
ATS Summit Fall 2022
ATS Wasm Plugin

Kit Chan (kichan@apache.org)

Extending ATS

● C/C++ plugins
○ Allow extension of HTTP/TLS handling for connections with clients and origins
○ Steep Learning curve

● header_rewrite scripts / txn box
○ Domain Specific Language - not turing complete, no unit test framework
○ Cover some capabilities of the C/C++ plugins

● Lua plugins
○ Easier to learn a scripting language
○ Cover most of the capabilities of C/C++ plugins
○ LuaJIT FFI allows integration with shared libraries (bindings needed)
○ Not popular - fewer people learning the language / less support for bindings to newer libraries

Proxy-Wasm

● WebAssembly for Proxies
● Spec - https://github.com/proxy-wasm/spec
● Library - https://github.com/proxy-wasm/proxy-wasm-cpp-host

○ Classes for integration with proxy
○ Integrate with different runtime - V8, WAVM, WAMR, Wasmtime, WasmEdge

● SDK - Help to compile programs to wasm modules following the spec
○ C++ - https://github.com/proxy-wasm/proxy-wasm-cpp-sdk
○ Rust - https://github.com/proxy-wasm/proxy-wasm-rust-sdk
○ Available for AssemblyScript, Tiny Go, Zig as well

● Proxy Implementations
○ Envoy
○ MOSN
○ Nginx

https://github.com/proxy-wasm/proxy-wasm-rust-sdk

ATS Plugin Architecture

○ With handler functions for proxy to call (1)
○ Calling API functions that the proxy provides (2)

Plugin

Wasm
module

Wasm runtime

OriginClient

(1)(2)

ATS

Code Structure

● Proxy-Wasm library provides base classes of
WasmBase, ContextBase

● ATS Wasm Plugin provides extended classes of them
○ Wasm - initializing the runtime, load the module and

configuration
○ Context - provide implementations for handler functions and API

functions
■ Root Context - created from Wasm during ATS startup
■ Non-root context- created from root context for each

transaction

Demo

Demo Summary

● C++ Example -
https://github.com/apache/trafficserver/tree/master/plugins/experimental/was
m/examples/cpp

○ Demonstrate HTTP handler functions
○ Demonstrate logging
○ Demonstrate getting / setting HTTP headers
○ Demonstrate getting timestamp

● Rust example -
https://github.com/apache/trafficserver/tree/master/plugins/experimental/was
m/examples/rust

○ Demonstrate modules written in another language

https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/cpp
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/cpp
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/rust
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm/examples/rust

Real World Example

● Coraza - https://github.com/corazawaf/coraza
○ Open Source WAF library
○ supports ModSecurity SecLang rulesets
○ Written in Go

● Coraza Proxy WASM - https://github.com/corazawaf/coraza-proxy-wasm
○ WASM filter to be used with Envoy
○ Compiled with TinyGo SDK

● We can download the wasm module and use on ATS with the wasm plugin

https://github.com/corazawaf/coraza
https://github.com/corazawaf/coraza-proxy-wasm

Open Source

● Document -
https://docs.trafficserver.apache.org/en/latest/admin-guide/plugins/wasm.en.html

● Source Code -
https://github.com/apache/trafficserver/tree/master/plugins/experimental/wasm

● To-do list
○ Currently only the WAVM runtime is supported. We need to also support V8, WAMR, Wasmtime, and

WasmEdge as well.
○ Need to support functionality for retrieving and setting request/response body
○ Need to support functionality for making async request call
○ Need to support L4 lifecycle handler functions
○ Support loading more than one Wasm module

● More production testing / performance testing

Limitations

● A few things we won’t be able to support in the spec
○ Getting and setting trailer request and response header
○ Getting and setting data in HTTP/2 meta data frame
○ Support on GRPC lifecycle handler functions

Use Cases

● Safety for complex plugins
○ Critical to business
○ Bugs can cause ATS to crash
○ With implementation as Wasm modules, bugs will only cause Wasm runtime to complain

● Allow us to use these plugins with Envoy and vice versa
● Programming in more popular languages - Rust / Go

