

A New Generation of Data Transfer Tools for Hadoop: Sqoop 2

Bilung Lee (blee at cloudera dot com) **Kathleen Ting** (kathleen at cloudera dot com)

Who Are We?

- Bilung Lee
 - Apache Sqoop Committer
 - Software Engineer, Cloudera

- Kathleen Ting
 - Apache Sqoop Committer
 - Support Manager, Cloudera

What is Sqoop?

- Bulk data transfer tool
 - Import/Export from/to relational databases,
 enterprise data warehouses, and NoSQL systems
 - Populate tables in HDFS, Hive, and HBase
 - Integrate with Oozie as an action
 - Support plugins via connector based architecture

Sqoop 1 Architecture

Sqoop 1 Challenges

- Cryptic, contextual command line arguments
- Tight coupling between data transfer and output format
- Security concerns with openly shared credentials
- Not easy to manage installation/configuration
- Connectors are forced to follow JDBC model

Sqoop 2 Architecture

Sqoop 2 Themes

Ease of Use

Ease of Extension

Security

Sqoop 2 Themes

Ease of Use

Ease of Extension

Security

Ease of Use

Sqoop 1	Sqoop 2
Client-only Architecture	Client/Server Architecture
CLI based	CLI + Web based
Client access to Hive, HBase	Server access to Hive, HBase
Oozie and Sqoop tightly coupled	Oozie finds REST API

Sqoop 1: Client-side Tool

- Client-side installation + configuration
 - Connectors are installed/configured locally
 - Local requires root privileges
 - JDBC drivers are needed locally
 - Database connectivity is needed locally

Sqoop 2: Sqoop as a Service

- Server-side installation + configuration
 - Connectors are installed/configured in one place
 - Managed by administrator and run by operator
 - JDBC drivers are needed in one place
 - Database connectivity is needed on the server

Client Interface

- Sqoop 1 client interface:
 - Command line interface (CLI) based
 - Can be automated via scripting

- Sqoop 2 client interface:
 - CLI based (in either interactive or script mode)
 - Web based (remotely accessible)
 - REST API is exposed for external tool integration

Sqoop 1: Service Level Integration

- Hive, HBase
 - Require local installation
- Oozie
 - von Neumann(esque) integration:
 - Package Sqoop as an action
 - Then run Sqoop from node machines, causing one MR job to be dependent on another MR job
 - Error-prone, difficult to debug

Sqoop 2: Service Level Integration

- Hive, HBase
 - Server-side integration
- Oozie
 - REST API integration

Ease of Use

Sqoop 1	Sqoop 2
Client-only Architecture	Client/Server Architecture
CLI based	CLI + Web based
Client access to Hive, HBase	Server access to Hive, HBase
Oozie and Sqoop tightly coupled	Oozie finds REST API

Sqoop 2 Themes

Ease of Use

Ease of Extension

Security

Ease of Extension

Sqoop 1	Sqoop 2
Connector forced to follow JDBC model	Connector given free rein
Connectors must implement functionality	Connectors benefit from common framework of functionality
Connector selection is implicit	Connector selection is explicit

Sqoop 1: Implementing Connectors

- Connectors are forced to follow JDBC model
 - Connectors are limited/required to use common
 JDBC vocabulary (URL, database, table, etc)
- Connectors must implement all Sqoop functionality they want to support
 - New functionality may not be available for previously implemented connectors

Sqoop 2: Implementing Connectors

- Connectors are not restricted to JDBC model
 - Connectors can define own domain
- Common functionality are abstracted out of connectors
 - Connectors are only responsible for data transfer
 - Common Reduce phase implements data transformation and system integration
 - Connectors can benefit from future development of common functionality

Different Options, Different Results

Which is running MySQL?

```
$ sqoop import --connect jdbc:mysql://localhost/db \
--username foo --table TEST
$ sqoop import --connect jdbc:mysql://localhost/db \
--driver com.mysql.jdbc.Driver --username foo --table TEST
```

- Different options may lead to unpredictable results
 - Sqoop 2 requires explicit selection of a connector, thus disambiguating the process

Sqoop 1: Using Connectors

- Choice of connector is implicit
 - In a simple case, based on the URL in --connect string to access the database
 - Specification of different options can lead to different connector selection
 - Error-prone but good for power users

Sqoop 1: Using Connectors

- Require knowledge of database idiosyncrasies
 - e.g. Couchbase does not need to specify a table name, which is required, causing --table to get overloaded as backfill or dump operation
 - e.g. --null-string representation is not supported by all connectors
- Functionality is limited to what the implicitly chosen connector supports

Sqoop 2: Using Connectors

- Users make explicit connector choice
 - Less error-prone, more predictable
- Users need not be aware of the functionality of all connectors
 - Couchbase users need not care that other connectors use tables

Sqoop 2: Using Connectors

- Common functionality is available to all connectors
 - Connectors need not worry about common downstream functionality, such as transformation into various formats and integration with other systems

Ease of Extension

Sqoop 1	Sqoop 2
Connector forced to follow JDBC model	Connector given free rein
Connectors must implement functionality	Connectors benefit from common framework of functionality
Connector selection is implicit	Connector selection is explicit

Sqoop 2 Themes

Ease of Use

Ease of Extension

Security

Security

Sqoop 1	Sqoop 2
Support only for Hadoop security	Support for Hadoop security and role- based access control to external systems
High risk of abusing access to external systems	Reduced risk of abusing access to external systems
No resource management policy	Resource management policy

Sqoop 1: Security

- Inherit/Propagate Kerberos principal for the jobs it launches
- Access to files on HDFS can be controlled via HDFS security
- Limited support (user/password) for secure access to external systems

Sqoop 2: Security

- Inherit/Propagate Kerberos principal for the jobs it launches
- Access to files on HDFS can be controlled via HDFS security
- Support for secure access to external systems via role-based access to connection objects
 - Administrators create/edit/delete connections
 - Operators use connections

Sqoop 1: External System Access

- Every invocation requires necessary credentials to access external systems (e.g. relational database)
 - Workaround: create a user with limited access in lieu of giving out password
 - Does not scale
 - Permission granularity is hard to obtain
- Hard to prevent misuse once credentials are given

Sqoop 2: External System Access

- Connections are enabled as first-class objects
 - Connections encompass credentials
 - Connections are created once and then used many times for various import/export jobs
 - Connections are created by administrator and used by operator
 - Safeguard credential access from end users
- Connections can be restricted in scope based on operation (import/export)
 - Operators cannot abuse credentials

Sqoop 1: Resource Management

- No explicit resource management policy
 - Users specify the number of map jobs to run
 - Cannot throttle load on external systems

Sqoop 2: Resource Management

- Connections allow specification of resource management policy
 - Administrators can limit the total number of physical connections open at one time
 - Connections can also be disabled

Security

Sqoop 1	Sqoop 2
Support only for Hadoop security	Support for Hadoop security and role- based access control to external systems
High risk of abusing access to external systems	Reduced risk of abusing access to external systems
No resource management policy	Resource management policy


```
Edit View
              Terminal Tabs
                            Help
File
[localhost]$ svn co http://svn.apache.org/repos/asf/sqoop/branches/sqoop2
     sqoop2/NOTICE.txt
    sqoop2/repository
    sqoop2/repository/repository-derby
    sqoop2/repository/repository-derby/src
    sqoop2/repository/repository-derby/src/test
    sqoop2/repository/repository-derby/src/test/java
    sqoop2/repository/repository-derby/src/main
    sqoop2/repository/repository-derby/src/main/java
    sqoop2/repository/repository-derby/src/main/java/org
     sqoop2/repository/repository-derby/src/main/java/org/apache
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
ository
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
ository/derby
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
ository/derby/DerbyRepoConfigurationConstants.java
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
ository/derby/DerbyRepositoryHandler.java
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
ository/derby/DerbySchemaConstants.java
     sqoop2/repository/repository-derby/src/main/java/org/apache/sqoop/rep
```



```
File Edit View Terminal Tabs Help
[localhost]$ cd sqoop2/
[localhost]$ mvn install
[INFO] Scanning for projects...
[INFO] Reactor Build Order:
[INFO]
[INFO] Sqoop
[INFO] Sqoop Common
[INFO] Sqoop SPI
[INFO] Sqoop Core
[INFO] Sqoop Repository
[INFO] Sqoop Derby Repository
[INFO] Sqoop Connectors
[INFO] Generic JDBC Connector
[INFO] MySQL JDBC Connector
[INFO] Sqoop Server
[INFO] Sqoop Client
[INFO] Sqoop Documentation
[INFO] MySQL Fastpath Connector
[INFO] Sqoop Distribution
[INFO]
```



```
File Edit View Terminal Tabs Help
[localhost]$ mvn package -Pdist
[INFO] Scanning for projects...
[INFO] Reactor Build Order:
[INFO]
[INFO] Sqoop
[INFO] Sqoop Common
[INFO] Sqoop SPI
[INFO] Sqoop Core
[INFO] Sqoop Repository
[INFO] Sqoop Derby Repository
[INFO] Sqoop Connectors
[INFO] Generic JDBC Connector
[INFO] MySQL JDBC Connector
[INFO] Sqoop Server
[INFO] Sqoop Client
[INFO] Sgoop Documentation
[INFO] MySQL Fastpath Connector
[INFO] Sqoop Distribution
[INFO]
```



```
File Edit View Terminal Tabs Help
[localhost]$ cd dist/target/sgoop-2.0.0-SNAPSHOT
[localhost]$ bin/sqoop.sh server start
Sqoop home directory: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT...
Using CATALINA BASE: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/serve
Using CATALINA HOME:
                      /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/serve
Using CATALINA TMPDIR: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/serve
r/temp
Using JRE HOME:
                      /opt/java/jdk1.6.0 27
Using CLASSPATH:
                      /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/serve
r/bin/bootstrap.jar:/home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT/server/b
in/tomcat-juli.jar
[localhost]$
```



```
File Edit View Terminal Tabs Help
[localhost]$ bin/sqoop.sh client
Sqoop home directory: /home/sqoop2/dist/target/sqoop-2.0.0-SNAPSHOT...
Jun 8, 2012 10:42:22 PM java.util.prefs.FileSystemPreferences$2 run
INFO: Created user preferences directory.
Sqoop Shell: Type 'help' or '\h' for help.
sqoop:000> show version
Usage: show version
-a,--all
                Display all versions
-c,--client Display client version
-p,--protocol Display protocol version
-s,--server
                Display server version
sqoop:000> show version --all
Server version:
  Sqoop 2.0.0-SNAPSHOT revision 1346742
 Compiled by root on Fri Jun 8 22:38:45 PDT 2012
Client version:
  Sqoop 2.0.0-SNAPSHOT revision 1346742
 Compiled by root on Fri Jun 8 22:38:45 PDT 2012
Protocol version:
  [1]
```


Takeaway

Sqoop 2 Highights:

- Ease of Use: Sqoop as a Service
- Ease of Extension: Connectors benefit from shared functionality
- Security: Connections as first-class objects and role-based security

Current Status: work-in-progress

Sqoop2 Development:

http://issues.apache.org/jira/browse/SQOOP-365

Sqoop2 Blog Post:

http://blogs.apache.org/sqoop/entry/apache sqoop highlights of sqoop

Sqoop2 Design:

http://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2

Current Status: work-in-progress

Sqoop2 Quickstart:

http://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Quickstart

Sqoop2 Resource Layout:

http://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+-+Resource+Layout

Sqoop2 Feature Requests:

http://cwiki.apache.org/confluence/display/SQOOP/Sqoop2+Feature+Requests

