
ATS Certificate Loading 
Plugin Support

Susan Hinrichs
ATS Summit
June 2020



ATS and Certificates
ATS provides both servers certs to user agents and client certs to origins



Current State of the World
● ATS loads server and client certificates from disk

○ On process start
○ On config reload

● Downsides
○ If certificates change on disk, someone must explicitly call config reload.  The “hot load” 

problem
○ If an organization manages certs and keys elsewhere, another step must be introduced to 

move certs and keys to disk on the ATS server

● The details of any centralized key/cert management is probably very 
organizational-specific. 

○ Plugins are great for such organization-specific business logic.



Previous Efforts on cert loading
Last year (or 2 years ago?), Zeyuan updated the core infrastructure and added 
Plugin APIs to allow for “hot loading” of client and server certificates

TSReturnCode TSSslClientCertUpdate(const char *cert_path, const char *key_path)

TSReturnCode TSSslServerCertUpdate(const char *cert_path, const char *key_path)

The idea was that an external tool would watch for changes on disk (or in a Key 
Server) and signal ATS that a file was ready to reload or feed in new PEM data.

● Limit complexity in ATS process

This worked in testing.  But we got distracted, Zeyuan left, and this never got 
merged back into our ATS7 and deployed

https://docs.trafficserver.apache.org/en/latest/developer-guide/api/types/TSReturnCode.en.html#c.TSReturnCode
https://docs.trafficserver.apache.org/en/latest/developer-guide/api/types/TSReturnCode.en.html#c.TSReturnCode


Limitations with previous approach
● Good approach for updates 
● Not viable if cert/key is never on disk

○ Initial load won’t work

● Implementation did not sufficiently track the policy relationships for server 
certificates

○ E.g dual cert relationships
○ Our new implementation work still benefited from Zeyuan’s reorganization for safely updating 

SSL_CTX tables without a config reload.



Motivations
● For Server Certificates we need to pull keying information from a Central Key 

Server
○ Our cert management system places updated certs and keys in the Central Key Server
○ Auto-renewals get placed in the Central Key Server

● Need to automatically detect and load new certs and keys “hot loading”
○ Avoid need for explicit system reload or config start

■ Avoid another point of ops coordination
○ Athenz client certificates used for authentication/authorization lifetime less than a day
○ Server cert lifetimes are continually being reduced

■ Our default is now 30 days, and still aiming lower



ATS Cert Loader Block Diagram



New Plugin API Hook
Added the idea of a secret.  The secrets are used for the certificate and key PEM 
data.

Hook TS_LIFECYCLE_SSL_SECRET_HOOK, triggered on load/reload for each 
certificate/key referenced in the ATS policy (both client and server certs).

The names are the full path from the config.  Plugin can use any subset of that 
name. 

Int fetch_secret(TSCont cont, TSEvent event, void *edata) { 
  TSSecretID *id = static_cast<TSSecretID *>(edata);
  std::string cert_name{id->cert_name, id->cert_name_len};
  std::string key_name{id->key_name, id->key_name_len};

 The Plugin can Get, Set, and Update secrets.  The Secrets are used as the 
source of certificate and key PEM data referenced in the ATS config.



New Plugin API’s for config load/reload
From the hook, the plugin can update the Secret state via TSSslSecretSet.  When 
the hook returns, the data should be present for the core SSL_CTX creation.  If 
the secret data is not present after calling the hook, the core reads from disk as 
before.

TSReturnCode
TSSslSecretSet(const char *secret_name, int secret_name_length, const char *secret_data, int 
secret_data_len)

The plugin can also use TSSslSecretGet to see what is already in the Secret 
state for that name.
TSReturnCode
TSSslSecretGet(const char *secret_name, int secret_name_length, const char 
**secret_data_return, int *secret_data_len)



New Plugin API for hot reload
Plugin can run periodically to look for new secret data.

When detected, Plugin updates the secret state with TSSslSecretSet.

In addition, it needs to signal to the core that it should recompute the associated 
SSL_CTX with TSSslSecretUpdate

● For client SSL_CTX, simply removes the current entry.  On the next access a 
new SSL_CTX will be created with the new secret data

● For server SSL_CTX, the core looks at the associated policy and creates a 
new SSL_CTX to update the server SSL_CTX table entry.



Cert_loader plugin
Uses the new hook and TS API’s to pull data from Central Key Server or disk. 
Plugin connects to Central Key Server and periodically pulls information about the 
registered key groups. On each hook call

● Take the secret names and removes the path to get the Central Key Server 
key names.

● If it is is found in Central Key Server, call TSSslSecretSet
● Otherwise, use the full path and look for the data on disk.
● If it is found on disk, call TSSslSecretSet

Save information about the secrets loaded from Central Key Server or disk with 
last version or file modification time.



Cert_loader Plugin Update
Periodically, refetch the Central Key Server key group info.  Time interval is a 
plugin config option.

Look through the list of previously loaded secrets and see if there are newer 
versions in Central Key Server.  If so call TSSslSecretSet and 
TSSslSecretUpdate.

Do the same thing with the list of secrets from disk.  See if any of the files have 
newer modification times and call TSSslSecretSet and TSSslSecretUpdate as 
necessary.



Status
● PR for plugin updates https://github.com/apache/trafficserver/pull/6609

○ Need to update the PR
○ PR includes a test plugin to exercise the API via autest

● Vinith has tested both loading and updating from disk and Central Key Server
○ Getting ready for wider deployment with ATS9

https://github.com/apache/trafficserver/pull/6609


Maybe Eventually - Move out to Crypto Proxy


