
Workshop:

Contributing to
Apache Airflow
Outreachy 2021

About us

Independent Open-Source Contributor and Advisor
Airflow Committer & PMC member

Twitter: @jarekpotiuk

Jarek Potiuk

Elad Kalif

Nasser Kaze

Software Engineer at Buea
Apache Fineract Committer

Google Summer of Code 2021 intern with The
Apache Software
Twitter: @xurror

Data Engineer at Wix.com
Airflow Committer & PMC member

Twitter: @eladkal

● Introduction

● Part 1: Prepare environment & choose issue

● Part 2: Coding!

● Part 3: Live code reviews

Agenda

Intro

Apache Software Foundation
● The World's Largest Open Source Foundation

● Established in 1999, the ASF is a US 501(c)(3) charitable organization

● Funded by individual donations and corporate sponsors

● Our all-volunteer board oversees more than 350 leading Open Source projects,

○ including Apache HTTP Server, Apache Spark, Apache Airflow ...

The Apache Way
Methodology followed to ensure collaborative environment across the projects

● Community over code - the main motto

● Community of peers - no-one is “boss”

● Merit - recognizing your work

● Independence - vendor neutrality

● Open Communication - transparency everywhere

● Decision Making - consensus & votes

Airflow is Orchestrator

Apache Airflow
● Pure python, workflow management tool

● Define workflows as .py files

● Processing data intervals

● Schedule jobs by cron format and datetime

● Define relations between tasks

● Works locally and in the cloud

● Debug -> Deploy -> Scale

History

● Originally developed in AirBNB

● Incubating in Apache Software Foundation since 2017

● Official ASF project (TLP) since January 2019

● Airflow 2 - December 2020

● One of the most popular orchestrators out there

● As of September 2021 - ASF project with highest number of contributors (>1700)

● Airflow Summit 2021 - >10.000 attendees

Airflow Basics

DAG = Directed Acyclic Graph

DAG: Tasks
Tasks

DAG: relations

t1

t3

t2

t5

t4

t6

down_stream(t5) = t6

up_stream(t6) = t5

DAG: relations

t1

t3

t2

t5

t4

t6

DAG: relations

t1

t3

t2

t5

t4

t6

Tasks fail due to failed upstream

DAG: backfill

t1

t3

t2

t5

t4

t6

Run airflow backfill to rerun failed
tasks using result from succeeded tasks

DAG: backfill

t1

t3

t2

t5

t4

t6

Run airflow backfill to rerun failed
tasks using result from succeeded tasks

Tasks have to be idempotent

Tasks

Tasks
● Tasks types

○ Operators, Sensors, Transfers

● Specialized operators in Providers (70+)

● General Purpose Operators

○ Bash

○ Python

○ Python Virtualenv

○ Docker

○ Kubernetes Pod

● “Functional” dags/tasks via decorators

Operators

Hooks

TaskFlow - “functional” DAG/Task definition

Other components
● XCom - cross task communication

● Production-level Executors: Local, Celery, Kubernetes, CeleryKubernetes

● Development-level Executors: Sequential, Debug

● Scheduler:

○ Continuous DAG parsing

○ Scheduling DAGRuns, and sending tasks to executors

Airflow’s distributed Architecture: Database

Database

Scheduler

Webserver

Executor

Worker

DAG folder

Logs

Worker

Worker

Logs

Logs

Logs

Logs

Logs

Airflow’s distributed Architecture: DAG folder

Database

Scheduler

Webserver

Executor

Worker

DAG folder

Logs

Worker

Worker

Logs

Logs

Logs

Logs

Logs

Airflow’s distributed Architecture: Logs

Database

Scheduler

Webserver

Executor

Worker

DAG folder

Logs

Worker

Worker

Logs

Logs

Logs

Logs

Logs

● Slack channel

#outreachy

● We can break-out to sub-group as needed

● Anyone can share their screen if needed

● Ask questions any time

Workshop Communication & Rules

Workflow to follow

1

Fork airflow/main

Make your own fork of
Apache Airflow main

repo

Configure environment

Create virtualenv
Initialize Breeze

Install pre-commit

2

Connect with people

Join devlist
Setup slack account

3

Prepare PR

PR from your fork
Follow PR guidelines in

CONTRIBUTING.rst

4

PR review

Ping @ #development slack
Comment @people

Be annoying
Be considerate

5

Part 1:

● Setup Dev environment
● Choose issue to work on

● Setup development environment

○ git

○ Breeze, local virtualenv

○ pre-commit (!)

○ IDE setup

● Choose Issue to work on (small)

○ https://github.com/apache/airflow/contribute

○ https://github.com/apache/airflow/labels/contributors-workshop

● (With our help) locate where to make changes

Setting up

https://github.com/apache/airflow/contribute
https://github.com/apache/airflow/labels/contributors-workshop

Part 2: Coding!

airflow/
|- airflow/

|- - . . .

|- - executors/

|- - hooks/

|- - operators/

|- - providers/

|- - www/

|- docs/

|- tests

Project structure

airflow/
|- tests/

|- - . . .

|- - executors/

|- - hooks/

|- - operators/

|- - providers/

|- - www/

● Write code / docs

● Install pre-commit
○ pre-commit install

● Run tests build docs
○ pytest -s tests/models/test_dagrun.py
○ ./breeze build-docs
○ ./breeze build-docs -- --package-filter apache-airflow

Writing code

Part 3: Review

● Remember about diversity & inclusion

● Be empathetic

● Do not be afraid to ask, argue (with code not people) or
suggest - we all learn from each other!

● Rebase when you are asked to do it

Review etiquette

Review process

Ping on
#development

Check for PR
reviews and
comments

Submit,
fixup,

commit

Apply fixes and
extend tests

