
Apache OpenJPA
http://openjpa.apache.org/

July 17, 2009

Copyright © 2009, The Apache Software Foundation

Bean Validation Integration in JPA 2.0

2 Copyright © 2009, The Apache Software Foundation

Legal

● This presentation is based on Early Access levels of the
following specifications:

● JSR 317: Java Persistence API 2.0 – PFD (20090313)
● JSR 303: Bean Validation – PFD (1.0.CR1 20090316)

– Which require the following notice:
● This is an implementation of an early-draft specification developed under the Java

Community Process (JCP) and is made available for testing and evaluation purposes
only. The code is not compatible with any specification of the JCP.

● Presentation is released under the Apache Software License 2.0
– Copyright © 2009, The Apache Software Foundation

– ﻿Apache and the Apache feather logo are trademarks of Apache Software Foundation.

– Authored by: Jeremy Bauer and Donald Woods

3 Copyright © 2009, The Apache Software Foundation

Agenda

1 - Overview of JSR-303 Bean Validation 1.0
2 - JSR-317 JPA 2.0 support for Bean Validation
3 – OpenJPA modifications for Bean Validation
4 - Concerns and Issues

4 Copyright © 2009, The Apache Software Foundation

1 - Overview of JSR-303 Bean Validation 1.0
1.1 - Bean Validation Spec
1.2 – Constraint Definitions
1.3 – Constraint Descriptors
1.4 - Spec Required Constraints
1.5 - Validation Groups
1.6 - Spec Defined Exceptions

5 Copyright © 2009, The Apache Software Foundation

1.1 – Bean Validation Spec

● JSR-303 – JCP lead is Red Hat
● Hibernate Validation 4.0 will be the RI
– The PFD/1.0 CR1 was the last publicized version from

JCP website.
– Current validation-api source is hosted in a public repo,

so spec updates since the PFD can be tracked.
● Agimatec-Validation by agimatec GmbH on Google

Code is the only other implementation we've found.
– Has not finished implementing all of the PFD items.
– Does not use the TraversableResolver.

6 Copyright © 2009, The Apache Software Foundation

1.2 – Constraint Definitions

● A null element is considered to be valid.
● Each constraint supports a List<T>
● Implementations must provide a MessageResourceBundle

with some common predefined constraint messages.
● Constraints can be declared on interfaces and are cumulative
– Traversable fields, traversable methods (getters only), classes

(interfaces and superclasses) and traversable associations
– Uses TraversableResolver.isTraversable() to determine if a

given property should be accessed.
● Constraints are not processed in any particular order

7 Copyright © 2009, The Apache Software Foundation

1.3 – Constraint Descriptors

● Constraints can be provided by annotation or XML
– No Spec requirement for Java SE 6
– META-INF/validation.xml
– XML overrides annotations unless ignore-annotations is

set to false on the class descriptors
– Descriptors can only be provided for a given class once

● Invalid arguments lead to a IllegalArgumentException,
ConstraintDeclarationException or ValidationException

● A property can have constraints on both fields and methods

8 Copyright © 2009, The Apache Software Foundation

1.4 – Spec Required Constraints

● @AssertTrue/AssertFalse(Boolean value) - Boolean
● @DecimalMax/DecimalMin(String value) – BigDecimal,

BigInteger, String, byte/Byte, short/Short, int/Integer, long/Long
● @Digits(int integer, int fraction) - BigDecimal, BigInteger,

String, byte/Byte, short/Short, int/Integer, long/Long
● @Future/Past() – Date, Calendar
● @Max/Min(long value) – BigDecimal, BigInteger, String,

byte/Byte, short/Short, int/Integer, long/Long
● @Null/NotNull() – Object
● @Pattern(String regexp, Flag flags) - String
● @Size(int min, int max) – String, Collection, Map, Array.length

9 Copyright © 2009, The Apache Software Foundation

1.5 – Validation Groups

● Default group includes all constraints
● Uses interfaces to define subsets of constraints
● Can inherit from other groups
● GroupSequence can be used to redefine the Default

group for a class
● GroupSequence controls the order groups are

processed and is the only way to define constraint
ordering (one constraint per group)

10 Copyright © 2009, The Apache Software Foundation

1.6 – Validation Exceptions

● Runtime exceptions
– ConstraintViolationException – generated by the framework

(JPA2) if validation failures occur and contains the set of
specific ConstraintViolation(s)

– ConstraintViolation – contains the failure details: constraint
descriptor, message, class, property and value

● Compile time exceptions (annotation processor)
– ConstraintDefinitionException – illegal constraint
– ConstraintDeclarationException – invalid constraint argument
– UnexpectedTypeException – invalid property type
– GroupDefinitionException – cyclic graph, illegal override

11 Copyright © 2009, The Apache Software Foundation

2 - JSR-317 JPA 2.0 support for Bean Validation
2.1 – Validation Overview
2.2 – Integration Diagram
2.3 – Validator Factory
2.4 – Validation Modes
2.5 – Validation Groups
2.6 – Validation Exceptions

12 Copyright © 2009, The Apache Software Foundation

2.1 – Validation Overview

● Validation is optional. The JPA 2.0 Spec does not
require a Bean Validation implementation.

● A TraversableResolver must be supplied by the
persistence provider, so validation:
– Does not cause unloaded attributes to be loaded (confirm

to FetchType.Lazy/Eager)
– Validation cascading or embedded attributes (either

marked with @Valid) does not traverse entity associations

13 Copyright © 2009, The Apache Software Foundation

2.2 – Integration Diagram

javax.validation

ValidatorFactory

javax.persistence

EntityManagerFactory

javax.validation

TraversableResolver

javax.persistence

EntityManager

Events

Validation
Configuration

(mode and validation
groups)

Attach to

PrePersist

PreUpdate Employee
(entity)

@NotNull
String name

Provided or Default

javax.validation

Validator

Validate (entity)

Implicit or
Explicit Validation

ManagedPreRemove

isLoaded(entity)

CreateCreate

Create

isTraverseable
(entity)

14 Copyright © 2009, The Apache Software Foundation

2.3 – Validator Factory

● Java EE containers and Java SE applications can
provide a javax.persistence.validation.factory in the
EMF properties Map.

● A default instance is obtained from the Validation
implementation in the classloader (if one is present)
if none are supplied.

15 Copyright © 2009, The Apache Software Foundation

2.4 - Validation Modes

● javax.persistence.ValidationMode
– Auto (default) – if a validation provider is available, then

validation should occur

– Callback – validation is required and a PersistenceException must
be thrown if a provider cannot be obtained

– None – no validation should be attempted and the lack of a
validation provider should not cause an exception

● Can be set per PU
– <validation-mode> element in the persistence.xml
– javax.persistence.validation.mode in the EMF properties Map

● EMF supplied properties will override the XML

16 Copyright © 2009, The Apache Software Foundation

2.5 - Validation Groups

● Defines validation groups for entity life-cycle events
– javax.persistence.validation.group.pre-persist – Default

validation group called after all other PrePersist callbacks.
– javax.persistence.validation.group.pre-update – Default

validation group called after all other PreUpdate callbacks.
– javax.persistence.validation.group.pre-remove – Default

validation group is NOT called after all other PreRemove
callbacks.

17 Copyright © 2009, The Apache Software Foundation

2.6 – Validation Exceptions

● javax.persistence.PersistenceException – thrown if
validation mode is Callback and a provider could not
be obtained

● javax.validation.ConstraintViolationException –
thrown if any constraint failures occur and contains
the set of javax.validation.ConstraintViolation
instance(s)

18 Copyright © 2009, The Apache Software Foundation

3 - OpenJPA modifications for Bean Validation
3.1 – Configuration Updates
3.2 – Integration Diagram
3.3 – LifecycleEventManager
3.4 – TraversableResolver
3.5 – Unit Testing

19 Copyright © 2009, The Apache Software Foundation

3.1 – Configuration Updates

● New configuration properties
– javax.persistence.validation.factory – EMF property

– javax.persistence.validation.mode – PU or EMF property

– javax.persistence.validation.group.pre-persist – PU or EMF property and entity annotation

– javax.persistence.validation.group.pre-update – PU or EMF property and entity annotation

– javax.persistence.validation.group.pre-delete – PU or EMF property and entity annotation

– openjpa.Validator - OpenJPAConfiguration()

– openjpa.LifecycleEventManager - OpenJPAConfiguration()

● Pluggable Validator
– Removes dependency on JSR-303 APIs

● Pluggable LifecycleEventManager
– Loaded during EMF creation in PersistenceProviderImpl by loadValidator() just like loadAgent(), as

old invocation location in BrokerImpl was restricted to kernel classes

– Requires access to openjpa-persistence classes after all config derivations are loaded

20 Copyright © 2009, The Apache Software Foundation

3.2 – Integration Diagram

OpenJPAConfiguration

ValidationMode
Validator Impl

Validation Factory
Lifecycle Validation Groups

(Validating)
LifecycleEventManager

Validation
Configuration

Properties via
persistence.xml or

Map on createEMF()

Broker

(Validating)
LifecycleEventManager

Validating
LifecycleEventManager

Validator

Validator
(JSR-303 based)

Validation Groups
Validation Factory

Validator

TraversableResolver
(JSR-303 based)

ValidatingLifecycle EventManager
created if:

- ValidationMode != NONE
- Validation API and factory available

21 Copyright © 2009, The Apache Software Foundation

3.3 – LifecycleEventManager

● Extended to provide event based Validation
– ValidatingLifecycleEventManager

● Validation mode and provider availability determine whether
to use standard or validating event manager
– Reflection used to determine existence of JSR-303 provider

and API (through ValidationUtils)
– Eliminates runtime dependency on API and provider

● Calls Validator upon lifecycle events
● Interacts with validation provider agnostic interface
– Allows plugging in any validation implementation which

implements OpenJPA's validation interface

22 Copyright © 2009, The Apache Software Foundation

3.4 – TraversableResolver

● Provided to ValidationFactory upon Validator creation
● Simple interface with single isTraversable method
● Primary role is to prevent loading of unloaded entities/

attributes and traversal to related entities
● Spec dictates the need for a provider specific resolver to

meet loading and relationship traversal reqs.
– OpenJPA will provide and register a TraversableResolver

upon Validator creation
● Container vs. provider level requirements unclear

23 Copyright © 2009, The Apache Software Foundation

3.5 – Unit Testing

● openjpa-persistence-jdbc
– Tests do not require a validation provider, but need the

geronimo-validation spec
– Basic ValidationMode tests
– Exception tests for mode=callback but no provider

● openjpa-integration/validation
– New integration module created to test with one or more

validation providers (agimatec-validation or RI)
– Tests spec defined constraints, validation groups and

validator factory usage, along with any expected
exceptions

24 Copyright © 2009, The Apache Software Foundation

The End

