y .
SSL INTERCEPT
PRACTICE

Oknet (Chao Xu)
xuchao@skyguard.com.cn

oknet@apache.org

SkyGuard

Since Jan 2015

Products / Solutions
Inside Threat Protection
Data Loss Prevention
UEBA
CASB
Secure Email Gateway
Secure Web Gateway (based on ATS)

About me

Jan 2015
Touch the ATS code

Review code line by line and write code
reading note on Github

Sep 2016
ATS committer and PMC member

Mainly focus on the stability and quality
of the code, then performance.

Insecure HT TP Proxy

Insecure HTTP Proxy

Client Side \ " Explicit HTTP Proxy

7) ‘ GET https://www.xxx.com/login/ HTTP/1.x ‘ e N
’ O (e @ G ‘ Req & Resp are both in plain text ‘ trafflc‘server

Client Side \ | Explicit HTTP Proxy

7) ‘ CONNECT www.xxx.com:443 HTTP/1.x ‘ . ® .
” ® —— » traffic_server
N4 ‘ Req hostname in plain text 3 ‘ o

Proxy Server ; | Parent HTTP Proxy

oo ffic'server”‘ CONNECT www.xxx.com:443 HTTP/1.x
° ‘ Forward CONNECT request in plain text | 3 s

Deal with CONNECT method

Client Side TrafficServer Server Side

Q Q

, User Agent HttpSM / HttpTunnel Origin Server Origin Server
Cllt?nt VConn vVConn
|

| TCP cpnnect and Allocate YC

Probe then new HttpSM

CONNECT

Parse request then do OSDNS lookup

TCP connect

S
>

Established then Allocate VC

I
|
|
I
I
|
I
I
|
|
I
I
|
I
I
|
T
I
|

Attach to HttpSM

B

uild Response

Setup Bidirectional Blind Tunnel lﬁ.

d Response [HTTP/1.1 200 ¢gnnection Established] :

is point data can flow between the Client and Server over the Blind Tunnel as a virtual connection, including any TLS handshake.

+ Move data =

+« Move data =

S
>

TLS handshake
<

1 I I
Client User Agent Origin Server
HttpSM / HttpTunnel
VConn pSM/ P VConn

Q Q

Origin Server

Deal with CONNECT method

@startuml
box "Client Side" #DDDDFF
actor Client
end box

box "TrafficServer" #DDFFDD

entity "User Agent\nVConn" as Ivc
participant "HttpSM / HttpTunnel" as httpsm
entity "Origin Server\nVConn" as rvc

end box

box "Server Side" #DDDDFF

participant "Origin Server" as Server

end box

Client -> Ivc : TCP connect and Allocate VC

activate Ivc

lvc -> httpsm : Probe then new HitpSM

Client -> httpsm : HTTP CONNECT

httpsm -> httpsm : Parse request then do OSDNS lookup
httpsm -> Server : TCP connect

Server -> rvc : Established then Allocate VC

activate rvc

rvc -> httpsm : Attach to HttpSM

httpsm -> httpsm : Build Response

note over Ivc,rvc : Setup Bidirectional Blind Tunnel
httpsm -> Client : Send Response [HTTP/1.1 200 Connection Established]

note over Client, Server : At this point data can flow between the Client and Server
over the Blind Tunnel as a virtual connection, including any TLS handshake.
Client <--> Server
Client <--> Ivc : TLS handshake
lvc <-> httpsm : <&arrow-thick-left> Move data <&arrow-thick-right>
httpsm <-> rvc : <&arrow-thick-left> Move data <&arrow-thick-right>
rvc <--> Server : TLS handshake
@enduml

idirectional tunnel

Why

Did the employee
download malware ?
receive phishing email ?
visit a malicious website ?
leak important information ?

For the risk
Detect and prevent early.

How

Extend ProtocolProbeSessionAccept
Learn from IDS

Detect and identify certain protocols by signatures. Includes:
o SSLv2, SSLv3, TL31, ...

o Socksv4, Socksvd

Detect and identify certain protocols by tcp ports. Includes:

> FTP(21), FTPS(990)

- SMTP(25, 587), POP3(110), IMAP(143), ...

- SMTPS(465), POP3S(995), IMAPS(993), ...

Combine the two methods to get more accurate result
Introduce ProfileSM

Pull low level I/O operations from UnixNetVC

Pull SSL handshake and encrypt/decrypt from SSLNetVC

Create tcpProfileSM and ssIProfileSM as NetVC's helper to
perform these operations.

Handle SSL from Blind Tunnel 1

ientHello

| .
Attach server_vc ta client_vc

—
>

|
User Agent VConn
ProbeSessionAccept

Q

Client
SSL ProfileSM

HttpSM / HttpTunnel

Server
SSL ProfileSM

|
Origin Server
VConn

Q

Client Side TrafficServer Server Side
Client Server . Q
‘ User Agent VConn SSL ProfileSM | | HttpSM / HttpTunnel SSL Profilesm | Origin Server Origin Server
Cllt?nt ProbeSessionAccept ' ' ' vConn '
| |
| TCP cpnnect and Allokate VC - \ : : : : :
r el | | | | I
| Probe then new HttpiSM - : : : |
I T 7 I I I
| HTTP |[CONNECT : N : : |
I T ~ | | |
i ; Parse request then do OSDNS lookup : ; :
I | | | |
| | | | |
I I TCP connect I | <!
| | r r >
: : : | _ Established then Allpcate VC|
I I I 1
i ; Attach to HttpSM : i
I I T I
X X Build Response X X
: : <« : :
:4 Send Response [HT[TP/1.1 200 Cgnnection Established]i : |
| ' : |
I I I
| T |
| | |
I I I
| | |

Origin Server

Handle SSL from Blind Tunnel 2

Client Side TrafficServer
Client Server
g User Agent VConn SSL ProfileSM | | HttpSM / HttpTunnel | | SSL ProfileSM
Client ProbeSessionAccept . ' '
I |

| TLS ClientHello - : : :
r - I I |
: Probe then attach SSL ProfileSM_ : | :
I - I |
| I |
[iandshakd VY > ! ;
| HTTP|GET in TLS|[Tunnel : |
I ” | |
| Decrypted from TLS Tunnel | X
| ~ | |
| HTTP GET in plain | X
I I |
| Probe then new HttpSM - X
| 1 |
At this point data can flow between the Client and HttpSM over the client_vc, and decrypt/encrypt by SSLProfileSM. Iﬁl :
|
: Parse request i
: « | !
| Il

| At this point request can be remaped, or do lookup cache, etc ... Bh
: |
I Do OSDNS lookup |
| < |
I |
: Pickup server_vc from client_vc o !
I | U | |

Client User Agent VConn

ProbeSessionAccept

Q

Client
SSL ProfileSM

HttpSM / HttpTunnel Server

SSL ProfileSM

Q

Origin Server
vConn
I

Origin Server
VConn

Q

Server Side

Origin Server

Origin Server

Handle SSL from Blind Tunnel 3

Client Side TrafficServer Server Side
Client Server) Q
‘ User Agent VConn | 55 profileSM | | HttpSM / HttpTunnel SSL ProfileSM Origin Server Origin Server
Client ProbeSessionAccept . ' . VvConn l
| 1 |
: Pickup server_vc from client_vc - | :
I T Ca I I
: | attach SSL ProfileSM_ | :
| | -~ |
: : Forward HTTP GET requLst - :
| |] |
; : TLS handshake triggered by do_io_write() _ :
I I = I
' X TLS ClientHello N
I I Ll
' X TLS Handshake X
| | oo B Y >,
| |
I | At this point data can flow between the HttpSM and Server over the server_vc, and decrypt/encrypt by SSLProfileSM.
I I
: : - it CiGlEEE i iii i iiiitB N ————, il ... :
: : HTTP GET in TLS Tunngl o
I I L]
: : HTTP Response in TLH Tunnel :
I I I
: : Decrypted from TLS Tunnel X
| I I
X X Parse response hdr X
| | |
X X Build response X
| | PR |
I I 1 1 1 I L}
Client PUsgré\ger_\t \:\Connt Client HttpSM / HttpTunnel Server o”%’g Server Origin Server
FODESESSIONACCEPL | 551 profilesm SSL ProfileSM onn

Handle SSL from Blind Tunnel 4

Client Side

Client

P Resj

Q

User Agent VConn
ProbeSessionAccept

Client
SSL ProfileSM

TrafficServer

HttpSM / HttpTunnel

Server

SSL ProfileSM

a—

Build response

Q

Origin Server
Vann

Setup response HttpTunnel

yHdr in TLS Tunnel

Forward HTTP RespHdr

Server Side

| Origin Server I

| At this point d

|
|
|
|
|
|
|
|
|
|
|
|
:
ata can flow from the Server to the Client over the HttpTunnel, and decrypt/encrypt by SSLProfileSM(s). j

Decrypt data

5 Tunnel

e e S
| | |

I |]

| | |

| | |

I] .(

| | |

: i Forward data (with or without transform) |

E Encrypt data : s

E< Data in TLS Tunnel E E

I I | | |

Client User Agent VConn Client HttpSM / HttpTunnel Server

ProbeSessionAccept

Q

SSL ProfileSM

SSL ProfileSM

I
Origin Server
VConn

Q

Origin Serverl

Handle SSL from Blind Tunnel with SsIProfileSM

@startuml
box "Client Side" #DDDDFF
actor Client
end box

box "TrafficServer" #DDFFDD

entity "User Agent VConn\nProbeSessionAccept" as Ivc
participant "Client\nSSL ProfileSM" as Ivcssl

participant "HttpSM / HttpTunnel" as httpsm

participant "Server\nSSL ProfileSM" as rvcssl

entity "Origin Server\nVConn" as rvc

end box

box "Server Side" #DDDDFF

participant "Origin Server" as Server

end box

Client -> Ivc : TCP connect and Allocate VC

activate Ivc

lvc -> httpsm : Probe then new HitpSM

activate httpsm

Client -> httpsm : HTTP CONNECT

httpsm -> httpsm : Parse request then do OSDNS lookup
httpsm -> Server : TCP connect

Server -> rvc : Established then Allocate VC

activate rvc

rvc -> httpsm : Attach to HttpSM

httpsm -> httpsm : Build Response

httpsm -> Client : Send Response [HTTP/1.1 200 Connection Established]
rvc -> lvc : Attach server_vc to client_vc

deactivate httpsm

Client -> Ivc : TLS ClientHello

lvc -> Ivcssl : Probe then attach SSL ProfileSM

activate Ivcssl

Client <-->lvcssl : TLS Handshake

Client -> Ivc : HTTP GET in TLS Tunnel

lvc -> Ivcssl : Decrypted from TLS Tunnel

lvcssl -> Ive : HTTP GET in plain
lvc -> httpsm : Probe then new HitpSM
activate httpsm
note over Client, httpsm : At this point data can flow between the Client and HttpSM
over the client_vc, and decrypt/encrypt by SSLProfileSM.
Client <--> httpsm
httpsm -> httpsm : Parse request
note over httpsm : At this point request can be remaped, or do lookup cache, etc ...
httpsm -> httpsm : Do OSDNS lookup
lvc -> httpsm : Pickup server_vc from client_vc
httpsm -> rvcssl : attach SSL ProfileSM
activate rvcssl
httpsm -> rvc : Forward HTTP GET request
rvessl -> rve : TLS handshake triggered by do_io_write()
rvc -> Server : TLS ClientHello
rvcssl <--> Server : TLS Handshake
note over httpsm, Server : At this point data can flow between the HitpSM and Server
over the server_vc, and decrypt/encrypt by SSLProfileSM.
httpsm <--> Server
rvc -> Server : HTTP GET in TLS Tunnel
Server ->rvc : HTTP Response in TLS Tunnel
rvc -> rvcssl : Decrypted from TLS Tunnel
rvcssl -> httpsm : Parse response hdr
httpsm -> httpsm : Build response
note over lvc, rvc : Setup response HttpTunnel
httpsm -> Ivcssl : Forward HTTP RespHdr
lvcssl -> Client : HTTP RespHdr in TLS Tunnel
note over Client, Server : At this point data can flow from the Server to the Client over
the HttpTunnel, and decrypt/encrypt by SSLProfileSM(s).
Client <-- Server
rvc <- Server : Data in TLS Tunnel
rvcssl <- rvc : Decrypt data
Ivcssl <- rvessl : Forward data (with or without transform)
lvc <- Ivessl : Encrypt data
Client <- Ivc : Data in TLS Tunnel
@enduml

Secure HTTP Proxy

Client Side

o0f@eC

Client Side

o0ee@e

Proxy Server

. ®
traffic_server™

Req & Resp are both encrypted by SSL

Req hostname is encrypted by SSL

" Explicit HTTPs Proxy

. @
trafﬁc.server”‘

" Explicit HTTPs Proxy

= . ™
trafﬁc.server

~ Parent HTTPs Proxy ‘

(e

TLS Tunnel in TLS Tunnel

Client Side

with HTTPs Proxy

WWW.XXX.com:443

" Explicit HTTPs Proxy |

. @
trafflc.server”"

" Explicit HTTPs Proxy |

2 . ™
traffic_server

TCP Connection

/Origin HTTPs Server

" Explicit HTTPs Proxy

. @
traffic Jserver”

with origin server

TLS Tunnel

e

,Origin HTTPs Server

@
t SSL in SSL Tunnel

How

SSL Read
Decrypt the encrypted content

SSL Write

Encrypt the plaintext content

ssIProfileSM

Handle SSL Handshake
Data transform between NetVC and HttpSM

It is just a content operation, but
there are some differences:

Bidirectional (Read and Write).

Stateful (Handshake and Transfer).

ProfileSM

In the life of NetVConnection, it may has multiple
stages: new born, pre-transfer, transfer, pre-close.

For TCP

o New born: none, Pre-transfer: none,
o Transfer: read or write, Pre-close: linger close

For SSL
o New born: initial CTX, Pre-transfer: handshake
o Transfer: encrypt or decrypt, Pre-close: SSL shutdown

State:
New born: do some initialize
Pre-transfer: do authorize, ssl handshake
Transfer: read/write socket, move data, transform data
Pre-close: do linger close, ssl shutdown

ProfileSM - stateful

sslProfileSM:: sslProfileSM:: ssIProfileSM:: ssIProfileSM::
startEvent handshakeEvent mainEvent shutdownEvent

Setup Perform an Encrypt and Send SSL
ProfileSM SSL Decrypt data. shutdown message
according to handshake to the peer.
the purpose. with the peer.

8

Renegotiate
(not support)

Send/receive raw data to/from the peer.

tcpProfileSM::
startEvent tcpProfileSM::mainEvent

ss|ProfileSM - bidirectional

sslProfileSM::mainEvent()

A

sslIProfileSM::handle_read()

tcpProfileSM::recv()

I

SYS Call recv ()

Socket FD

Step 2: ve->do

Step 2: ve->do_io_read

io_write

H‘—ﬁ‘ lowProfileSM->recv() ‘%—;

Encrypted content

Plaintext content

MIOBuffer
(read_buffe

Step 1: create

SYS Call send ()

Encrypted content

MIOBuffer
(write_buffer)

Step 1: create
1

Plaintext content

while ((vc = read_ready_list.dequeue()
ve->profil

handleEvent(EVENT_READ, vc)

A

(read & write)_ready_list
(non-Atomic | Internal Queue)

A\

while ((vc = write_ready_list.dequeue())
ve->profileSM->
handleEvent(EVENT_WRITE, vc)

NetHandler

ProfileSM chain

NetVVConnection is a framework for data
transmission between socket fd and |OBuffer.

ProfileSM as the helper to define how to

Send/receive data
Transform data if necessary

Like Transform Plugin, ProfileSM can be
chained one by one, but it is bidirectional.

Socket FD €= tcpProfileSM €= ss|ProfileSM €<= HttpSM

NetVC + ProfileSM

NetVC + tcpProfileSM = UnixNetVC
NetVC + tcpProfileSM + ss|ProfileSM = SSLNetVC

NetVC + tcpProfileSM + ssIProfileSM + ssIProfileSM
= SSL in SSL Tunnel

NetVC + udpProfileSM = UDPNetVC

NetVC + udpProfileSM + dtlsProfileSM = DTLSNetVC

Based on 6.0.x branch

ATS INTERNALS

tttttttttttttt

Agenda

AlO Sub-system & Native AlO
DNS Sub-system

TransformVVConnection

AlO Sub-system

AlO_Reqgs per file description
AlO_Regs *aio_regs[MAX DISKS POSSIBLE]
MAX_DISKS POSSIBLE =100
aio_reqs|[] is protected by ‘insert_mutex’

An AlO_Regs has

8 AlO threads: proxy.config.cache.threads per_disk

An atomic queue: aio_temp _list

A sort (by priority) queue: aio_todo, http_aio_todo (p == 0)
o Protected by aio_mutex and aio_cond

k_aio_write (ATS AIO)

(ATS AIO) / in

ink_aio_read

AlO Tasks Queue Lookup, Create and Insert

not found

1
protected by
insert_mutex

i

Search for op->aiocb.aio_fildes ||« Traverse

!

protected by
insert_mutex

op->aio_req = req;

Init

AlO_Reqs *request = malloc() ”o—» req-alo_cond

req->aio_mutex

Init member of request

4—% Init req->aio_temp_list

Insert request
into aio_reqs [num_filedes]

4—% UNLOCK (insert_mutex)

return request;

4—% for (i=0; i< thread_num; i++)

eventProcessor.spawn_thread

\

/

4—*‘ new AlOThreadInfo(request, X)

DEDICATED
AIO THREAD START

AlOThreadInfo::start()

AlO Sub-system (cont.)

The AIO loop is blocked by one of the following operations
Disk 1/O operations

Conditional wait

Therefore, each AlO loop consumes only one |/O task from
the queue.

Create multiple AlO Threads to support concurrent I/O
operation on specify file description (block device)

AlO Task Queue and AlO Thread Group

reg->aio_todo (prio> 0)
[0—— move —>|| reg->http_aio_todo (prio==0)
(non-Atomic | Internal SortQueue)

req->aio_temp_list
(Atomic | External Queue)

one of
Raw Disk

!

reg->aio_temp_list.
enqueue (req)

ink_aio_read / write (ATS AlO) Continuation @ = AlO_EVENT_DONE ---é--

AlO Thread Loops

DEDICATED req->aio_temp_list. I :
< AIO THREAD START enqueue (req) 'ﬂ ink_aio_read / write (ATS AIO)
’

reg->aio_todo (prio> 0)
reg->http_aio_todo (prio==0)
(non-Atomic | Internal SortQueue)

d

aio_insert
Y <

LOCK (reg->aio_mutex) aio_move (req)

req->aio_temp_list
(Atomic | External Queue)

COND_WAIT op = aio_todo.pop()
AIO_Regs: (reg->aio_cond, req->aio_mutex) op = http_aio_todo.pop()

aio_mutex

cache_op (op) e
callback op (pread / pwrite loop) UNLOCK (reg->aio_mutex)

? !

AIO_EVENT_DONE

i !

State Machine Raw Disk

AlO Thread Loops

DEDICATED req->aio_temp_list. I :
< AIO THREAD START enqueue (req) *‘ ink_aio_read / write (ATS AlO)
[]

reg->aio_todo (prio > 0)
reg->http_aio_todo (prio ==0)
(non-Atomic | Internal SortQueue)

d

aio_insert

req->aio_temp_list
(Atomic | External Queue)

COND_WAIT *‘ op =aio_ Hdo.pop()

AIO_Regs:: (reg->aio_cond, req->aio_mutex) op = http_a | todo.pop()

aio_mutex

_mutex)

AIO_EVENT_DONE

v

State Machine Raw Disk

Native AlO

Native AlO is similar to epoll system
ilo_setup() VS epoll create()
lo_getevents() VS epoll_walit()
lo_submit() VS epoll_ctl()

DiskHandler VS NetHandler

DiskHandler for Native AlO

AlOCallbackintenral
wio_complete

DiskHandler::complete_list
(non-Atomic | Internal Queue)

op->handleEvent(EVENT_INTERVAL)

; ;) o io_getevents(ctx, 0, ET_NET[x] Traverse complete_list
Save events[] into complete_ist ‘ MAX_AIO_EVENTS, events, nullptr) Negative Event and call back AlO’s cont

! A

DiskHandler::events[MAX_AIO_EVENTS]
(non-Atomic | Internal Queue)

DiskHandler::DiskHandler ()
io_setup(MAX_AIO_EVENTS, &ctx)

DiskHandler::ctx
(non-Atomic | Internal Queue)

”0--- initialize ===

“ \
cbs [MAX_AIO_EVENTS | write =

(non-Atomic | Internal Queue)

/

(io_event)

y / [)

Moving ready_list into cbs[] ”‘ >‘ io_submit (ctx, num, cbs)

X

dequeue
(AlOcb)

\

DiskHandler::ready_list ¢ enqueve ___ o this_ethread()->diskHandler . . "
(non-Atomic | Internal Queue) (AIOcb) ‘ ->ready_list.enqueue(op); Ink_elo_read / write (Native AIC)

DiskHandler for Native AlO

AlOCallbackintenral
wio_complete

DiskHandler::complete_list
(non-Atomic | Internal Queue)

op->handleEvent(EVENT_INTERVAL)

e 4 0 I Ilents(cw _ Traverse complete_list

Save events{] into complete.ist ¢ '| MAX_AIO EVEl\m, svents, nullptr) Negative Event and call back AlO’s cont
! A

DiskHandler::events[MAX_AIO_EVENTS]
(non-Atomic | Internal Queue)

s

| Raw
POlksereatef--- .- € Jmﬁ f |

Disk
cbs [MAX_AIO_EVENTS | \ write =

(non-Atomic | Internal Queue)

/

(io_event)

t [epell—eti(ADD)

Moving ready_list into cbs{] ”‘ »" io_sumr(ctx, num, cbs) ‘r

X

dequeue
(AlOcb)

DiskHandler::ready_list | enaueve this_ethread()->diskHandler . . "
(non-Atomic | Internal Queue) (AIch) ‘ ->ready_list.enqueue(op); ¢ " Ink_elo_read / write (Native AIC)

Native AlO (cont.)

Similar to NetHandler, DiskHandler is also
iIn every ET_NET threads

Different from NetHandler, DiskHandler bundle
to its EThread.

It shares mutex with its EThread.

/O tasks queue : DiskHandler::ready list
EThread local queue
Access from current EThread only

The level of concurrent I/O operations is
controlled internally by Native AlO.

Native AlO Task Queue and DiskHandler

->ready_list.enqueue(op); (AIOcb) (AlOcb)

!

ink_aio_read / write (Native AlO) Continuation

this_ethread()->diskHandler ”. enqueue dequeue

this_ethread()->diskHandler enqueue j one of
->ready_list.enqueue(op); (AIOcb) . Raw Disk

!

ink_aio_read / write (Native AlO) Continuation

this_ethread()->diskHandler ”. enqueue

->ready_list.enqueue(op);

!

ink_aio_read / write (Native AlO) Continuation

(AIOch)

DNS Sub-system

DNS Task Queue : DNSHandler::entries

Pending Entry
o New queries / retry queries

o Create an unique Query ID for each DNS
request

o Once DNS requests send out, It will be set to
“In flight”

o Lookup them by domain name

In flight Entry

o DNS requests waiting for response
o Lookup by domain name / Query ID

DNS Sub-system (cont.)

Duplicate Queue : DNSEnNtry::dups

Share DNS results for tasks which lookup for
the same domain name.

Save duplicate tasks.

Traverse the dups queue and call back
continuation one by one.

ONLY o

e->written_flag == false; r

\

traverse

different domains

DNS Task Queue and DNSHandler

oemees

0

"

insert

DNS Task Queue

have same domain

{)
1 DNS !
; Entry Eﬂ— new —.{

Y

DNSProcessor:getby(X)

write_dns()

A\

DNSProcessor::getXXXbyZZZ(X)

DNS DNS
Entry

Continuation

)

DNS_EVENT_LOOKUP

:

DNSEntry::postOneEvent()

f

NetHandler::mainNetEvent

\

epd->data.dnscon->trigger()

DNSConnection::trigger()

enqueue

;

Queue<DNSConnection> triggered;
(non-Atomic | Internal Queue)

T

dequeue

while (dnsc = triggered.dequeue()

a

A

dns_resulthandler, e, buf, retry)

res = socketManager.recvirom
(dnsc->fd, buf->buf, ...)

8

DNSHandler::recv_dns()

dns_processithis, buf, res)

DNSHandler::mainEvent()

DNS Sub-system (cont.)

ET DNS Thread Group
Only one EThread: ET _DNS|O]

2 Key components: DNSHandler and
NetHandler

If ET_DNS|[0] shares EThread with ET_NET]JO]
o There is DNSHandler in ET_NET][O0]

DNSHandler bundle to ET DNSJ0]
o It shares mutex with EThread.

Polling on DNSConnection (UDP socket fd)
Only on ET_DNS[0] or ET_NETI[0]

DNSConnection con[MAX NAMED],
MAX NAMED = 32

Connection

TransformVConnection

What is TransformVConnection ?
TVC is a pipe/chain that is connected by one or
more INKVConnlnternals.

TVC is a unidirectional pipe
The 1st INKVConnlnternal is the input

The TransformTerminus is always attached to
the tail as the output

When the TransformTerminus received any data
from its upstream, it will send
TRANSFORM READ READY event to the
owner of TVC.

TransformVConnection

m_transform-> m_terminus->
do_io_write() do_io_read()

- e EEEEE TS E ...

Input MIOBuffer ; : ; P : I . Output MIOBuffer
(read_buffer) ! : : i : AR : (read_buffer)

[]
1
1
1
1
1

TVC->do_io_read|()

VC_EVENT_WRITE_READY VC_EVENT_WRITE_READY VC_EVENT_WRITE_READY

m_transform-> m_transform->
do_io_close() do_io_shutdown()

~

EE LR B I I R L L L L L L L L L

0] 0]
C::do_io_close() ' ::TVC::do_io_shutdown()::
1]

TransformVC and Tunnel Chain

TVC as both a consumer and a
producer, connecting two tunnels

The two tunnels are chained in order to
drive the data stream from TVC'’s input
to output

It is a complete pipe from the source VC
to the target VC (for example: from client
VC to server VC).

Input MIOBuffer
(read_buffer)

] ! !
1TVC->do_io_wiite()
' .

H]
i ve->do_io_read()

TransformVConnection and Tunnel Chain

m_transform-> m_terminus->
do_io_write() do_io_read()

: HE B ' v
output_ve->do_io_write() + output_ve->do_io_write() :
! Do ' pd

R gy g gy

[p—

VC_EVENT_WRITE_READY VC_EVENT_WRITE_READY VC_EVENT_WRITE_READY

m_transform-> m_transform->
do_io_close() do_io_shutdown()

- -

- o g =

TVC->do

' " .
ve->do_jo_write()

[}
jo_read() i

Req and Resp Transform

Request Transform
For POST and PUT methods, accept chunked and non-chunked content.

The 1st HttpTunnel only verifies the integrity of the chunks but not de-chunk
them. Therefore, HitpTunnel sends raw chunked content to the
TransformVC.

The plugin should identify the encoding type and decode chunked content by
itself. The plugin should not change the encoding type.

The downstream requires the exact length of content, which means the
plugin should collect all chunks and get the length of raw content before write
any data to downstream if the incoming content is encoded in chunked.

It is easy to get the exact length of content if the plugin could get the value of
"Content-Length” from the request.

Reg and Resp Transform (cont.)

Response Transform

For any request which has a payload with response, accept chunked
and non-chunked content.

The 18t HttpTunnel identify the encoding type and decode chunked
content automaticaII%/. Therefore, HttpTunnel always sends de-chunked
content to the TranstormVC.

The plugins always receives de-chunked content and sends de-
chunked content to downstream.

The INT64_MAX can be the length of content which means the content
length is currently uncertain. The plugin should update
‘write_vio.nbytes’ with the exact length if all content is collected.

The 2nd HttpTunnel will chunking the content automatically according to
the capability of the user agent.

