
DEPLOYING AND
MAINTAINING CDN
ENVIRONMENTS WITH
ANSIBLE
Oct, 27th, 2020

2

BIO
JONATHAN GRAY

Comcast Content Delivery Network Team

Site Reliability Engineer 4

Apache TrafficControl Committer

Twitter : @jhg03a

GitHub : @jhg03a

traffic-control-cdn.slack.com : @jhg03a

The-asf.slack.com : @jhg03a

jhg03a@apache.org

https://about.twitter.com/en_us/company/brand-resources.html
https://github.com/logos
https://slack.com/media-kit
https://commons.wikimedia.org/wiki/File:Antu_mail-folder-sent.svg

3

MISSION

1. Replicate and automate the creation of a number
of production clone environments

2. Facilitate the maintenance of a minimally viable,
but useful, test dataset

3. Solve in such a manner that others can modularly
adopt and integrate the components they desire
in their implementations

CDN ANATOMY

5

ATS BASED CDN

BENEFITS
• One application

knowledgebase/skillset (ATS)

• Deeper insight into the power of
ATS

• Greater Flexibility in CDN Design

6

APACHE TRAFFIC CONTROL

Web-based User
Interface
for CDN Operations

Business logic API
Layer
for CDN Operations

Collection, Aggregation,
Transformation for CDN
Metrics

Intelligent Routing of
CDN
Client Requests

Health Evaluation of
CDN
Caches

Experimental Caching
Proxy Server

Apache Traffic Server
Configuration
Management

7

ATS + ATC BASED CDN

BENEFITS
• Reducing learning curve of ATS for

common delivery service config

• Greater implementation consistency
among peers

• Expand user audience beyond ATS
Engineers

ANSIBLE OVERVIEW

9

ORGANIZATION

LARGELY ALL YAML

• Tasks

• Simple modules

• Include/import of tasks/playbooks

• Roles & Collections

• Plays

• Playbooks

SCOPES

• Application

• Operating System

• Hardware

• Network

https://pxhere.com/en/photo/497946

1 0

PLUGINS
PUBLISHED OR CUSTOM PLUGINS

• Action – Does something

• Become – Privilege Escalation

• Cache – Fact caching

• Callback – Output

• Cliconf – Network device CLI Interfacing

• Connection – How ansible connects to places

• Httpapi – Network device HTTP Interfacing

• Inventory – Defines the scope of devices to consider

• Lookup – Runtime evaluation of data from external

• Netconf – Network device Netconf Interfacing

• Shell – Low-level execution CLI type

• Strategy – Parallelization extensibility

https://pixabay.com/photos/alternative-energy-biofuel-1042411/

1 1

INVENTORY

[CachegroupA]
e1.cdn.invalid
e2.cdn.invalid
m1.cdn.invalid

[CachegroupB]
e3.cdn.invalid
m2.cdn.invalid

[EDGE]
e1.cdn.invalid target_cachegroup=A
e2.cdn.invalid target_cachegroup=A
e3.cdn.invalid target_cachegroup=B
[EDGE:vars]
primary_component=edge

[MID]
m1.cdn.invalid target_cachegroup=A
m2.cdn.invalid target_cachegroup=B
[MID:vars]
primary_component=mid

[Origin]
origin.cdn.invalid ansible_host=192.168.1.70
[Origin:vars]
primary_component=origin

Example Ansible Pattern: EDGE:&CachegroupA:!~.*2.*

1 2

VARIABLE PRECEDENCE

1. extra vars (always win precedence)
2. set_facts / registered vars
3. include_vars
4. include params
5. role (and include_role) params
6. task vars (only for the task)
7. block vars (only for tasks in block)
8. role vars (defined in

role/vars/main.yml)
9. play vars_files
10. play vars_prompt

11. play vars
12. host facts
13. playbook host_vars/*
14. inventory host_vars/*
15. inventory file or script host vars
16. playbook group_vars/*
17. inventory group_vars/*
18. playbook group_vars/all
19. inventory group_vars/all
20. inventory file or script group vars
21. role defaults

https://gist.github.com/ekreutz/301c3d38a50abbaad38e638d8361a89e

From most to least important

! Used in lab

1 3

VARIABLE HIERARCHY
A RICHER HIERARCHICAL VARIABLE PRECEDENCE
ORDERING

• Leverages the include_vars precedence order
level

• Functionally similar to the common Puppet
companion project Hiera

• Significant addition to ansible-pull variable definitions

/opt/ansible
├── vars
│ ├── default.yml
│ ├── environment
│ │ ├── nightly.lab.yml
│ │ └── production.yml
│ ├── manufacturer
│ │ ├── Dell.yml
│ │ └── HP.yml
│ ├── productName
│ │ └── R740.yml
│ └── host
│ └── edge1.cdn.invalid.yml
└── mainplaybook.yml

- name: Load fqdn-based values in variable hierarchy
include_vars:

file: "{{ lookup('first_found', possible_files, errors='ignore') }}"
failed_when: false
vars:

possible_files:
- "vars/host/{{ ansible_fqdn }}.json"
- "vars/host/{{ ansible_fqdn }}.yml"

Example

1 4

IDEMPOTENCY

WHILE ASSERTING TRUTH DID YOUR TASK…

• Execute, but change nothing

• Execute and change something

• Fail

• Not try to execute at all

https://pixabay.com/photos/hammer-nails-wood-board-tool-work-1629587/

VERSIONING

1 6

WHERE TO LOOK FOR REUSABLE CODE
ANSIBLE GALAXY
Officially endorsed marketplace for reusable Ansible roles.

https://galaxy.ansible.com/

ANSIBLE COMMUNITY COLLECTIONS

Community supported modules and plugins

https://github.com/ansible-collections/

APACHE TRAFFIC CONTROL
Roles, samples, and support utilities specifically for ATC components

https://github.com/apache/trafficcontrol/tree/master/infrastructure/ansible

https://commons.wikimedia.org/wiki/File:Ansible_logo.svg
https://github.com/apache/trafficcontrol/blob/master/misc/logos/ATC-SVG.svg

https://galaxy.ansible.com/
https://github.com/ansible-collections/
https://github.com/apache/trafficcontrol/tree/master/infrastructure/ansible
https://commons.wikimedia.org/wiki/File:Ansible_logo.svg
https://github.com/apache/trafficcontrol/blob/master/misc/logos/ATC-SVG.svg

CDN ENVIRONMENTS

1 8

ENVIRONMENT
ABSTRACTION LAYERS

NOT CDN-OUT-OF-THE-BOX

Complexity breeds greater complexity

Every abstraction layer comes at a
price; some are more expensive than
others. Lower costs through reuse of
existing tools/skillsets.

https://github.com/apache/trafficcontrol/pull/3585

PROVISIONING

PHYSICAL DEPLOYMENT

2 1

UNIVERSAL ISO WITH TC_NETCONFIG

PRO

• One ISO for all hosts

• Continuous network identity maintenance via TrafficOps

• ISO Creation process is separate from TrafficOps

CON

• Requires IPv6 Autoconf RA

RESOURCES

• GitHub: https://github.com/Comcast/tc-netconfig

• ApacheCon 2019 Presentation: https://tinyurl.com/tcnetconfig-video

• ApacheCon 2019 Slides: https://tinyurl.com/tcnetconfig-slides

https://github.com/Comcast/tc-netconfig
https://tinyurl.com/tcnetconfig-video
https://tinyurl.com/tcnetconfig-slides

2 2

CLOUD

TOOLING

• HashiCorp Terraform

• VinylDNS

• OpenStack

• Cloud-Init

https://commons.wikimedia.org/wiki/File:FSFE_There_is_no_cloud_postcard_en.svg

https://www.terraform.io/
https://www.vinyldns.io/
https://www.openstack.org/
https://cloud-init.io/
https://commons.wikimedia.org/wiki/File:FSFE_There_is_no_cloud_postcard_en.svg

STEADY STATE

2 4

ANSIBLE WORKFLOWS

ANSIBLE (PUSH)

“Do this”

2 5

ANSIBLE WORKFLOWS

ANSIBLE-PULLANSIBLE (PUSH)

“Do this” “Do what applies”

APPLICATION

2 7

CDN LAB COMPONENTS

ATC COMPONENT INSTALLATION ORDER

Not all ATC Components are strictly
required however are important at
some scales or for some functionality.

Due to application stack
dependencies, care should be taken
regarding order and parallelization of
installation.

https://github.com/apache/trafficcontrol/pull/3585

2 8

Implementation Specific Driver Playbook Tasks

ATC COMPONENT ANSIBLE
PLAYBOOK PATTERN

1. Load environment-based variables

2. Implementation-specific Pre-tasks

3. Generic Core role

4. Implementation-specific Post-
Tasks

Generic Core
Ansible Role

Load Environment-based Variables

2 9

BONUS DYNAMIC INVENTORY SCRIPT

SAMPLE ANSIBLE GROUPS FOR PATTERNS:
• Simple Hostname: atsedge*
• Status: server_status|OFFLINE
• Type: server_type|EDGE
• CDN Name: server_cdnName|Kabletown2.0
• Profile: server_profile|ATS_EDGE_7
• Cachegroup: cachegroup|edge_east
• Parent Cachegroup: parentCachegroup|mid_east
• Secondary Parent Cachegroup:
secondaryParentCachegroup|mid_west

Photo by Júnior Ferreira on Unsplash

https://unsplash.com/@juniorferreir_?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/eureka-idea?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

3 1

LAB MANAGER

GOALS

• Simple

• Focus on Data Relationships and Integrity

• Reliable System of Record

• Resolve inherent Chicken/Egg problem with
ATC TrafficOps

CONCEPTS

• Environment definition & lifecycle

• Resource Pools

• Jobs

• Logs

• Fact Inventory

Photo by Mr Cup / Fabien Barral on Unsplash

https://unsplash.com/@iammrcup?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

3 2

GRAPHQL API PROTOCOL

OPEN SOURCE PROTOCOL

Originally created by Facebook and donated to the Linux Foundation in
2017 where now it resides under the GraphQL Foundation.

Designed around flexibility of the client request. “Get what you want, only
what you want, and nothing more.” Traditionally viewed as an upcoming
alternative to REST.

https://foundation.graphql.org

Current adopters include:

• Facebook

• GitHub

• PayPal

• The New York Times

• Twitter

https://github.com/graphql/graphql-spec/blob/master/resources/GraphQL%20Logo.png , OWFa1.0

https://foundation.graphql.org/
https://landscape.graphql.org/category=graph-ql-adopter&format=card-mode&grouping=category
https://github.com/graphql/graphql-spec/blob/master/resources/GraphQL%20Logo.png

3 3

POSTGRESQL DATABASE

RELATIONAL DATABASE BACKEND

Originally created by engineers at UC Berkley with version 1 released in
1989, PostgreSQL continues to be a major force in Open-Source RDBMS.

https://www.postgresql.org

Current adopters include:

• Apache Traffic Control

• Uber

• Netflix

• Reddit

• Spotify

https://github.com/graphql/graphql-spec/blob/master/resources/GraphQL%20Logo.png , OWFa1.0

https://www.postgresql.org/
https://stackshare.io/postgresql
https://github.com/graphql/graphql-spec/blob/master/resources/GraphQL%20Logo.png

3 4

POSTGRAPHILE API

OPEN SOURCE GRAPHQL IMPLEMENTATION

Started in 2016, Postgraphile is an easy-to-use API library for GraphQL. The
robust open-source NodeJS library is MIT licensed, however additional
enterprise features are available for a small license fee.

Postgraphile is low to no-code required for a functional API as it leverages
data from PostgresQL to correctly build out the GraphQL Schema
automatically with documentation that’s available.

https://www.graphile.org/postgraphile/

While Postgraphile can be leveraged standalone or as a NodeJS library, I
mix-in several other NodeJS libraries and frameworks for the Lab Manager:

https://github.com/graphile/postgraphile/blob/v4/assets/favicon.ico, MIT

• ExpressJS

• Grant

• Winston

• JsonWebToken

• GraphQL-Voyager

https://www.graphile.org/postgraphile/
https://github.com/graphile/postgraphile/blob/v4/assets/favicon.ico
https://expressjs.com/
https://www.npmjs.com/package/grant
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/jsonwebtoken
https://github.com/APIs-guru/graphql-voyager

POSTGRAPHILE
PRIMER

3 6

SECURITY

AUTHENTICATION

The Lab Manager leverages
OAuth2.0 flows to obtain a
valid JWT

ADAPTATION

The Lab Manager verifies the
JWT and extracts the user, role,
and capabilities to pass along
through Postgraphile to
PostgresQL

AUTHORIZATION

Authorization is handled via
native PostgreSQL security
mechanisms built into the
database.

3 7

SECURITY

NATIVE POSTGRESQL AUTHORIZATION

• Column

• Table

• Row Policies

ADDITIONAL INTEGRITY VALIDATION

• Usage of Check Constraints & Defaults
to enforce JWT values

With the use of security definers, it is
possible to override the security settings
of a request and user

3 8

BUSINESS LOGIC
GRAPHQL ISN’T JUST CRUD

Mutations in GraphQL vernacular encompass all potentially modifying operations.

mutation CreateMyDivision {
createDivision(input:
{division:
{name: "MyDivision"}

}
) {division {

name
nodeId
regionsByDivision {
nodes {
name

}}
}}

}

3 9

BUSINESS LOGIC
GRAPHQL ISN’T JUST CRUD

Mutations in GraphQL vernacular encompass all potentially modifying operations.

mutation CreateMyDivision {
createDivision(input:
{division:
{name: "MyDivision"}

}
) {division {

name
nodeId
regionsByDivision {
nodes {
name

}}
}}

}

mutation DeepDivisionCreation {
deepDivisionCreation(input:
{division:
{name: "MyDivision"}

},
{region:[

{name: "MyRegion1"},{name: "MyRegion2"}
]}

) {division {
name
nodeId
regionsByDivision {
nodes {
name

}}
}}

}

LAB EXECUTOR

4 1

ABSTRACTIONS

4 2

ABSTRACTIONS

DOCKER CONTAINER

• Insulate Dependencies

• Improve Portability

4 3

ABSTRACTIONS

DOCKER CONTAINER

• Insulate Dependencies

• Improve Portability

EXECUTOR ROOT SHELL SCRIPT

• Redirect its own output to itself

• Scrub & Submit Logs

• Update Job State

4 4

ABSTRACTIONS

DOCKER CONTAINER

• Insulate Dependencies

• Improve Portability

EXECUTOR ROOT SHELL SCRIPT

• Redirect its own output to itself

• Scrub & Submit Logs

• Update Job State

EXECUTOR PLAYBOOK

• Obtain available Job

• Weave execution directory code

• Dump all job information

4 5

ABSTRACTIONS

DOCKER CONTAINER

• Insulate Dependencies

• Improve Portability

EXECUTOR ROOT SHELL SCRIPT

• Redirect its own output to itself

• Scrub & Submit Logs

• Update Job State

EXECUTOR PLAYBOOK

• Obtain available Job

• Weave execution directory code

• Dump all job information

JOB ENTRYPOINT PLAYBOOK

• Considered Main Execution for Job

EXECUTION LOGGING &
SECURITY

4 7

INTERESTED?

APACHECON 2019
• https://tinyurl.com/AutomatingATCSlides

• https://tinyurl.com/AutomatingATCVideo

APACHECON 2020
• https://tinyurl.com/SelfServiceCDNSlides

• https://tinyurl.com/SelfServiceCDNVideo

Photo by Branden Tate on Unsplash

https://tinyurl.com/AutomatingATCSlides
https://tinyurl.com/AutomatingATCVideo
https://tinyurl.com/SelfServiceCDNSlides
https://tinyurl.com/SelfServiceCDNVideo
https://unsplash.com/@travelingtater?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

4 8

TAKEAWAYS
1. Obtain a basic understanding of

Ansible

2. See how Comcast has leveraged
the Open-Source Ansible roles for
ATC.

3. Learn more about technology
stack choices we’ve made.

4. Gain a better understanding of
how deep the rabbit hole goes
with modeling complex systems.

Jonathan Gray

Twitter : @jhg03a
GitHub : @jhg03a

traffic-control-cdn.slack.com : @jhg03a
The-asf.slack.com : @jhg03a

jhg03a@apache.org
https://unsplash.com/photos/R4WCbazrD1g
https://about.twitter.com/en_us/company/brand-resources.html
https://github.com/logos
https://slack.com/media-kit
https://commons.wikimedia.org/wiki/File:Antu_mail-folder-sent.svg

https://unsplash.com/photos/R4WCbazrD1g

