Apache Sqoop:
Highlights of Sqoop 2

Because databases are not easily accessible by Hadoop, Apache Sqoop was created
to efficiently transfer bulk data between Hadoop and external structured datastores.
The popularity of Sqoop in enterprise systems confirms that Sqoop does bulk transfer
admirably. That said, to enhance its functionality, Sqoop needs to fulfill data
integration use-cases as well as become easier to manage and operate.

Sqoop is currently undergoing incubation at The
Apache Software Foundation.

More information on this project can be found
at http://incubator.apache.org/sqoop.

What is Sqoop?

e Bulk data transfer tool

— Import/Export from relational database,
enterprise data warehouse, NoSQL systems

— Populate tables in Hive, HBase
— Schedule Oozie automated import/export tasks
— Support plugins via Connector based architecture

Sqgoop 1 Architecture

X Document
Enterprise ocume

Based
Systems

Data
Warehouse

8

command _

Map Task

1

1

1

|

|

i

|

! HDFS/HBase/
| Hive
|

|

1

L

The dataset being transferred is sliced up into different partitions and a map-only job
is launched with individual mappers responsible for transferring a slice of this
dataset. Each record of the data is handled in a type safe manner since Sqoop uses
the database metadata to infer the data types.

Sqoop

Sqoop 1 launches a single Map-only Job that does both data transport and transform.
A MR job imports a table from a db, extracts rows from the table, and writes the
records to HDFS. Sqoop then integrates into Hive/HBase, or goes through format
conversions, compression, partitioning, indexing.

SQL to Hadoop Tool

- Import/Export from relational db, enterprise data warehouse, NoSQL systems
- Populate tables in Hive, HBase

- Support plugins via Connector based architecture

- Sgoop imports tables from db into HDFS for deep analysis

- Sgoop exports MR results back to a db for presentation to end-users

- Sgoop can import/export in HDFS; Sqoop can only import into Hive, HBase

Sqgoop 1 Challenges

* Cryptic, contextual command line arguments

* Tight coupling between data transfer and
serialization format

» Security concerns with openly shared
credentials

* Not easy to manage config/install
* Not easy to monitor map job
e Connectors are forced to follow JDBC model

Cryptic e.g. Error-prone connector matching, and since it is not enforced, can
cause user errors

Tight coupling e.g. direct MySQL connector can’t support sequence files

Not easy to manage e.g. local configuration requires root privileges

Not easy to monitor e.g. verbose flag

Different connectors interpret these options differently. Some options are not
understood for the same operation by different connectors, while some
connectors have custom options that do not apply to others. Confusing for users
and detrimental to effective use.

Some connectors may support a certain data format while others don’t —
connector should only focus on connectivity and serialization, format conversion,
Hive/HBase integration should be uniformly available via Sqoop framework.
Required to use common JDBC vocabulary (URL, database, table, etc.)

Sqoop 2 Architecture

Document
Enterprise Based
Data Systems

Warehouse

Relational

[}
[}
1
1 Database
¢ REST
1
¢ ul
] s | -
]
1 Sqoop '
| Server 1
1
i Connectors !
{ Map Task
browser | Metadata
i
Sqoop { Reduce
Client | Task
| e~

HDFS/

Metadata HBase/Hive

Repository

Agenda

* Easeof Use

Sqoop 1: Client-side Tool

Sqoop 2: Sqoop as a Service
Client Interface

Sqoop 1: Service Level Integration
Sqoop 2: Service Level Integration

* Ease of Extension

Sqoop 1: Implementing Connectors
Sqoop 2: Implementing Connectors
Sqoop 1: Using Connectors
Sqoop 2: Using Connectors

* Security

|

Sqoop 1: Security

Sqoop 2: Security

Sqoop 1: Accessing External Systems
Sqoop 2: Accessing External Systems
Sqoop 1: Resource Management
Sqoop 2: Resource Management

Sqoop 1: Client-side Tool

e Sqoop 1 is a client-side tool

— Client-side installation + configuration
* Connectors locally installed
* Local configuration, requiring root privileges
* JDBC drivers needed locally
* Database connectivity needed locally

Sqoop 2: Sqgoop as a Service

 Server-side installation + configuration

* Connectors configured in one place, managed by
Admin/run by Operator

* JDBC drivers in one place
* Database connectivity needed on the server

Metadata
Repository

Sqoop as a web-based service, exposes the REST API
- Front-ended by CLI and browser
- Back-ended by a metadata repository

Example of document based system is couchbase.

Sqoop 1 has something called a sqoop metastore, which is similar to a repository for
metadata but not quite. That said, the model of operation for Sqoop 1 and Sqoop 2 is
very different: Sqoop 1 was a limited vocabulary tool while Sqoop 2 is more metadata
driven. The design of Sqoop 2’s metadata repository is such that it can be replaced by
other providers.

Client Interface

* Sqoop 1 client interface:

— Command-Line Interface (CLI) based, thus
scriptable

* Sqoop 2 client interface:
— CLI based, thus scriptable
— Web based, thus accessible
— REST API exposed for external tool integration

Not bound by terminal, well documented return codes

10

Sqgoop 1: Service Level Integration

* Hive, HBase
— Requires local installation
* Oozie
—von Neumann(esque) integration:

* Packaged Sqoop as an action

* Then ran Sqoop from node machines, causing one MR
job to be dependent on another MR job

* Error-prone, difficult to debug

Oozie launches Sqoop by bundling it and running it on the cluster

11

Sqgoop 2: Service Level Integration

* Hive, HBase

— Server-side integration
* Oozie

— REST APl integration

Hive, HBase — integration happens not from client but from the backend —
connectivity required in backend; put behind dmz

Decouple oozie and sqoop, if install new sqoop connector then don’t need to
install it in oozie also

Hive will not invoke anything in Sqoop, while Oozie does invoke Sqoop so the REST
APl does not benefit Hive in any way but it does benefit Oozie

Hive does not need to be installed on Sqoop at all. What Sqoop will do is submit
requests to the HiveServer over the wire

Which Hive/HBase server the data will be put into is the responsibility of the
reduce phase which will have its own configuration and since both these systems
have are on Hadoop - we don't need any added security besides passing down the
Kerberos principal

12

Ease of Use (summary)

Client-side install Server-side install

CLI based CLI + Web based

Client access to Hive, HBase Server access to Hive, HBase
Oozie and Sqoop tightly coupled Oozie finds REST API

OO,

13

Agenda

* Ease of Extension

Sqoop 1: Implementing Connectors
Sqoop 2: Implementing Connectors
Sqoop 1: Using Connectors
Sqoop 2: Using Connectors

14

Sqgoop 1: Implementing Connectors

e Connectors forced to follow JDBC model

— Connectors limited/required to use common JDBC
vocabulary (URL, database, table, etc)

* Connectors must implement all Sqoop
functionality that they want to support
— New functionality not avail for old connectors

Not easy to work with non relational db

Heavily JDBC centric

Couchbase implementation required different interpretation
Inconsistencies between connectors

15

Sqgoop 2: Implementing Connectors

* Connectors are not restricted to JDBC model
— Connectors can define own vocabulary

* Common functionality abstracted out of
connectors
— Connectors only responsible for data transport
— Common Reduce phase implements functionality

— Ensures that connectors benefit from future dev
of functionality

Two-phases: first, transfer; second, transform/integration with other components
Option to opt-out of downstream processing (i.e. revert to Sqoop 1)

Trade-off between ease of connector/tooling development vs faster performance
Separating data transfer (Map) from data transform (Reduce) allows connectors to
specialize

Connectors benefit from a common framework of functionality

Functionally, Sqoop 2 is a superset of Sqoop 1 but does it in a different way

Too early in the design process to tell if the same CLI commands could be used but
most likely not primarily because it is a fundamentally incompatible change
Reduce phase limited to stream transformations (no aggregation to start with)

16

Different Options, Different Results

Which is running MySQL?

$ sqoop import --connect jdbc:mysqgl://localhost/db \
--username foo --table TEST

$ sqgoop import --connect jdbc:mysql://localhost/db \

--driver com.mysql.jdbc.Driver --username foo --table TEST

» Different options can lead to unpredictable results

* Sqoop 2 requires explicit selection of connector thus
disambiguating the process

Former is running MySQL b/c specifying driver option prevents the MySQL connector
from working i.e. would end up using generic JDBC connector

17

Sqoop 1: Using Connectors

* Choice of connector is implicit

— Inasimple case, based on the URL in the --connect string used to
access the database

— Specification of different options can lead to different connector
selection

— Error-prone but good for power users

* Requires knowledge of database idiosyncrasies

— e.g. Couchbase doesn’t need to specify a table name, which is
required causing --table to get overloaded as backfill or dump
operation

— e.g. --null-string representation not supported by all connectors

* Functionality limited to what the implicitly chosen connector
supports

Based on the URL in the connect string used to access the database, Sqoop attempts
to predict which driver it should load.

What are connectors?

- Plugin components based on Sqoop’s extension framework

- Efficiently transfer data between Hadoop and external store

- Meant for optimized import/export or don’t support native JDBC
- Bundled connectors: MySQL, PostgreSQL, Oracle, SQLServer, JDBC
- High-performance data transfer: Direct MySQL, Direct PostgreSQL

Sqoop 2: Using Connectors

* User makes explicit connector choice
— Less error-prone, more predictable
* User need not be aware of the functionality of all
connectors
— Couchbase users need not care that other connectors
use tables
* Common functionality available to all connectors

— Connectors need not worry about downstream
functionality, transformations, integration with other
systems

Add an interactive Ul

Walk-through import/export setup, which eliminates redundant/incorrect options
Various connectors are added in one place; connectors expose necessary options
to Sqoop framework

User only required to provide info relevant to their use-case

19

Ease of Extension (summary)

Connector forced to follow JDBC model Connector given free rein

Connectors must implement functionality Connectors benefit from common
framework of functionality

Connector selection is implicit Connector selection is explicit

sqeeD

20

Agenda

* Security

Sqoop 1: Security

Sqoop 2: Security

Sqoop 1: Accessing External Systems
Sqoop 2: Accessing External Systems
Sqoop 1: Resource Management
Sqoop 2: Resource Management

21

Sqoop 1: Security

Inherits/propagates Kerberos principal for the
jobs it launches

Access to files on HDFS can be controlled via
HDEFS security

Sqoop operates as command line Hadoop
client

No support for securing access to external
systems

— E.g. relational database

22

Sqoop 2: Security

* Sqoop operates as server based application

* Support for securing access to external systems
via role-based access to Connection objects
— Admins create/edit/delete Connections
— Operators use Connections

* Audit trail logging

No code generation, no compilation allows Sqoop to run where there are no
compilers, which makes it more secure by preventing bad code from running
Previously required direct access to Hive/HBase

More secure because routed through Sqoop server rather than opening up access to
all clients to perform jobs

23

Sqoop 1: Accessing External Systems

* Every invocation requires necessary
credentials to access external systems (e.g.
relational database)

— Workaround: Admin creates a limited access user
in lieu of giving out password
* Doesn't scale
* Permission granularity is hard to obtain

* Hard to prevent misuse once credentials are
given

24

Sqoop 2: Accessing External Systems

* Sqoop 2 introduces Connections as First-Class
Objects
— Connection encompass credentials

— Connections created once, then used many times for
various import/export Jobs

— Connections created by Admin, used by Operator
* Safeguard credential access from end user
* Restrict scope: connections can be restricted
based on operation (import/export)
— Operators cannot abuse credentials

Connection is only for external systems

25

Sqoop 1: Resource Management

* No explicit resource management policy
— User specifies number of map jobs to run
— Can’t throttle load on external systems

26

Sqoop 2: Resource Management

* Connections allow specification of resource
policy
— Admin can limit the total number of physical
Connections open at one time

— Connections can be disabled

No need to disable user in database

27

Security (summary)

Sqoop 1 Sqoop 2

Support only for Hadoop security Support for Hadoop security and role-
based access control to external systems

High risk of abusing access to external Reduced risk of abusing access to external
systems systems
No resource management policy Resource management policy

cqeeD

28

Takeaway

Sqoop 2 Highights:
— Ease of Use: Sqoop as a Service

— Ease of Extension: Connectors benefit from
shared functionality

— Security: Connections as First-Class objects, Role-
based Security

29

Current Status: work-in-progress

* Sqoop 2 Development:

https://issues.apache.org/jira/browse/
SQOO0OP-365

* Sqoop 2 Design:
https://cwiki.apache.org/confluence/display/
SQOOP/Sqgoop+2

30

