object in the receiving stack,but it should probably be caught by the corresponding layer and be processed there. To thispurpose, each message has a layer type tag, describing the layer from which it originated. Alayer generating a message stamps it with its type (all types in a stack have to be unique).Each layer checks whether a message's layer type matches its own. If this is the case, themessage will be processed by the layer (and then possibly discarded), otherwise it will justbe passed on to the next layer.The interface of a protocol layer contains methods to process messages from layers above orbelow (Down or Up) which will be called when a message travels 'through' that layer. Thereare also methods to start and stop a layer and to initialize it with data, these are invokedwhen setting up a new protocol stack or when shutting down an old one (e.g. when a memberleaves).Protocol layers are created by the protocol stack (using a con�gurator) according to a proper-11



ties argument de�ned when creating an instance of JChannel. A properties string might be"UDP(mcast addr=228.2.2.5):NAK:FRAG(size=8096):FIFO:GMS". The con�gurator parsesthe string, creates the corresponding instances ("UDP", "NAK", "FRAG", "FIFO" and "GMS"),sets their initial data ("mcast addr=228.2.2.5", "size=8096") and connects them to eachother. The top layer will be connected to the protocol stack object. Then the con�gurator it-erates through the protocol stack and starts each layer in turn. When shutting down a stack,the con�gurator stops each layer in turn, giving it time to process outstanding messages andthen destroys the stack.5 Conclusion and Future WorkJavaGroups is an early version of a reliable group communication toolkit written entirelyin Java. Its major goal is the establishment of a library of frequently used structural andalgorithmic patterns to facilitate the development of group applications and protocols. Whendeveloping the Java protocol stack, more patterns were identi�ed, merged with existing onesand integrated into the pattern hierarchy. The value of patterns is that they are well-tested,small pieces of recurring software design, making new applications/protocols more robustand reducing development time through reuse.Some of the patterns make extensive use of Java's advantages. The property of a protocolstack is de�ned as a string, which results in Java instances being created based on the protocollayers' class names present in the string, drawing on Java's ability to create instances giventheir class name at runtime. Patterns such as MethodCall and MethodInvoker use Java'sreection API to dynamically assemble method calls and dispatch them at runtime. Also,we will investigate into dynamically downloading code to a client in applications (somethingthat is done today only in applets), e.g. downloading a protocol stack, so that the client doesnot need to have the protocol classes available when started.JavaGroups is work in progress and future work will include capturing more patterns, re�ningexisting ones and merging multiple patterns to achieve higher abstraction levels. Most of thepatterns discussed in this paper are centered around reliable group RPC-like communication.However, we are more and more focused on behavioral patterns, which capture higher levelcommunication exchanges often encountered in protocol design. An example is distributedcommit which can be used e.g. in the implementation of a ush protocol [VRB95]. Anotherexample is a state exchange protocol that can be used to update a joining member with thestate of the group, without stopping communication between group members. Higher levelpatterns could even model primary-backup or coordinator-cohort replication schemes [Bir96,pp. 331{334].Our work draws from previous research on abstractions/patterns for reliable group communi-cation such as Consul [MS92], Coyote [Coy97], Cactus [Cac98] and BAST [GG97b, GG97a].All focus to some extent on structuring the development of reliable distributed systemsthrough modularization. Consul provides relatively coarse-grained abstractions, whereas itssuccessors Coyote and Cactus strive to make them more �ne-grained. BAST already focuseson patterns for building reliable protocols. It provides patterns of di�erent reliability guar-antees, letting the user choose the level of reliability required. Patterns include for examplereliable message passing at the lowest reliability level, and at a higher level, consensus andatomic broadcast which inherit the properties of their superclasses.However, whereas Consul, Coyote and Cactus are based on C++, BAST uses Smalltalk,and none of them is (yet) based on Java. In contrast, our work focuses on Java, strivingto integrate reliable group communication seamlessly into the language, exploiting Java'sadvantages wherever possible. Patterns are the center of our work, which contrasts to otherwork, which either focuses on patterns, but is not based on Java, or which is based on Java,but does not exclusively focus on patterns.When a new toolkit for group communication becomes available, it should be straight-forward12



to integrate it with JavaGroups, so that existing applications based on our collection of pat-terns can continue to work, using the new toolkit. Note that since most patterns thatdepend on a message transport only need a function for sending and one for receiving mes-sages (interface Transportable), it should be easy to port the patterns to a di�erent groupcommunication toolkit, without needing to port the entire JavaGroups toolkit.When developing behavioral patterns, one particular interest is how they can be used byclients and servers10 without having to modify client or server code. We are currently ex-perimenting with code that can be dynamically 'glued' to clients and servers, adding new(protocol) functionality to them without need for modi�cation.More information about JavaGroups is available athttp://www.cs.cornell.edu:/home/bba/javagroups.html.References[ADMR97] Jonathan Aldrich, James Dooley, Scott Mandelsohn, and Adam Rifkin. ProvidingEasier Access to Remote Objects in Distributed Systems. California Institute ofTechnology, Pasadena, CA 91125, 1997.[Ban98] Bela Ban. Static vs. Dynamic Method Resolution in Java: The Case ForArgument-Based Method Selection.http://www.cs.cornell.edu/home/bba/papers.html, 1998.[Bir96] Kenneth P. Birman. Building Secure and Reliable Network Applications. ManningPublications Co., 1996.[BR94] K. P. Birman and R. Van Renesse, editors. Reliable Distributed Computing withthe Isis Toolkit. IEEE Computer Society Press, 1994.[Cac98] Dept. of Computer Science, University of Arizona. CACTUS: An IntegratedFramework for Dynamic Fine-Grain QoS, 1998.http://www.cs.arizona.edu/cactus/overview.html.[Coy97] Dept. of Computer Science, University of Arizona. Coyote: An Approach toConstructing Con�gurable Fault-Tolerant Distributed Services, 1997.http://www.cs.arizona.edu/coyote/overview.html.[GG97a] Benoit Garbinato and Rachid Guerraoui. BAST: A Framework for Reliable Dis-tributed Computing. Technical report, Ecole Polytechnique Federale de Lau-sanne, 1997.[GG97b] Benoit Garbinato and Rachid Guerraoui. Using the Strategy Pattern to ComposeReliable Distributed Protocols. In Proceedings of the 3rd USENIX Conferenceon Object-Oriented Technologies and Systems (COOTS'97), June 1997.[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.[Hay98] Mark Hayden. The Ensemble System. Technical Report 98-1662, Cornell Uni-versity, January 1998.[ibu98] Softwired Inc. iBus - The Java Multicast Object Bus, 1998.http://www.softwired-inc.com/ibus.10Clients and servers are roles that may change dynamically, e.g. when a server servicing a request from aclient contacts another server, it itself becomes a client for the duration of that request.13



[MPS92] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Modularity inthe Design and Implementation of Consul. Technical report, CS. Dept. Universityof Arizona, 1992.[MS92] Shivakant Mishra and Richard D. Schlichting. Abstractions for Constructing De-pendable Distributed Systems. Technical Report TR 92-19, CS Dept. Universityof Arizona, 1992.[MS97] Silvano Ma�eis and Douglas C. Schmidt. Constructing Reliable Distributed Com-munication Systems with CORBA. IEEE Communications Magazine, February1997.[PHOA89] Larry L. Peterson, Norm Hutchinson, Sean O'Malley, and Mark Abbott. RPCin the x-Kernel: Evaluating new Design Techniques. In Proceedings of theTwelfth ACM Symposium on Operating Systems Principles, pages 91{101, Litch-�eld Park, Arizona, November 1989.[SC97] Douglas Schmidt and Charles Cranor. Half-Sync/Half-Async. An ArchitecturalPattern for E�cient and Well-Structured Concurrent I/O. Technical report,University of Illinois at Urbana-Champain, 1997.[Ste90] Guy L. Steele. Common LISP. The Language. Digital Press, 1990.[Sun96] Sun Microsystems Inc. Java Core Reection. API and Speci�cation, October1996.[VRB95] Robbert Van Renesse and Kenneth P. Birman. Protocol Composition in Horus.Technical Report TR95-1505, Cornell University, March 1995.http://www.cs.cornell.edu/Info/Projects/HORUS/Papers.html.[VRBM96] Robbert Van Renesse, Kenneth P. Birman, and Silvano Ma�eis. Horus, a FlexibleGroup Communication System. Communications of the ACM, April 1996.

14


