
OFBiz Training Handbook

By Praveen Sharma

About the Speaker

ContributorMember

Sr. Software Developer at HotWax Systems
4+ years of experience

Praveen Sharma

@praveen88784881@praveen--sharma-216014121

https://www.linkedin.com/in/praveen-sharma-216014121/
https://twitter.com/Praveen88784881

Agenda

a. What is Apache OFBiz?
b. Benefits of OFBiz
c. Framework Components and Development Flow.
d. What is Version Control System?.

What is an ERP
and How does it
help managing
business
activities?

ERP
Enterprise resource planning(ERP) is used to automate business processes such as
accounting, supply chain management, procurement, order management,
relationships management, products and e.t.c.

With ERP systems in place, all data is stored in centralized database. Process across
core business are streamlined and automated. Means it enables us to merge different
systems together like POS, Mobile Applications, Web Applications and e.t.c, As
ERP maintains data in real-time allowing real-time reporting and analysis.

Apache OFBiz

Contents
● Introduction

● Component Architecture

● Development Flow

● Control Flow

Introduction
Open For Business(OFBiz) is a suite of enterprise applications allow flexibility to be
used across any industry. The common architecture allows developers to easily
extend or enhance it to create custom features. The loosely coupled nature of
applications make these custom features straightforward, expand and alter.

The tools and architecture of OFBiz make it easy to maintain enterprise applications.
This enables businesses to quickly release new functionality and maintain existing
functionality without extensive effort. It makes it easy to customize when you have
specific requirements.

Apache OFBiz comes with loads of
out-of-the-box(OOTB) and core
modules including:

1. CRM, Order Management & E-Commerce
2. Warehousing and Inventory
3. Accounting (GL,AR,AP,FA)
4. Manufacturing & MRP

Benefits associated with using
Apache OFBiz framework including:

1. Free and open source - No upfront costs
2. Scalable, reliable enterprise solution
3. Fully Customisable
4. Flexible to grow with your business

Benefits

Component Dependencies
1. Framework: This is the underlying data structure

and utilities that supply the essential common
features used by the base application and the
extended components.

2. Base Applications: These components depend on
each other as shown in the diagram. The reason
these dependencies are needed is because the
components are organized according to high-level
business concept of read world business process.
And design ensures that lower level components
should not depend on higher level ones.

3. Plugins: These components should not depend on
each other. If there is such need then that
something should be put into the most appropriate
component in the applications and both plugins
can depend on applications component.

Framework
Components

Entity Engine
● The Open For Business Entity Engine is a set of tools and patterns used to model and manage entity specific

data.

● An entity is a piece of data defined by a set of fields and a set of relations to other entities.

● The goal of the entity engine is to simplify the enterprise wide use of entity data. This includes definition,
maintenance, quality assurance, and development of entity related functionality.

The primary goal of the entity engine is to eliminate the need for entity specific persistence code in as many areas of
a transactional application as possible. Granted that this sort of abstraction is a different issue for reporting and
similar systems, but for transactional systems such as are used on a day to day basis in all businesses, an entity
engine can save a great deal of development effort and dramatically reduce persistence related bugs in the system.
These types of applications include everything from ecommerce to accounting to inventory and warehouse
management to human resources and so on. These tools can be useful for reporting and analytical systems, but
really aren't meant to allow for the wide variety of custom queries that often take place in such tools.

Service Engine
Services are independent pieces of logic which when placed together process many different types of business
requirements. Services can be of many different types: Workflow, Rules, Java, SOAP, Groovy, etc. A service with the
type Java is much like an event where it is a static method, however with the Services Framework we do not limit to
web based applications. Services require input parameters to be in a Map and the results are returned in a Map as
well. This is nice since a Map can be serialized and stored or passed via HTTP (SOAP).

Services are defined through the Service Definition and are assigned to a specific Service Engine. Each Service Engine
is responsible for invoking the defined service in an appropriate way. Since services are not tied to web based
applications this allows services to run when there is no response object available. This allows services to be
scheduled to run at specific times to run in the background via the Job Scheduler.

Services have the ability to call other services. So, chaining small services together to accomplish a larger task makes
reusing existing services much easier.

Job Scheduler
The scheduler is a multi-threaded component with a single thread used for job managing/scheduling and separate
threads used for invocation of each service. When a job is scheduled to run, the scheduler will call the service
dispatcher associated with the job to invoke the service in its own thread. This will prevent long or time consuming
jobs from slowing down other jobs in the queue.

How it works:
The best usage example of the scheduler is an asynchronous service call. When an asynchronous service is invoked,
it is passed to the Job Scheduler to be queued to run. A recurrence entry is created (RecurrenceInfo and
RecurrenceRule entities are created), the job is stored, (JobSandbox entity is created) and the context (Map) is
serialized and stored (RuntimeData entity is created). The scheduler then adds the job to the top of the list of
scheduled jobs (asynchronous services do not have any delay time) and invoked.
Jobs are no longer defined in an XML file. This has been moved to the JobSandbox entity. There is a web based client
in planning for adding predefined jobs to the queue, but currently the entities will have to be created by hand.

Request Handler
The Request Handler makes use of a RequestManager helper class to gather a list of request mappings defined in an
XML configuration file. The configuration file lives in /WEB-INF/controller.xml for the appropriate context. The
mapping consists of a request URI and an optional VIEW name. View names are mapped to in the configuration file
as well. A request URI can also be associated with an Event. Events are used to process web related logic by either
working directly with the Entity Engine through the Entity Delegator or invoking service(s) to handle the logic through
the Service Dispatcher.

When a request is received through the Request Handler it is first looked up in the request mappings; if no mapping
is found an 'unknown request error' is returned. Upon a successful lookup, the Security Handler is called to verify if
the current request requires authentication and the user making the request is properly authenticated. If the current
user is not authenticated the Request Handler redirects the request to a proper login form. After successful
authentication or if no authentication is required the Request Handler then looks up a defined event for the request.
If an event is found, the request is passed to the EventHandler for processing. After event processing is complete,
the default view is looked up for this request, unless the EventHandler requests a specific view instead. The view is
then checked in the view mappings and the value is passed to the defined ViewHandler for dispatching. If the view
type is none it is expected that the event handles the response itself; if the view type is url the RequestHandler then
redirects to the specified URL and no ViewHandler is called.

Event Handler
Event Handlers are defined in the XML config file such as:
 <handler name="java" type="request" class="org.ofbiz.webapp.event.JavaEventHandler"/>
As in the above request mapping the login event is defined with a type of java. The event type is mapped to an Event
Handler using the handler definitions. Custom Event Handlers can be designed and would be implemented like the
above example.
Java events are processed by locating the path of the event (package and classname); then, by using the Reflection
API, the Event Handler invokes the method defined. A String object is returned to the Request Handler which is
mapped to the response element of the request definition.

View Handler
View Handlers are defined just like Event Handlers, except the type is view:
 <handler name="region" type="view" class="org.ofbiz.webapp.view.RegionViewHandler"/>
The view handler handles rendering the next page the user will see. The default view handler supports standard
html/jsp pages by dispatching to the page defined in the view definition. Other view handlers like region and velocity
use special logic to render the page to the user.
Custom view handlers can be created easily by implementing the ViewHandler interface and setting a definition in
the controller.xml file.

Let’s understand
better same using
diagrams

Development Flow

Development flow diagram represents the
recommended process for development.

Control Flow

What is Version
Control?

What is Version Control
Version control is a name used for software which can help you record changes you make to the files in directory on
your computer. Version control softwares and tools (such as Git and SVN) are widely used in software development,
research and academic environments. Version control system work best with plain text files such as documents or
computer code, but modern versions can be used to track changes in any type of file.

We can reason about and share those changes with others. Multiple contributors can collaborate and made
necessary updates which can be maintained as we build up sets of changes overtime, we begin to see some benefits.

Benefits of using version control

● Collaboration - Version control allows us to define formalized ways we can work together and share writing and code. For
example merging together sets of changes from different parties enables co-creation of documents and software across
distributed teams.

● Versioning - Having a robust and rigorous log of changes to a file, without renaming files (v1, v2, final_copy)
● Rolling Back - Version control allows us to quickly undo a set of changes. This can be useful when new writing or new

additions to code introduce problems.
● Understanding - Version control can help you understand how the code or writing came to be, who wrote or contributed

particular parts, and who you might ask to help understand it better.
● Backup - While not meant to be a backup solution, using version control systems mean that your code and writing can be

stored on multiple other computers.

There are many more reasons to use version control, and we’ll explore some of these in the library context, but first let’s learn a bit
about a popular version control tool called Git.

Recommended tutorial for Git
1. Basic commands: https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html

2. Tutorials: https://www.atlassian.com/git/tutorials/setting-up-a-repository

https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html
https://www.atlassian.com/git/tutorials/setting-up-a-repository

Important References
Minimum System Requirement for OFBiz Setup

Best Practices

How to migrate OFBiz from Derby to MySQL database

Groovy DSL for OFBiz business logic

OFBiz Tutorial: A Beginners Development Guide for
17.12
Apache OFBiz Youtube Tutorials and Videos

Service Engine Guide

Entity Engine Guide

General Entity Overview

Control Servlet Guide

JSP Tag Library Guide

Glossary of OFBiz Terms and Concepts

Data Model Diagrams

Universal Data Model

Additional Resources
1. Best Practice Guide
2. OFBiz Tutorials on Youtube

https://cwiki.apache.org/confluence/display/OFBIZ/System+Requirements
https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Contributors+Best+Practices
https://cwiki.apache.org/confluence/display/OFBIZ/How+to+migrate+OFBiz+from+Derby+to+MySQL+database
https://cwiki.apache.org/confluence/display/OFBIZ/Groovy+DSL+for+OFBiz+business+logic
https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Tutorial+-+A+Beginners+Development+Guide+for+17.12
https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Tutorial+-+A+Beginners+Development+Guide+for+17.12
https://www.youtube.com/user/ofbiz/videos
https://cwiki.apache.org/confluence/display/OFBIZ/Service+Engine+Guide
https://cwiki.apache.org/confluence/display/OFBIZ/Entity+Engine+Guide
https://cwiki.apache.org/confluence/display/OFBIZ/General+Entity+Overview
https://cwiki.apache.org/confluence/display/OFBIZ/Control+Servlet+Guide
https://cwiki.apache.org/confluence/display/OFBIZ/JSP+Tag+Library+Guide
https://cwiki.apache.org/confluence/display/OFBENDUSER/Glossary
https://cwiki.apache.org/confluence/display/OFBIZ/Data+Model+Diagrams
http://lab.ilkom.unila.ac.id/ebook/e-books%20DATA/2001%20Data_model.pdf
https://cwiki.apache.org/confluence/display/OFBIZ/Best+Practices+Guide
https://www.youtube.com/user/ofbiz/videos

