Workshop:

Contributing to
Apache Airflow

Outreachy 2021

Jarek Potiuk

Independent Open-Source Contributor and Advisor
Airflow Committer & PMC member
Twitter: @jarekpotiuk

e

Elad Kalif

Data Engineer at Wix.com
Airflow Committer & PMC member
Twitter: @eladkal

Nasser Kaze

Software Engineer at Buea
Apache Fineract Committer
Google Summer of Code 2021 intern with The
Apache Software
Twitter: @xurror

Agenda

e Introduction
e Part 1: Prepare environment & choose issue
e Part 2: Coding!

e Part 3: Live code reviews

Intro

Apache Software Foundation

e The World's Largest Open Source Foundation
e Established in 1999, the ASF is a US 501(c)(3) charitable organization
e Funded by individual donations and corporate sponsors

e Our all-volunteer board oversees more than 350 leading Open Source projects,

o including Apache HTTP Server, Apache Spark, Apache Airflow ..

The Apache Way

Methodology followed to ensure collaborative environment across the projects

e Community over code - the main motto

e Community of peers - no-one is “boss”

e Merit - recognizing your work

e Independence - vendor neutrality

e Open Communication - transparency everywhere

e Decision Making - consensus & votes

Airflow is Orchestrator

f

}

y

!

Apache Airflow

e Pure python, workflow management tool Uw"’ §
e Define workflows as .py files
e Processing data intervals

e Schedule jobs by cron format and datetime

e Define relations between tasks

e Works locally and in the cloud PO EGRE

e Debug -> Deploy -> Scale

[2\ Azkaban

Open-source Workflow Manager

History

Originally developed in AirBNB

Incubating in Apache Software Foundation since 2017

Official ASF project (TLP) since January 2019

Airflow 2 - December 2020

One of the most popular orchestrators out there

As of September 2021 - ASF project with highest number of contributors (>1700)
Airflow Summit 2021 - >10.000 attendees

Airflow Basics

‘ DAG = Directed Acyclic Graph

DAG: Tasks

DAG: relations

DAG: relations

DAG: relations

a Tasks fail due to failed upstream

DAG: backfill
Run airflow backfill to rerun failed
a tasks using result from succeeded tasks

DAG baCkﬁ" Tasks have to be idempotent

;

Run airflow backfill to rerun failed
a tasks using result from succeeded tasks

Tasks

TOO BAD WE CANT
GIVE IT A SOUL.

SURE

WE CAN. |mpori' sovl

h8

Tasks

e Tasks types

(@)

Operators, Sensors, Transfers

e Specialized operators in Providers (70+)

e General Purpose Operators

o O O O

(@)

Bash

Python

Python Virtualenv
Docker
Kubernetes Pod

e “Functional” dags/tasks via decorators

salesforce

Operators

from airflow.models.baseoperator import BaseOperator

class HelloOperator(BaseOperator):

def __init__(
self,
e: str,
kwargs) -> None:
super().__init__(**kwargs)
self.name = name

execute(self, context):

message = "Hello {}".format(self.name)
print(message)

return message

Hooks

class HelloDBOperator(BaseOperator):

def __init__(
)6
name: str,

mysql_conn_id:

self.name = name
self.mysql_conn_id = mysql_conn_id
= database

execute(self, c

ySqlHook (mysql_conn_id=self.mysql_conn_id,

schema=self.datab)
"select name from user"
= hook.get_first(sql)
sult['name’])

return message

TaskFlow - “functional” DAG/Task definition

airflow/example_dags/tutorial_taskflow_: tl.py

@dag(default_args=default_ar schedule_interval=None, start_dat ays), té ["example'])
def tutorial_taskflow_api_etl():

TaskFlow API Tutorial Documentation

This is a simple ETL data pipeline example which demonstrates the use of
the TaskFlow API using three simple tasks for Extract, Transform, and Load.
Documentation that goes along with the Airflow TaskFlow API tutorial is
located

[here] (https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html)

airflow/example_dags/tutorial_taskflow_api_etl.py

Extract task
A simple Extract task to get data ready for the rest of the data

pipeline. In this case, getting data is simulated by reading from a
hardcoded JSON string.

data_string '{"1001": 381.27, "1002": 433.21, "1003": 502.22}

order_dat
return or

Other components

XCom - cross task communication
Production-level Executors: Local, Celery, Kubernetes, CeleryKubernetes

Development-level Executors: Sequential, Debug

Scheduler:
o Continuous DAG parsing

o Scheduling DAGRuns, and sending tasks to executors

Airflow’s distributed Architecture: Database

Logs

Logs

Logs

Logs

Airflow’s distributed Architecture: DAG folder

=

=
-

e

Logs

Logs

Logs

[Wb

Logs

Airflow’s distributed Architecture: Logs

[Database]

[DAG folder]

Logs

7
;
.

7
.
4

Logs

[Webserver

/
.

Logs

Logs

Workshop Communication & Rules

e Slack channel

#outreachy
e \We can break-out to sub-group as needed
e Anyone can share their screen if needed

e Ask questions any time

Workflow to follow

O—0—-—0—-0—-0

Fork airflow/main

Make your own fork of
Apache Airflow main
repo

Configure environment

Create virtualenv
Initialize Breeze
Install pre-commit

Connect with people Prepare PR PR review
Join devlist

Setup slack account

PR from your fork
Follow PR guidelines in
CONTRIBUTING.rst

Ping @ #development slack
Comment @people
Be annoying
Be considerate

Part 1:

o Setup Dev environment
o Choose issue to work on

Setting up

e Setup development environment
o gqit
o Breeze, local virtualenv
o pre-commit (!)
o |IDE setup
e Choose Issue to work on (small)

o https://qgithub.com/apache/airflow/contribute

o https://qgithub.com/apache/airflow/labels/contributors-workshop

e (With our help) locate where to make changes

https://github.com/apache/airflow/contribute
https://github.com/apache/airflow/labels/contributors-workshop

Part 2: Coding!

Project structure

airflow/

airflow/

- executors/
- hooks/

- operators/
- providers/
- www/

docs/

tests

airflow/

tests/

- executors/
- hooks/

- operators/
- providers/

- www/

Writing code

e \Write code / docs

e Install pre-commit

O pre-commit 1nstall

e Run tests build docs
0 pytest -s tests/models/test dagrun.py
0 ./breeze build-docs
O ./breeze build-docs -- --package-filter apache-airflow

Part 3: Review

Review etiquette

e Remember about diversity & inclusion
e Be empathetic

e Do not be afraid to ask, argue (with code not people) or
suggest - from each other!

e Rebase when you are asked to do it

Review process

Check for PR
reviews and
comments
Ping on Apply fixes and
#development extend tests
Submit,
fixup,

commit

