
Distributed UIMA Cluster Computing
Ducc Team

Distributed UIMA Cluster Computing iii

Table of Contents
I. Introduction to DUCC .. 1

1. DUCC Overview ... 3
1.1. What is DUCC? ... 3
1.2. DUCC Job Model ... 3
1.3. Default Collection Readers and CAS Consumers .. 5
1.4. Error Management .. 5
1.5. Cluster and Job Management ... 6
1.6. Service Management ... 8

2. DUCC Application Quick Start ... 11
2.1. Section 1 .. 11

3. DUCC Terminology, Acronuyms, and Glosssary ... 13
3.1. Terms .. 13
3.2. Acronyms .. 15

II. DUCC User's Guide .. 17
4. Command Line Interface (CLI) ... 19

4.1. ducc_submit ... 20
4.2. ducc_cancel .. 27
4.3. ducc_reserve ... 27
4.4. ducc_unreserve ... 28
4.5. ducc_monitor .. 29
4.6. ducc_service_submit .. 30
4.7. ducc_service_cancel .. 34
4.8. ducc_services ... 34

4.8.1. ducc_service --register .. 36
4.8.2. ducc_services --start ... 39
4.8.3. ducc_services --stop .. 40
4.8.4. ducc_services --modify ... 41
4.8.5. ducc_services --query .. 43
4.8.6. ducc_services --submit and --cancel .. 44

5. Job Logs .. 47
6. Application Programming Interface (API) ... 51
7. Webserver .. 53

7.1. Common Links ... 53
7.2. Jobs Page ... 53
7.3. Job Details Page ... 55
7.4. Reservation Details Page .. 57

8. Examples: Building and Testing a Simple Application .. 59
III. DUCC Administration Guide .. 61

9. Installation, Configuration, and Verification .. 63
9.1. General Considerations .. 63
9.2. Hardware Requirements ... 63
9.3. Software Requirements .. 63
9.4. Quick Installation Checklist .. 64
9.5. Detailed Installation Procedures .. 65

9.5.1. Basic System Initialization ... 65
9.5.2. Install DUCC Distribution ... 65
9.5.3. Perform Post-Installation Tasks .. 66
9.5.4. Update ducc.properties .. 69
9.5.5. Create the DUCC Node list ... 70
9.5.6. Define the Job Driver nodepool .. 70
9.5.7. Define the system administrators .. 71

Distributed UIMA Cluster Computing

iv Distributed UIMA Cluster Computing
please define productname in your docbook

file!

9.6. Run The Verification Script ... 71
9.7. Start DUCC .. 71
9.8. Start DUCC Browser ... 73
9.9. Run a Job .. 73
9.10. Shutdown DUCC .. 74

10. Administration ... 77
10.1. ducc.properties .. 77

10.1.1. General DUCC Properties .. 78
10.1.2. Web Server Properties ... 84
10.1.3. Job Driver Properties .. 85
10.1.4. Service Manager Properties .. 88
10.1.5. Orchestrator Properties .. 89
10.1.6. Resource Manager Properties ... 92
10.1.7. Agent Properties ... 97
10.1.8. Process Manager Properties .. 102
10.1.9. Job Process Properties ... 104

10.2. ducc.classes .. 105
10.3. ducc.nodes .. 108
10.4. Nodepool Configuration ... 109
10.5. start_ducc ... 110
10.6. stop_ducc ... 112
10.7. check_ducc ... 113
10.8. verify_ducc ... 114
10.9. Logs .. 115

11. Resource Management, Operation, and Configuration ... 117
11.1. Overview .. 117
11.2. Scheduling policies .. 118
11.3. Priority vs Weight ... 119
11.4. Node Pools ... 120
11.5. Job Classes ... 120

Part I. Introduction to DUCC

DUCC Overview 3

Chapter 1. DUCC Overview
The source for this chapter is ducc_ducbook/documents/part-introduction/chapter-overview.xml.

1.1. What is DUCC?
DUCC stands for Distributed Uima Cluster Computing. DUCC is a cluster management system
providing tooling, management, and scheduling facilities to automate the scale-out of applications
written to the UIMA framework.

Core UIMA provides a generalized framework for applications that process unstructured
information such as human language, but does not provide a scale-out mechanism. UIMA-
AS provides a scale-out mechanism to distribute UIMA pipelines over a cluster of computing
resources, but does not provide job or cluster management of the resources. DUCC defines a formal
job model that closely maps to a standard UIMA pipeline. Around this job model DUCC provides
cluster management services to automate the scale-out of UIMA pipelines over computing clusters.

1.2. DUCC Job Model
The DUCC job model is defined in terms of the UIMA and UIMA-AS framework. A UIMA
pipeline contains a Collection Reader, one or more Analysis Engines connected in a pipeline, and a
CAS Consumer as shown in Figure 1.1, “Standard UIMA Pipeline” [3].

Figure 1.1. Standard UIMA Pipeline

With UIMA-AS the CR is separated into a discrete process and a CAS Multiplier is introduced
into the analytic pipeline as an interface between the CR and the pipeline, as shown in Figure 1.2,
“UIMA Pipeline As Scaled by UIMA-AS” [4]. Multiple analytic pipelines are serviced by the
CR and are scaled-out over a computing cluster.

DUCC Job Model

4 DUCC Overview
please define productname in your docbook

file!

Figure 1.2. UIMA Pipeline As Scaled by UIMA-AS

Under DUCC, the Collection Reader is executed in a process called the Job Driver (or JD). The
analytic pipelines are executed in one or more processes called Job Processes (or JPs). The JD
process provides a thin wrapper over the CR to enable communication with DUCC and to direct
CASs to the JPs. Similarly the JP provides a thin wrapper over the analytics as shown in Figure 1.3,
“UIMA Pipeline As Automatically Scaled Out By DUCC” [4].

Figure 1.3. UIMA Pipeline As Automatically Scaled Out By DUCC

On job submission, the DUCC CLI inspects the XML defining the analytic and generates a UIMA-
AS Deployment Descriptor (DD) from it. DUCC generates job-unique queue endpoints, setups
up the queues, and sets up multiple pipeline threads so that the entire transformation from the
user's core-UIMA job to full UIMA-AS scalout is transparent and automatic. (Users may supply
their own CM but it is not necessary as DUCC provides a default CM.) A simple collection of
parameters, known as the Job Specification (essentially a Java properties file) defines the CR,
CM, AE, and CC, threading level, logging parameters, etc. Taken together the Job Descriptor, Job
Driver, and set of Job Processes comprise a DUCC job.

Users may want to provide their own DDs to more fully control the pipeline in the JPs. This
model is also support by DUCC; see Figure 1.4, “UIMA Pipeline With User-Supplied DD as
Automatically Scaled Out By DUCC” [5].

Default Collection Readers and CAS Consumers

please define productname in your docbook
file! DUCC Overview 5

Figure 1.4. UIMA Pipeline With User-Supplied DD as Automatically Scaled Out By DUCC

The DUCC Job Descriptor includes properties to enable automated management and scale-out
over large computing clusters. Such management includes multiple-user support (jobs run under
the identity of the submitting user), a fair-share scheduler capable of balancing resources among
all users, automated performance monitoring via the UIMA-AS monitoring facilities, display of
job status and performance statistics via a built-in web server, and error-handling of the UIMA
pipelines, also using the UIMA-AS facilities.

DUCC provides a Command Line Interface (CLI) to submit UIMA pipelines for execution as jobs.
(An Application Programming Interface (API) is in progress but not available with the current
releaase.) The CLI inspects the pipeline XML descriptors (as named in the Job Specification)
and automatically generates UIMA-AS Deployment Descriptors. The descriptors are passed to
the DUCC orchestration tools which establish the Collection Reader inside a Job Driver (JD)
process as a UIMA-AS service client. The Job Specification is given to the Resource Manager
which returns the identities of the nodes where the JPs (Job Processes) are to be run. Finally the
JPs are started with the pipeline's AEs as UIMA-AS services and the JD starts the CRs which begin
delivering CASs. Endpoint management, creation of the DD, spawning and management of the CR
and AEs are all automated by DUCC.

1.3. Default Collection Readers and CAS
Consumers

Descibe what we provide - the zip CR and zip CM or equivalent, with some motherhood about why
using these is good, but pointing out that users are free to make their own.

What will these be - the moral equivalent of the zip reader and the one used for NLP?

1.4. Error Management
A classic problem of large distributed systems is error management. Small errors can scale-out so
that a single typo or oversight can flood the system with redundant error notifications and waste
significant resources with useless computation. It can also be very difficult to isolate errors which
can occur anywhere in the network. To manage this process DUCC provides a number of features.

DUCC uses the UIMA-AS error-handling facilities to reflect errors from the JPs to the JDs. The JD
wrappers implement logic to enforce error thresholds, to log the errors coherently, and to inform
the web server. All error thresholds are configurable. Additionally, the user may implement custom

Cluster and Job Management

6 DUCC Overview
please define productname in your docbook

file!

logic to determine whether errors should be considered fatal or transient, and the number of failures
to tolerate. Each job may provide its own fully customized error handling policy.

A large UIMA application can take significant time initializing, reading from databases, and so
on. The initialization process itself can be fragile and error-prone. It would be wasteful and useless
to allow such an application to be scheduled on a large number of cluster nodes only to fail. To
manage this, DUCC enforces two policies:

• JPs are allowed a maximum number of failures in the initialization stage before DUCC
terminates the job.

• A minimum number of processes is allocated to a job when it starts. The job is not allocated
additional processes until at least one JP completes the initialization phase, at which point
the job becomes eligible for more processes.

Once a JP is initialized the error handling is slightly different. Errors at this stage may be transient:
network failures, service failures, etc. Or they may be systemic in the application (bugs). DUCC
allows a maximum number of JP failures after initialization and if the threshold is exceeded, the
job is terminated. If a process has a failure, the failure is reflected back to the JP and the process is
terminated. If the threshold has not yet been exceeded, the Resource Manager will allocate space
and a new process will be started.

In all failure scenarios, DUCC attempts to capture the associated stack traces and error messages
and presents them as links in the job pages from the DUCC web server.

1.5. Cluster and Job Management
Distributing work over multiple physical processors on a network can be difficult to manage, even
for relatively small numbers of processors. DUCC provides extensive tooling manage the cluster
and the jobs running on it.

Multiple User Support. DUCC runs all work under the identity of the submitting user. This
provides a level of security and privacy for each user and their job. Logs are written with the user's
credentials into the user's file space designated at job submission, enabling users to manage them as
needed.

Fair-Share Scheduling. DUCC is intended to support UIMA processing of natural language.
This work is inherently much more memory intensive than it is CPU intensive. In order to insure
that the pipelines execute efficiently, nodes need to be allocated according to the amount of real
RAM they support. With few exceptions, these jobs encounter bottlenecks on real memory well
before CPU bottlenecks.

To manage this, DUCC contains a scheduler designed to allocate nodes in the cluster according to
declared memory usage. All RAM is treated as a single, distributed pool of memory. "Fair" share
means that the memory is allocated such that each user is allocated the same amount regardless of
the number of jobs the user has submitted. Each user's fair-share is then divided equally among all
their jobs. Machines are then allocated to jobs so the total memory in the machines assigned to a
user is the same as their fair-share. Often some users don't need (and can't use) their fair share, in
which case the DUCC scheduler allocates the lefovers to users that are able to use it.

The DUCC scheduler provides the ability to "weight" some users so they are allocated more than
their simple fair-share of memory. There is also a priority scheme that insures some types of work
are always scheduled irregardless of fair-share considerations. There is also a mechanism for
partitioning the nodes according to arbitrary constraints ("closeness" to constrained resources,

Cluster and Job Management

please define productname in your docbook
file! DUCC Overview 7

priority usage such as "production" vs. "development" use, etc.), and assigning jobs to specific
partitions or "nodepools".

DUCC assumes that most jobs written to the UIMA framework are fully parallel and that individual
processes can be evicted as needed; as well it assumes that process can be added to a job if
resources are available. The DUCC scheduler uses these properties to dynamically expand or
reduce the number of processes assigned to jobs, according to fair-share policies and the amount
of work in the system. For example, if a new user submits a job, this will generally reduce
everybody's fair-share, and result in some processes being evicted to make room for the new user.
Similarly, if all of a user's jobs exit, then the remaining jobs will be allocated the resources that are
now freed. Note that if a user who already has jobs running submits a new job, then only that user's
jobs are affected because his/her fair-share is the same, and has to accomodate new work.

Some jobs may not be parallel, or for some other reason, cannot tolerate being evicted and
restarted. The DUCC scheduler implements a policy to allow jobs with "fixed" (or "pinned") node
allocations whic prevents those jobs from being preempted; conversly the "fixed" policy prevents
those jobs from growing. Thus, once scheduled, this type of job is "fixed" in place and will never
move to different nodes.

The scheduler also supports the concept of Reservations. A reservation has no job associated with
it; users are allowed to use the reserved resources as they wish (within reason). Reservations for
full (dedicated) nodes or for partial nodes (based on RAM) are supported.

Job Lifetime Management and Orchestration. DUCC includes an orchestrator that manages
the lifetimes of all jobs, services, and reservations. Jobs are submitted to the orchestrator, which is
responsible for insuring pre-requisite services are available and that resources are scheduled for the
job. It starts the job's JD and JP processes and signals the JD to start servicing work to the JPs. It is
also responsible to keep the scheduler and web server apprised of the status of all jobs.

DUCC Agents. A process called the DUCC Agent is run on each node managed by DUCC. This
process has several roles:

• Manage JP and JD processes. The agent starts, stop, and manages the life cycle of these
processes. It also monitors performance statistics on behalf of these processes, reporting to
the web server.

• Monitor node performance and "aliveness". The agent monitors CPU, memory, etc, and
provides the information in regular heartbeats that are watched by the Resource Manager
and Web server for scheduling and reporting purposes.

• Watch for rogue processes. The agents watch for processes not associated with DUCC jobs
or other DUCC-initiated work and reports to the web server. Administrators are then able to
easily identify and reap processes that may be interfering with DUCC jobs.

DUCC Web server. DUCC provides a web server displaying all aspects of the system:

• All jobs in the system with relevant information: user, times, work finished work completed,
processes allocated, and many other. For each job, additional pages provide details including
node, PID, stat status of all work items, the submitted job specification, etc. If errors occur,
links from the job entry to the errors in the logs are provided.

• All reserved nodes with relevant information: user, times, nodes, processes running in the
reservation, etc.

• All nodes in the system and their status, usage, etc.

Service Management

8 DUCC Overview
please define productname in your docbook

file!

• All services and rel-event information: user, nodes, usage, who is using the services, queue
size, etc.

• The status of all DUCC management processes.

Management Scripting. DUCC provides rich scripting support to:

• Start and stop full DUCC systems.

• Start and stop and individual DUCC components.

• Add and delete nodes from the DUCC system.

• Discover DUCC processes (e.g. after partial failures).

• Find and kill errant job processes belonging to individual users.

1.6. Service Management
Overview. Services, in the context of DUCC, are long-running processes that await requests
from UIMA pipeline components and return something in response. Services can be any arbitrary
process using any arbitrary communication protocol but in the current version of DUCC only
UIMA-AS services are fully supported.

The DUCC service manager implements several high-level functions:

• Insure services are available for jobs before allowing the jobs to start. This fail-fast prevents
unncessary allocation of resources (with potential eviction of healthy processes) for jobs that
can't run, as well as quick feedback to users that something is amis.

• Automate the startup, care, and management of services.

• Report on the state of services: processes, queue depths, comsumers, and so on.

Service Types. DUCC supports two types of services: UIMA-AS and CUSTOM:

• UIMA-AS. This is a "normal" UIMA-AS service. DUCC fully supports all aspects of
UIMA-AS services.

• CUSTOM. This is any arbitrary service. DUCC supports monitoring of CUSTOM services
and performs job dependency checks, but (in the current version) does not support start and
stop of CUSTOM services.

Service Endpoints. Services are referenced by a specifier called a service endpoint.. The
service endpoint is a formatted string indicating:

• The service type: UIMA-AS or CUSTOM.

• The service name. For UIMA-AS services, this is the name of the queue in the ActiveMq
Broker used for communication with the service. For CUSTOM services this is any arbitrary
string as dictated by the service. Service names must be unique within the system.

• For UIMA-AS services only, the URL of the ActiveMq broker.

Dependent and Pre-Requisite Services and Jobs. A dependent service is a service which
is dependent on at least one service to perform it's function. A dependent job is a job which is
dependent on at least one service to perform it's function.

Service Management

please define productname in your docbook
file! DUCC Overview 9

A pre-requisite service is a service which is required by another job or service. (Note that there are
no pre-requisite jobs.)

Service Classes. Services may be started externally to DUCC, explicitly through DUCC as a
job, or as registered services. These form three natural classes of services with slightly different
management characteristics.

Implicit Services. An implicit service is started externally to DUCC and discovered by DUCC
only when it is referenced by a job's service-dependency parameter. On submission of a job with a
dependency on an implicit service, the SM sets up a "ping" thread that check if the service exists at
the endpoint. If so, the SM adds the service to its list of known services and marks the job "ready
to schedule". If the service is a UIMA-AS service the SM establishes a monitor thread on the queue
for reporting purposes. The service is monitored throughout the lifetime of the job. If the service
should stop responding, its state is updated as "not-responding" but the job is allowed to continue
as DUCC cannot tell if the job is still using it or not, or if the outage is temporary. If the job is
a CUSTOM service, the service owner may specifiy custom code to run in the ping thread; for
CUSTOM services, this same code is used to run both ping and monitor functions.

When the job exits, a timer is set and DUCC continues to monitor the service against the possibility
that subsequent jobs will need it. Once the last job using the service has exited and the service timer
expired, the SM stops the monitors and purges the service from its records.

Submitted Services. A submitted service is a service that is submitted to DUCC as a job. A
submitted service is essentially a normal DD-style job (a job in which the user supplies the full
UIMA-AS DD), but without a Collection Reader. Because DUCC is managing this service it can
provide more support than for implicit services.

Submitted services can be dependent upon other services. When such a service enters the system,
DUCC verifies it's pre-requisite services. When (or if) all pre-requisite services are availble
DUCC marks the new service "ready to schedule". The lifecycle of the service is monitored so
that dependent services and jobs are marked "ready to schedule" only after the submitted service
has completed its initialization phase. A ping thread and queue monitor are also started against the
newly submitted service. If the submitted service is unable to successfully initialize, services and
jobs that are dependent on it are marked "not runnable" and the DUCC Orchestrator cancels them.

DUCC manages the lifecycle of submitted services, but because they are submitted by entities other
than DUCC, the SM performs no additional management for them. When a submitted service is
canceled by its owner, DUCC stops the ping and queue monitors. Any jobs or services dependent
on it are allowed to continue until they complete or fail due to unavailability of the service.

Registered Services. Registered services are fully managed by DUCC. A service is registered
with DUCC using the CLI to provide the full job specification of the service, the initial number
of instances of the service, and whether the service should be automatically started when DUCC
itself is started. Registered services started when DUCC is started are called automatic services.
Registered services that are started only when referenced by other dependent jobs or services are
called on-demand services. The service is registered with the submitter's credentials and is run with
that user's credentials when it is started.

Automatic Services. An automatic service is a registered service that is flagged to be
automatically started when the DUCC system is started. When DUCC is started, the SM checks the
service registry for all service that are marked for automatic startup. The SM submits the registered
service specification on behalf of its owner. Each such submission is for a single service instance.
If found, the SM repeatedly submits the specification until the registered number of instances is
reached.

Service Management

10 DUCC Overview
please define productname in your docbook

file!

Ping and monitor threads are started. Jobs and other services may use these services in the same
manner as submitted services. If an automatic service instance should die or be canceled out of the
scope of the SM, the SM will restart the instance, maintaining the registered number of instances
at all time. Automatic services are not terminated when their dependent jobs/services exit; they're
termanted only when DUCC itself is terminated, or by use of the service stop command.

On-Demand Services. An on-demand service is a registered service that is started only when
referenced by the service-dependency of another job or service. f the service is already started, the
dependent job/service is marked ready to schedule as indicated above. If not, the service registry
is checked and if a start-on-demand service with an endpoint matching the service-dependency
is found, DUCC submits the service on behalf of the service owner (in the same manner as for
automatic servic establishing the registered number of service instances, a ping thread, and a
monitor). When the service has completed initialization the dependent job/service is marked
ready to schedule. If the on-demand service cannot be found in the registery, the referring entity is
marked not-startable and the DUCC Orchestrator cancels it.

Subsequent jobs and services that reference the on-demand service will use the started instances.
When the last job/service that references the on-demand service exits, a (configurable) timer is
established to keep the service alive for a while (in anticipation that it will be needed again soon.)
When the keep-alive timer exipires, and there are no more dependent jobs/services, the on-demand
service is automatically stopped to free up its resources for other work.

Registered Service Management. The CLI for registered services provides several functions:

Register
Register files a service specification with the SM. The service may optionally be started as part
of registration. The service definition and state is persisted over system restarts and is deleted
only with the Unregister function.

Unregister
Unregister removes the service specification. The service is stopped if it is started and
not busy. (Note that if the service is busy, jobs and services that are dependent on it may
subsequently fail.)

Modify
Modify allows dynamic update of some parameters of registered services:

• Automatic and On-Demand state.

• The minimum number of service instances to start when the service is started.

Start
Start submits the service specification to the DUCC Orchestrator (repeatedly, until the correct
number of instances are started). If the service is explicitly started with the start CLI, the
service continues to run even after the last reference is gone, regardless of whether it is
automatic or on-demand. Start is also used to increase the number of running instances of a
service. The registry may be optionally updated to reflect the new number of started instances.

Stop
Stop stops the instances for a registered service. The registry may be optionally updated to
reflect the new number of instances that are still running.

Query
A CLI-based query is supplied to report on all services known to DUCC, their states, their
instances, their dependent jobs, and performance statistics for the service.

DUCC Application Quick Start 11

Chapter 2. DUCC Application Quick Start
The source for this chapter is ducc_ducbook/documents/introduction/quick-start.xml

2.1. Section 1
This Sentence Intentionally Left Blank

DUCC Terminology, Acronuyms, and Glosssary 13

Chapter 3. DUCC Terminology, Acronuyms,
and Glosssary

The source for this chapter is ducc_ducbook/documents/introduction/terminology.xml

3.1. Terms
This section defines terms and phrases as used in the context of DUCC.

Automatic Service
An automatic service is a registered service that is started automatically by DUCC when the
DUCC system is booted.

Dependent service or job
A dependent service or job is a job or service that specifies one or more service endpoint
in their job specification. The service or job is dependent upon the referenced service being
operational before being started by DUCC.

DUCC
DUCC stands for "Distributed UIMA Cluster Computing."

Implicit service
An emplicit service is a service that is started externally to DUCC but referenced by some
dependent service or job.

Registered service
A registered service is a service that is registered with DUCC. DUCC saves the service
specification and fully manages the service, insuring it is running when needed, and shutdown
when not. DUCC manages the usage of the service and (in a future verseion of DUCC)
automatically increases and decreases the number of service instances as dictated by demand.

On-Demand Service
An on-demand service is a registered service that is not started when DUCC is started. Instead,
the service is started when referenced in some job or services service dependency, and stopped
when the referencing entity exits.

Service Instance
A service instance is one physical process which runs a CUSTOM or UIMA-AS service.

Orchestrator (OR)
The Orchestrator coordinates all work in the system. All new work enters through the
orchestrator which guides it through the various DUCC components.

Process Manager (PM)
The Process Manager coordinates distribution of work among the Agents.

Resource Manager (RM)
The Resource Manager allocates and schedules physical resources among the jobs.

Service Class
The three service classes are

Terms

14 DUCC Terminology, Acronuyms, and Glosssary
please define productname in your docbook

file!

• implicit, referring to a service started independently from DUCC,

• submitted, referring to a service submitted as a job to DUCC, and

• registered, referring to a registered DUCC service.

Service Endpoint
In DUCC, the service endpoint provides a unique identifier for a service and in the case of
UIMA-AS services, a well-known address for contacting the service. For CUSTOM services,
the endpoint is of the form CUSTOM:string where string is any alphanumeric string provided
by the service owner. For UIMA-AS services, the endpoint is of the form UIMA-AS:queue
name:ActiveMQ broker URL.

Service Manager (SM)
The Service Manager manages the life-cycles of UIMA-AS and custom services. It coordinates
registration of services, starting and stopping of services, and ensures that services are
available and remain available for the lifetime of the jobs.

Agent
DUCC Agent processes run on every node in the system. The Agent receives orders to start
and stop processes on each node. Agents also monitor nodes, sending heartbeat packets with
node statistics to interested components (such as the RM and web-server). All Job Driver and
Job Process processes are managed as children of the agents.

Ducc-mon
Ducc-mon is the DUCC web-server. All DUCC state of import or interest is presented here
including job state, cluster state, DUCC daemon state, and visualization of the system.
Various controlling actions such as canceling jobs, submitting reservations, and administrative
functions are supported.

Job Driver (JD)
The Job Driver is a thin Java wrapper that encapsulates a Job's Collection Reader. The JD
executes as a process that is scheduled and deployed by DUCC.

Job Process (JP)
The Job Process is a thin java wrapper that encapsulates a job's Analysis Engine. The JP
executes in a process that is scheduled and deployed by DUCC.

Job specification
The Job Specification is a collection of properties that describe a job. It identifies the UIMA
components (CR, AE, etc) that comprise the job, and it specifies system-wide properties of the
job (classpaths, RAM requirements, etc). The properties may be provided as (key, value) pairs
to the CLI/API, or in a Java propeties file.

Job
A DUCC job consists of the components required to deploy and execute a UIMA pipeline
over a computing cluster. It consist of a JD to run the Collection Reader, a set of JPs to run the
UIMA AEs, and a Job Specification to describe how the parts fit together.

Share Quantum
In DUCC, a "share quantum" refers to some quantity of memory; for example, 15GB. The
RM schedules resources according to share quanta. The share quantum is the smallest unit of
memory that can be assigned. See the section describing the Resource Manager for details.

The terms "share" and "share quantum" are synonymous in DUCC.

Acronyms

please define productname in your docbook
file! DUCC Terminology, Acronuyms, and Glosssary 15

Process
A process is one physical process executing on a machine in the DUCC cluster. DUCC jobs are
comprised of one or more processes (JDs and JPs).

From the Resource Management view, a process is comprised of one or more share quanta.

Weighted Fair Share
The Weighted Fair Share calculation is used to apportion resources in a "fair" manner to the
outstanding work in the system. To account for some work being more "important" than others,
a weighting factor may be applied to bias the fair-share calculations in favor of such work.

See the Resource Manager section for more details on Weighted Fair Share in DUCC.

Work Items
A work item is one unit of work to be completed in a single DUCC process. It is usually
initiated by the submission of a single CAS from the CR to a UIMA service. It could be
thought of as a single "question" to be answered by a UIMA analytic. Usually each DUCC JP
executes many work items per job.

3.2. Acronyms
This section defines acronims as used in the context of DUCC.

AE: UIMA Analysis Engine

CAS: UIMA Common Analysis Structure

CC: CAS Consumer

CM: UIMA CAS Multiplier

CR: UIMA Collection Reader

DUCC: Distributed UIMA Cluster Computing

JD: Job Driver

JP: Job Process

OR: Orchestrator

PM: Process Manager

RM: Resource Manager

SM: Service Manager

UIMA: Unstructured Information Management Architecture (see http://uima.apache.org/)

UIMA-AS: UIMA Asynchronous Scaleout (see http://uima.apache.org/doc-uimaas-what.html)

Part II. DUCC User's Guide

Command Line Interface (CLI) 19

Chapter 4. Command Line Interface (CLI)
The source for this chapter is ducc_ducbook/documents/part-user/chapter-cli.xml

The Command Line Interface is provided in several forms:

1. A Java "main" class, suitable for invoking from user-supplied scripting such as Ant or
Python. Users of this must set the Java CLASSPATH to include a subset of the jar files
supplied with DUCC.

To run the commands directly from Java the CLASSPATH must be set correctly and an
environment variable, DUCC_HOME must be set.

DUCC_HOME
Set DUCC_HOME to the location where DUCC is installed. For example:

export DUCC_HOME=/home/ducc/ducc_runtime

CLASSPATH
The CLASSPATH must include all of the following elements, relative to
DUCC_HOME:

$DUCC_HOME/lib/ducc-cli.jar
$DUCC_HOME/lib/ducc-common.jar
$DUCC_HOME/lib/apache-activemq-5.5.0/activemq-all-5.5.0.jar
$DUCC_HOME/lib/apache-commons-cli-1.2/commons-cli-1.2.jar
$DUCC_HOME/lib/apache-camel-2.7.1/*
$DUCC_HOME/lib/http-client/*
$DUCC_HOME/lib/springframework-3.0.5/*
$DUCC_HOME/uima/*
$DUCC_HOME/resources

2. Executable jars for each CLI command. These obiviate the need to establish a classpath but
do require DUCC_HOME to be set:

export DUCC_HOME=/home/ducc/ducc_runtime

3. A script wrapper to the Java "main" that completely establishes the environment. These
wrappers use the execubable jars, establishing the DUCC environment and obiviating the
need to set DUCC_HOME.

While not required, it may be useful to put the DUCC bin directory into your path:

export PATH=$PATH:/home/ducc/ducc_runtime/bin

The following actions may be taken using the CLI:

1. Submit a job for ececution.

2. Cancel a job in progress.

3. Request a reservation of full or partial machines.

4. Cancel a reservation.

ducc_submit

20 Command Line Interface (CLI)
please define productname in your docbook

file!

5. Monitor the progress of a job that is already submitted.

6. Submit a service for execution.

7. Cancel a service.

8. Register a service.

9. Unegister a service.

10.Start a registered service (if not auto-started).

11.Stop a registered service.
The next sections describe these actions in detail.

4.1. ducc_submit
The source for this section is ducc_ducbook/documents/part-user/cli/submit.xml

Description:

The submit CLI is used to submit work for execution by DUCC. DUCC assigns a unique id to
the job and schedules it for execution. The submitter may optionally request that the progress
of the job is monitored, in which case the state of the job as it progresses through its lifetime is
printed on the console.

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_submit

Executble Jar
java -jar $DUCC_HOME/lib/ducc-submit.jar

Java main
org.apache.uima.ducc.cli.DuccJobSubmit

If no options are given, help text is presented.

Options:

--cancel_job_on_interrupt

If the job is started with --wait_for_completion, this option causes the job to be canceled
with Ctrl-C. If --cancel_job_on_interrupt is not specified, the job monitor will be
terminated but the job will continue to run.

If --wait_for_completin is not specified this option is ignored.

--debug

Enable debugging messages. This is primarily for debugging DUCC itself.

--description [text]

ducc_submit

please define productname in your docbook
file! Command Line Interface (CLI) 21

The text is any string used to describe the job. It is displayed in the Web Server.

--driver_classpath [classpath]

This is the classpath for the Job Driver, necessary for DUCC to find the Collection Reader.

--driver_descriptor_CR [descriptor.xml]

This is the XML descriptor for the Collection Reader. It is searched for as a resource as
described above.

--driver_descriptor_CR_overrides [list]

This is the Job Driver collection reader configuration overrides. They are specified as
name/value pairs in a comma-delimeted list. For example:

--driver_descriptor_CR_overrides name1=value1,name2=value2...

--driver_environment

This specifies environment parameters for the Job Driver. If present, they are added to the
Job Driver's environment as the process is spawned. It must be a quoted, blank-delimeted
lsit of name-value pairs. For example:

"TERM=xterm DISPLAY=:1.0"

Note: On Secure Linux systems, the environemnt variable
LD_LIBRARY_PATH may not be passed to the user's program. If it is
necessary to pass LD_LIBRARY_PATH to the JP or JD processes, it must be
specified as DUCC_LD_LIBRARY_PATH. Ducc (securely) passes this as
LD_LIBRARY_PATH, after the JP or JD has assumed the user's identity. For
example:

"--process_environment TERM=xterm DISPLAY=:1.0 DUCC_LD_LIBRARY_PATH=/my/own/lib.so"

--driver_jvm_args

This specifes extra JVM arguments to be provided to the Job Driver process. It is a blank-
delimeted list of strings. Example:

--driver_jvm_args -Xmx100M -Xms50M

--driver_memory_size [size-in-GB]

This specifies the size of memory for the Job Driver, in GB. Example:

--driver_memory_size 16

.

--help

Prints the usage text to the console.

--jvm [path-to-java]

ducc_submit

22 Command Line Interface (CLI)
please define productname in your docbook

file!

States the JVM to use. If not specified, the same JVM used by the Agents is used.
Example:

--jvm /share/jdk1.6/bin/java

--log_directory [path-to-log directory]

This specifies the path to the directory for the user logs. If not specified, the default is the
user's home directory. Example:

--log_directory /home/bob

. Within this directory DUCC creates a subdirectory for each job, using the numerical
ID of the job. The format of the generated log file names is descripbed in Chapter 5, Job
Logs [47].

Note: Note that --log_directory specifies only the path to a directory where
logs are to be stored. In order to manage multiple processes running in multiple
machines DUCC, sub-directory and file names are generated by DUCC and may
not be directly specified.

--process_classpath [ClASSPATH]

This specifies the Java CLASSPATH to use in each Job Process (JP) and must be
specified. Example:

--process_classpath a.jar:b.jar

.

--process_DD [DD descriptor]

This specifies a UIMA Deployment Descriptor for the job processes for DD-style jobs.
This is mutually exclusive with --process_descriptor_AE, --process_descriptor_CM,
and --process_descriptor_CC. This descriptor is a resource that is searched for in the
CLASSPATH and data path as described in the notes [26]. For example:

--process_DD /home/billy/resource/DD_foo.xml

--process_deployments_max [integer]

This specifies the maximum nunber of Job Processes to deploy at any given time. If not
specified, DUCC will attempt to provide the largest number of processes, within the
constraints of fair_share scheduling and the number of pending work items still to be done
in the job.

--process_deployments_max 66

.

--process_descriptor_AE [descriptor]

This specifies Analysis Engine descriptor to be deployed in the Job Processes. This
descriptor is a resource that is searched for in the CLASSPATH and data path as described
in the notes. It is mutually exclusive with --process_DD For example:

ducc_submit

please define productname in your docbook
file! Command Line Interface (CLI) 23

--process_AE /home/billy/resource/AE_foo.xml

--process_descriptor_AE_overrides [list]

This specifies AE overrides. It is a comma-delimeted list of name/value pairs. Example:

--process_descriptor_AE_Overrides name1=value1,name2=value2

--process_descriptor_CC [descriptor]

This specifies the CAS Consumer descriptor to be deployed in the Job Processes. This
descriptor is a resource that is searched for in the CLASSPATH and data path as described
in the notes. It is mutually exclusive with --process_DD For example:

--process_descriptor_CC /home/billy/resourceCCE_foo.xml

--process_descriptor_CC_overrides [list]

This specifies CC overrides. It is a comma-delimeted list of name/value pairs. Example:

--process_descriptor_CC_overrides name1=value1,name2=value2

--process_descriptor_CM [descriptor]

This specifies the CAS Multiplier descriptor to be deployed in the Job Processes. This
descriptor is a resource that is searched for in the CLASSPATH and data path as described
in the notes. It is mutually exclusive with --process_DD For example:

--process_descriptor_CM /home/billy/resource/CM_foo.xml

--process_descriptor_CM_overrides [list]

This specifies CM overrides. It is a comma-delimeted list of name/value pairs. Example:

--process_descriptor_CM_overrides name1=value1,name2=value2

--process_environment [environment]

This specifies environment parameters for the Job Processes. If present, they are added
to the Job Process environment as the process is spawned. It must be a quoted, blank-
delimeted lsit of name-value pairs. For example:

"--process_environment TERM=xterm DISPLAY=:1.0"

Note: On Secure Linux systems, the environemnt variable
LD_LIBRARY_PATH may not be passed to the user's program. If it is
necessary to pass LD_LIBRARY_PATH to the JP or JD processes, it must be
specified as DUCC_LD_LIBRARY_PATH. Ducc (securely) passes this as
LD_LIBRARY_PATH, after the JP or JD has assumed the user's identity. For
example:

"--process_environment TERM=xterm DISPLAY=:1.0 DUCC_LD_LIBRARY_PATH=/my/own/lib.so"

ducc_submit

24 Command Line Interface (CLI)
please define productname in your docbook

file!

--process_failures_limit [integer]

This specifies the maximum number of individual Job Process (JP) failures that are to be
tolerated before killing the job. The default is 15. If this limit is exceeded over the lifetime
of a job DUCC terminates the entire job.

"--process_failures_limit 23"

--process_get_meta_time_max [integer]

When a job is started the Job Driver issus a single "get-meta" requests to the (DUCC-
generated) endpoint of the JP processes for the job to insure that at least one UIMA-AS
server processes for the job have started. This parameter specifies the time in seconds to
wait for a response. If the request times out the Job Driver assumes that no UIMA-AS
service for the job was able to start and it terminates the job. If not specified, the timeout is
2 minutes. Example:

"--process_get_meta_time_max 10"

--process_initialization_failures_cap [integer]

This specifies the maximum number of independent Job Process initialization failures (i.e.
System.exit(), kill-15...) before the number of Job Processes is capped at the number in
state Running currently. The default is 99. Example:

--process_initialization_failures_cap 62

Note that the job is NOT killed if there are processes that have passed initialization and are
running. If this limit is reached, the only action is to not start new processes for the job.

--process_jvm_args [list]

This specifies additinal arguments to be passed to the Job Process JVM. Example:

--process_jvm_args -Xmx400M -Xms100M

--process_memory_size [size]

This specifies the maximum amount of RAM in GB to be allocated to each Job Process.
This value is used by the Resource Manager to allocate resources. if this amount is
exceeded by a Job Process the Agent terminates the process with a ShareSizeExceeded
message. Example:

--process_memory_size 33

--process_per_item_time_max [integer]

This specifies the maximum time in minutes that the Job Driver will wait for a Job
Processes to process a CAS. If a timeout occurs the process is terminated and the CAS
marked in error (not retried). If not specified, the default is 1 minute. Example:

--process_per_item_time_max 60

--process_thread_count [integer]

ducc_submit

please define productname in your docbook
file! Command Line Interface (CLI) 25

This specifies the number of threads per process to be deployed. It is used by the Resource
Manager to determine how many processes are needed, by the Agent to determine
howmany threads to spawn, and by the Job Driver to determine how many CASs to
dispatch. If not specified, the default is 4. Example:

--process_thread_count 7

--scheduling_class [classname]

This specifies the name of the scheuling class the RM will use to determine the resource
allocation for each process. The names of the classes are installation dependent. If not
specified, the default is taken from the global DUCC configuration ducc.properties.
Example:

--schedling_class normal

--service_dependency[list]

This specifies a comma-delimeted list of services the job processes are dependent upon.
Each endpoint must be of the form UIMA-AS:endpoint:broker_url where endpoint is the
UIMA-AS service endpoint and broker_url is the ActiveMQ broker URL.

In the example are two dependencies, one with endpoint RandomSleepAE and
broker tcp:bluej682:61616, and the other with endpoint OtherEp and broker URL
tcp:bluej123:123. Example:

 --service_dependency UIMA-AS:RandomSleepAE:tcp:bluej682:61616, \
 UIMA-AS:OtherEp:tcp:bluej123:123

--specifiecaiton [file]

All the parameters used to submit a job may be placed in a standard Java properties file.
This file may then be used to submit the job (rather than providing all the parameters
directory to submit).

For example,

ducc_submit --specification job.props

where the job.props contains:

working_directory=/Users/challngr/projects/ducc/ducc_test/test/bin
process_get_meta_time_max=5
process_failures_limit=20
driver_descriptor_CR=org.apache.uima.ducc.test.randomsleep.FixedSleepCR
driver_environment=DUCC_LD_LIBRARY_PATH=/a/other/bogus/path
process_environment=AE_INIT_TIME=10000 DUCC_LD_LIBRARY_PATH=/a/bogus/path
driver_classpath=/home/bob/duccapps/ducky_driver.jar
log_directory=/Users/challngr/ducc/logs/
process_thread_count=1
driver_descriptor_CR_overrides=jobfile:../simple/jobs/1.job,compression:10
process_initialization_failures_cap=99

ducc_submit

26 Command Line Interface (CLI)
please define productname in your docbook

file!

process_per_item_time_max=60
driver_jvm_args=-Xmx500M
process_descriptor_AE=org.apache.uima.ducc.test.randomsleep.FixedSleepAE
process_classpath=/home/bob/duccapps/ducky_process.jar
description=../simple/jobs/1.job[AE]
process_jvm_args=-Xmx100M -DdefaultBrokerURL=tcp://localhost:61616
scheduling_class=normal
process_memory_size=15

--timestamp

If specified, messages from the submit process are timestamped. This is intended primarily
for use with a monitor with --wait_for_completion.

--wait_for_completion

If specified, the submit command does not return control to the consoke immediately,
and instead monitors the DUCC state traffic and prints information about the job as it
progresses.

--working_directory

This specifies the working directory to be set by the Job Driver and Job Process processes.
If not specified, the current directory is used. Example:

--working_directory /Users/challngr/projects/ducc/ducc_test/bin

Notes:

When searching for UIMA XML resource files such as descriptors, DUCC searches both the
classpath and the data path according to the following rules:

1. If the resource ends in .xml it is assumed the resource is a file and the path is either an
absolute path or a path relative to the specified working directory. If the file is not found
the search exits and the job is terminated.

2. If the resource does not end in .xml, DUCC creates a path by replacing the "."
separators with "/" and appending ".xml". It then searches two places:

a. The user's CLASSPATH as a file (that is, not in a jar), and

b. In the jar files provided in the user's CLASSPATH.

If the resource is found in either place the search is successful. Otherwise the search
fails and the job is terminated.

The resource search-order rules apply to all of the following submit parameters:

• --driver_descriptor_CR

• --process_descriptor_AE

• --process_descriptor_CC

• --process_descriptor_CM

ducc_cancel

please define productname in your docbook
file! Command Line Interface (CLI) 27

4.2. ducc_cancel
The source for this section is ducc_ducbook/documents/part-user/cli/cancel.xml

Description:

The cancel CLI is used to cancel a job that has previously been submitted but which has not yet
completed.

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_cancel

Executable Jar
java-jar $DUCC_HOME/lib/ducc_cancel.jar

Java main
org.apache.uima.ducc.cli.DuccJobCancel

If no options are given, help text is presented.

Options:

--id [jobid]

The ID is the jobid returned by the job submission.

--help

Prints the usage text to the console.

4.3. ducc_reserve
The source for this section is ducc_ducbook/documents/part-user/cli/reserve.xml

Notes:

Reservations may be for full machines, or partial machines based on memory. The mechanism
for distinguishing which type of reservation the job class. A job class implementing the
RESERVE scheduling policy results in a full machine being reserved. A job clas simplementing
the FIXED scheduling policy results in a partial machine being reserved. The default DUCC
distribution configures class reserve for full machine reservations, and class fixed for partial
reservations.

Description:

The reserve CLI is used request a reservation of resources. Reservations can be for entire
machines or partial machines, based on memory requirements. All reservations are persistent:
the resources remain dedicated to the requestor until explicitly returned. All reservations are
performeed on an "all-or-nothing" basis: either the entire set of requested resources is reserved,
or the reservation request fails.

Usage:

ducc_unreserve

28 Command Line Interface (CLI)
please define productname in your docbook

file!

Script wrapper
$DUCC_HOME/bin/ducc_reserve

Executble Jar
java -jar $DUCC_HOME/lib/ducc-reserve.jar

Java main
org.apache.uima.ducc.cli.DuccReservationSubmit

If no options are given, help text is presented.

Options:

--description [text]

The text is any string used to describe the reservation. It is displayed in the Web Server.

--help

Prints the usage text to the console.

--number-of-instances [integer]

This specifies the number of full or partial machine reservations to schedule.

--instance-memory-size [KB|MB|GB|TB]]

This specifies the amount of memory the reserved machine must supoprt. For full machine
reservations, this is the total memory on the machine. For partial reservations, the machine
may have more memory, but not less than is specified.

--scheduling_class [classname]

This specifies the name of the scheuling class the RM will use to determine the resource
allocation for each process. The default DUCC distribution provides class "reserve" for full
machine reservations, and "fixed" for partial machine reservations.

--specifiecaiton [file]

All the parameters used to request a reservation may be placed in a standard Java
properties file. This file may then be used to submit the request (rather than providing all
the parameters directory to submit).

4.4. ducc_unreserve
The source for this section is ducc_ducbook/documents/part-user/cli/unreserve.xml

Description:

The unreserve CLI is used to release reserved resources.

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_unreserve

ducc_monitor

please define productname in your docbook
file! Command Line Interface (CLI) 29

Executble Jar
java -jar $DUCC_HOME/lib/ducc-unreserve.jar

Java main
org.apache.uima.ducc.cli.DuccReservationCancel

If no options are given, help text is presented.

Options:

--id [jobid]

The ID is the reservation ID returned by the job submission.

--help

Prints the usage text to the console.

4.5. ducc_monitor
The source for this section is ducc_ducbook/documents/part-user/cli/monitor.xml

Description:

It may be desired to monitor a job's progress after it has been submitted. The monitor CLI
connects to the DUCC message flow and provides job status as it progresses including state
changes, error counts, and number of work items processed.

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_monitor

Executable Jar
java-jar $DUCC_HOME/lib/ducc-monitor.jar

Java main
org.apache.uima.ducc.cli.DuccJobMonitor

If no options are given, help text is presented.

Options:

--cancel_job_on_interrupt

If the monitor is canceled with Ctrl-C, the job is also canceled. Otherwise the monitor is
simply disconnected and the job continues.

If --wait_for_completin is not specified this option is ignored.

--debug

Enable debugging messages. This is primarily for debugging DUCC itself.

--help

ducc_service_submit

30 Command Line Interface (CLI)
please define productname in your docbook

file!

Prints the usage text to the console.

--id [jobid]

The ID is the jobid returned by the job submission.

--timestamp

If specified, messages are timestamped.

4.6. ducc_service_submit
The source for this section is ducc_ducbook/documents/part-user/cli/service_submit.xml

Description:

The ducc_service_submit CLI is used to submit a job as a service to DUCC. The CLI is similar
to ducc_submit with the following key differences:

• There is no Collection Reader.

• There is no Job monitor for services because services don't generally end of their own
accord.

• Service jobs must supply a fully-formed DD XML.

On submission of a service, the DUCC CLI examines the service DD descriptor for the queue
name, and the supplied jvm_args for a broker URL. It forms a service ID of the following form
which may be referenced in the --service_dependency clauses of jobs and services which are
dependent on this service:

UIMA-AS:[endpoint]:[broker-url]

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_service_submit

Executble Jar
java -jar $DUCC_HOME/lib/ducc-service-submit.jar

Java main
org.apache.uima.ducc.cli.DuccServiceSubmit

If no options are given, help text is presented.

Options:

--debug

Enable debugging messages. This is primarily for debugging DUCC itself.

--description [text]

ducc_service_submit

please define productname in your docbook
file! Command Line Interface (CLI) 31

The text is any string used to describe the job. It is displayed in the Web Server. Example:

--description "This is my very sophisticated job"

--help

Prints the usage text to the console.

--jvm [path-to-java]

States the JVM to use. If not specified, the same JVM used by the Agents is used.
Example:

 --jvm /share/jdk1.6/bin/java

--log_directory [path-to-log directory]

This specifies the path to the directory for the user logs. If not specified, the default is the
user's home directory. Example:

--log_directory /home/bob

. Within this directory DUCC creates a subdirectory for each job, using the numerical
ID of the job. The format of the generated log file names is descripbed in Chapter 5, Job
Logs [47].

Note: Note that --log_directory specifies only the path to a directory where
logs are to be stored. In order to manage multiple processes running in multiple
machines DUCC, sub-directory and file names are generated by DUCC and may
not be directly specified.

--process_classpath [ClASSPATH]

This specifies the Java CLASSPATH to use in each Job Process (JP) and must be
specified. Example:

--process_classpath a.jar:b.jar

.

--process_DD [DD descriptor]

This specifies a UIMA Deployment Descriptor for the job processes for DD-style jobs.
This is mutually exclusive with --process_descriptor_AE, --process_descriptor_CM,
and --process_descriptor_CC. This descriptor is a resource that is searched for in the
CLASSPATH and data path as described in the notes [26]. For example:

--process_DD /home/billy/resource/DD_foo.xml

--process_deployments_max [integer]

This specifies the maximum nunber of Job Processes to deploy at any given time.

--process_deployments_max 66

ducc_service_submit

32 Command Line Interface (CLI)
please define productname in your docbook

file!

.

--process_environment [environment]

This specifies environment parameters for the Job Processes. If present, they are added
to the Job Process environment as the process is spawned. It must be a quoted, blank-
delimeted lsit of name-value pairs. For example:

"--process_environment TERM=xterm DISPLAY=:1.0"

Note: On Secure Linux systems, the environemnt variable
LD_LIBRARY_PATH may not be passed to the user's program. If it is
necessary to pass LD_LIBRARY_PATH to the JP or JD processes, it must be
specified as DUCC_LD_LIBRARY_PATH. Ducc (securely) passes this as
LD_LIBRARY_PATH, after the JP or JD has assumed the user's identity. For
example:

"--process_environment TERM=xterm DISPLAY=:1.0 DUCC_LD_LIBRARY_PATH=/my/own/lib.so"

--process_failures_limit [integer]

This specifies the maximum number of individual Job Process (JP) failures that are to be
tolerated before killing the job. The default is 15. If this limit is exceeded over the lifetime
of a job DUCC terminates the entire job.

"--process_failures_limit 23"

--process_initialization_failures_cap [integer]

This specifies the maximum number of independent Job Process initialization failures (i.e.
System.exit(), kill-15...) before the number of Job Processes is capped at the number in
state Running currently. The default is 99. Example:

--process_initialization_failures_cap 62

Note that the job is NOT killed if there are processes that have passed initialization and are
running. If this limit is reached, the only action is to not start new processes for the job.

--process_jvm_args [list]

This specifies additinal arguments to be passed to the Job Process JVM. Example:

--process_jvm_args -Xmx400M -Xms100M

--process_memory_size [size]

This specifies the maximum amount of RAM in GB to be allocated to each Job Process.
This value is used by the Resource Manager to allocate resources. if this amount is
exceeded by a Job Process the Agent terminates the process with a ShareSizeExceeded
message. Example:

--process_memory_size 33

--scheduling_class [classname]

ducc_service_submit

please define productname in your docbook
file! Command Line Interface (CLI) 33

This specifies the name of the scheuling class the RM will use to determine the resource
allocation for each process. The names of the classes are installation dependent. If not
specified, the default is taken from the global DUCC configuration ducc.properties.
Example:

--schedling_class normal

--service_dependency[list]

This specifies a comma-delimeted list of services the job processes are dependent upon.
Each endpoint must be of the form UIMA-AS:endpoint:broker_url where endpoint is the
UIMA-AS service endpoint and broker_url is the ActiveMQ broker URL.

In the example are two dependencies, one with endpoint RandomSleepAE and
broker tcp:bluej682:61616, and the other with endpoint OtherEp and broker URL
tcp:bluej123:123. Example:

--service_dependency UIMA-AS:RandomSleepAE:tcp:bluej682:61616, \
 UIMA-AS:OtherEp:tcp:bluej123:123

--specifiecaiton [file]

All the parameters used to submit a job may be placed in a standard Java properties file.
This file may then be used to submit the job (rather than providing all the parameters
directory to submit).

For example,

ducc_submit --specification job.props

where the job.props contains:

working_directory=/Users/challngr/projects/ducc/ducc_test/test/bin
process_failures_limit=20
driver_environment= DUCC_LD_LIBRARY_PATH=/a/other/bogus/path
process_environment=AE_INIT_TIME=10000 DUCC_LD_LIBRARY_PATH=/a/bogus/path
log_directory=/Users/challngr/ducc/logs/
process_initialization_failures_cap=99
process_descriptor_AE=org.apache.uima.ducc.test.randomsleep.FixedSleepAE
process_classpath=/home/bob/projects/ducky-service.jar
description=../simple/jobs/1.job[AE]
process_jvm_args=-Xmx100M -DdefaultBrokerURL=tcp://localhost:61616
scheduling_class=fixed
process_memory_size=15

--working_directory

This specifies the working directory to be set by the Job Driver and Job Process processes.
If not specified, the current directory is used. Example:

--working_directory /Users/challngr/projects/ducc/ducc_test/bin

ducc_service_cancel

34 Command Line Interface (CLI)
please define productname in your docbook

file!

Notes:

When searching for UIMA XML resource files such as descriptors, DUCC searches both the
classpath and the data path according to the following rules:

1. If the resource ends in .xml it is assumed the resource is a file and the path is either an
absolute path or a path relative to the specified working directory. If the file is not found
the search exits and the job is terminated.

2. If the resource does not end in .xml, DUCC creates a path by replacing the "."
separators with "/" and appending ".xml". It then searches the CLASSPATH for the
resource as a file.

If the resource is found in either place the search is successful. Otherwise the search
fails and the job is terminated.

Note: Note that in the current implementation, resources are NOT searched
for inside jars in the classpath. Files must be supplied.

4.7. ducc_service_cancel
The source for this section is ducc_ducbook/documents/part-user/cli/cancel.xml

Description:

The ducc_service_cancel CLI is used to cancel a submitted service. Generally services won't
end unless canceled. If this is used against a registered service instance, the service manager
will usually restart the service. Use ducc_services stop to stop a registered service.

Usage:

Script wrapper
ducc_service_cancel

Executable Jar
java-jar $DUCC_HOME/lib/ducc-service-cancel.jar

Java main
org.apache.uima3.ducc.cli.DuccServiceCancel

If no options are given, help text is presented.

Options:

--id [serviceid]

The ID is the jobid returned by the job submission, also available from the webserver.

--help

Prints the usage text to the console.

4.8. ducc_services
The source for this section is ducc_ducbook/documents/part-user/cli/service_api.xml

ducc_services

please define productname in your docbook
file! Command Line Interface (CLI) 35

Description:

The ducc_services CLI is used to manage service registration. It has a number of functions
as listed below. Additionally the ducc_services CLI wraps ducc_service_submit and
ducc_service_cancel for convenience.

The functions include:

Register
This registers a service with the Service Manager. A registered service is retained by
DUCC until it is unregistered.

Unregister
This unregisters a service with the Service Manager. When a service is unregistered
DUCC optionally stops the service instance, if any, and discards all knowledge of it.

Start
The start function instructs DUCC to alllocate resources for a service and to start it in
those resources. The service remains running until explictly stopped. DUCC will attempt
to keep the service instances running if they should fail. The start function is also used to
increase the number of running service instances if desired.

Stop
The stop function stops some or all service instances.

Query
The query function returns detailed information about all known services, both registerd
and otherwise.

Modify
The modify function allows some aspectes of a registered service to be updated without re-
registereing the service. It optionally alters the running service instances to conform with
the updates.

Submit
Use the ducc_service_submit command to submit a service. This is available only
through the command-line wrapper.

Cancel
Use the ducc_service_cancel command to cancel a submitted service. This is available
only through the command-line wrapper.

Usage:

Script wrapper
$DUCC_HOME/bin/ducc_services

Executble Jar
java -jar $DUCC_HOME/lib/ducc-services.jar

Java main
org.apache.uima.ducc.cli.DuccServiceApi

The ducc_services CLI requires one of the verbs listed above as the first argument. The
subsequent arguments are determned by the verb.

ducc_service --register

36 Command Line Interface (CLI)
please define productname in your docbook

file!

4.8.1. ducc_service --register
The source for this section is ducc_ducbook/documents/part-user/cli/services_register.xml

Description:

This registers a service with the Service Manager. A registered service is retained by DUCC
until it is unregistered.

Usage:

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Register Options:

--register [properties file] [override options]

The properties file is optional. It is a standard Java properties files containing all the
registration options for the service. The override options are then applied to define the
service (taking precedence). It is possible to register a service using just a properties file,
just override options, or both.

The properties in the properties file are identical to the command-line parameters, but with
the leading "--" removed. For example:

process_environment = DUCC_LD_LIBRARY_PATH=/my/own/lib.so
description = Test Service 0
process_jvm_args = -Xmx100M -DdefaultBrokerURL=tcp://bluej291:61617
process_classpath = ../../lib/ducc-test.jar
process_memory_size = 15
working_directory = /home/bob/service-descriptors
process_DD = Service_FixedSleep_0.xml
process_deployments_max = 1
scheduling_class = fixed

--debug

Enable debugging messages. This is primarily for debugging DUCC itself.

--description [text]

The text is any string used to describe the job. It is displayed in the Web Server. Example:

--description "My totaly rad service"

.

--help

Prints the usage text to the console.

--instances [number-of-instances]

This defines the default number of service instances to start. If not specified, the default is
1. Example:

ducc_service --register

please define productname in your docbook
file! Command Line Interface (CLI) 37

--instances 12

.

--jvm [path-to-java]

States the JVM to use. If not specified, the same JVM used by the Agents is used.
Example:

--jvm /share/jdk1.6/bin/java

--log_directory [path-to-log directory]

This specifies the path to the directory for the user logs. If not specified, the default is the
user's home directory. Example:

--log_directory /home/bob

. Within this directory DUCC creates a subdirectory for each job, using the numerical
ID of the job. The format of the generated log file names is descripbed in Chapter 5, Job
Logs [47].

--process_classpath [ClASSPATH]

This specifies the Java CLASSPATH to use in each Job Process (JP) and must be
specified. Example:

 --process_classpath a.jar:b.jar:more.jar

--process_DD [DD descriptor]

This specifies a UIMA Deployment Descriptor (DD) for the service.

--process_environment [environment]

This specifies environment parameters for the Job Processes. If present, they are added
to the Job Process environment as the process is spawned. It must be a quoted, blank-
delimeted lsit of name-value pairs. For example:

"--process_environment TERM=xterm DISPLAY=:1.0"

--process_failures_limit [integer]

This specifies the maximum number of individual Job Process (JP) failures that are to be
tolerated before killing the job. The default is 15. If this limit is exceeded over the lifetime
of a job DUCC terminates the entire job.

"--process_failures_limit 23"

--process_initialization_failures_cap [integer]

This specifies the maximum number of independent Job Process initialization failures (i.e.
System.exit(), kill-15...) before the number of Job Processes is capped at the number in
state Running currently. The default is 99. Example:

ducc_service --register

38 Command Line Interface (CLI)
please define productname in your docbook

file!

--process_initialization_failures_cap 62

Note that the job is NOT killed if there are processes that have passed initialization and are
running. If this limit is reached, the only action is to not start new processes for the job.

--process_jvm_args [list]

This specifies additinal arguments to be passed to the Job Process JVM. Example:

--process_jvm_args -Xmx400M -Xms100M

--process_memory_size [size]

This specifies the maximum amount of RAM in GB to be allocated to each Job Process.
This value is used by the Resource Manager to allocate resources. if this amount is
exceeded by a Job Process the Agent terminates the process with a ShareSizeExceeded
message. Example:

--process_memory_size 33

--scheduling_class [classname]

This specifies the name of the scheuling class the RM will use to determine the resource
allocation for each process. The names of the classes are installation dependent. Example:

--schedling_class normal

Note: Note that in general one should select a non-preemptable class such as
fixed> or reserve for services. Otherwise DUCC may grow or shrink the number
of processes used by the service. It IS legal and supported to use a fair-share class
however.

--service_custom_classpath [CLASSPATH]

This specifies the classpath to be used when starting a CUSTOM ping thread. It is
primarily intended for non-UIMA-AS services but it may be implemented for UIMA-AS
services as well if the default DUCC ping function is not sufficient. Example:

--service_custom_classpath A.jar:B.Jar:C.Jar

--service_custom_endpoint [CUSTOM:string]

This provides the name of the endpoint to used for non-UIMA-AS services. In the current
release of DUCC this type of service must be started independently of DUCC but DUCC
is able to monitor it if --service_custom_ping is provided. The endpoint must start with
the characters "CUSTOM:" followed by any unique string (with no embedded blanks) that
DUCC can use to identify the service. Example:

--service_custom_endpoint CUSTOM:jrc.service.endpoint

--service_custom_jvm_args [list]

This supplies extra arguments to the JVM for the CUSTOM ping object. Example:

ducc_services --start

please define productname in your docbook
file! Command Line Interface (CLI) 39

--service_custom_jvm_args -Xmx 400M -Xms100M

--service_custom_ping [java class]

This supplies the java class name for a CUSTOM ping object. The class must the
interface org.apache.uima.ducc.IServiceMeta as described in the API section. DUCC
wraps the customer ping object in a management object with a "main" and calls the
implemented interfaces periodically to insure the custom service is functioning, and to
gather performance statistics. Example:

--service_custom_ping bob.net.BobsCustomPing

--service_dependency[list]

This specifies a comma-delimeted list of services the job processes are dependent upon.
Each endpoint must be of the form UIMA-AS:endpoint:broker_url where endpoint is the
UIMA-AS service endpoint and broker_url is the ActiveMQ broker URL.

In the example are two dependencies, one with endpoint RandomSleepAE and
broker tcp:bluej682:61616, and the other with endpoint OtherEp and broker URL
tcp:bluej123:123. Example:

--service_dependency UIMA-AS:RandomSleepAE:tcp:bluej682:61616, \
 UIMA-AS:OtherEp:tcp:bluej123:123

--service_linger [time in seconds]

This specifies the time, in seconds, that a service should be kept alive after its last
reference has exited, in anticipation of new work entering the system and using it. This is
only applicable to services that are not automatically started at boot time. Example:

--service_linger 300

--working_directory

This specifies the working directory to be set by the Job Driver and Job Process processes.
If not specified, the current directory is used. Example:

--working_directory /Users/challngr/projects/ducc/ducc_test/bin

4.8.2. ducc_services --start
The source for this section is ducc_ducbook/documents/part-user/cli/service_start.xml

Description:

The start function instructs DUCC to alllocate resources for a service and to start it in those
resources. The service remains running until explictly stopped. DUCC will attempt to keep
the service instances running if they should fail. The start function is also used to increase the
number of running service instances if desired.

Usate:

ducc_services --stop

40 Command Line Interface (CLI)
please define productname in your docbook

file!

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Start Options:

--start [service id]

This indicates that a service is to be started. The service id is either the numeric ID
assigned by DUCC when the service is registered, or the service endpoing string.

Example:

ducc_services --start 23
ducc_services --start UIMA-AS:Service23:tcp://bob.com:12345

--instances [integer]

This is the number of instances to start. If omitted, the registered number of instances is
started. If the number is specified, the number is added to the currently number of running
instances. Thus if five instances are running and ducc_services --start 33 --instances 5 is
issued, five more service instances ar started for service 33 for a totoal of ten. The registry
is updated only if the --update option is also specified.

Example:

ducc_services --start 23 --intances 5
ducc_services --start UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --update

--update

If specified, the registry is updated to the total number of started instances.

Example:

ducc_services --start UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --update

4.8.3. ducc_services --stop
The source for this section is ducc_ducbook/documents/part-user/cli/service_stop.xml

Description:

The stop function instructs DUCC to stop some number of service instances. If no specific
number is specified, all instances are stopped. This is used only for registered services. Use
ducc_service_cancel [34] to stop submitted services.

Usage:

ducc_services --modify

please define productname in your docbook
file! Command Line Interface (CLI) 41

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Stop Options:

--stop [service id]

This indicates that a service is to be stopped. The service id is either the numeric ID
assigned by DUCC when the service is registered, or the service endpoint string.

Example:

ducc_services --stop 23
ducc_services --stop UIMA-AS:Service23:tcp://bob.com:12345

--instances [integer]

This is the number of instances to stop. If omitted, all instances for the service are stopped.
If a number is specified, then only the specified number of instances are stopped. Thus
if ten instances are running and ducc_services --stop 33 --instances 5 is issued, five
(randomly selected) service instances ar stopped for service 33, leaving five running.
The registry is updated only if the --update option is specified. The registered number of
instances is never reduced to 0.

Example:

ducc_services --stop 23 --intances 5
ducc_services --stop UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --update

--update

If specified, the registry is updated to the total number of instances remaining, but is never
reduced below 1.

Example:

ducc_services --stop UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --modify

4.8.4. ducc_services --modify
The source for this section is ducc_ducbook/documents/part-user/cli/service_modify.xml

Description:

The modify function dynamically updates some of the attributes of a registered service.

Usage:

ducc_services --modify

42 Command Line Interface (CLI)
please define productname in your docbook

file!

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Modify Options::

--modify [service id]

This identifies the service to modify. The service id is either the numeric ID assigned by
DUCC when the service is registered, or the service endpoint string.

Example:

ducc_services --modify 23 --instances 3
ducc_services --modify UIMA-AS:Service23:tcp://bob.com:12345 \
 --intances 2

--instances [integer]

This updates the number of services instances that are started when the service is started.
Only the registration is updated. If the --activate option is also specified, running instances
are stopped or started as needed to match the new number.

Example:

ducc_services --modify 23 --intances 5
ducc_services --modify UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --activate

--activate [integer]

When specified, the number of running service instances is increased or decreased to
match the newly specified number.

Example:

ducc_services --modify 23 --intances 5
ducc_services --modify UIMA-AS:Service23:tcp://bob.com:12345 \
 --instances 3 --activate

--autostart ["true" or "false"]

This changes the autostart property for the registered services. When set to "true", the
service is started automatically when the DUCC system is started.

Example:

ducc_services --stop UIMA-AS:Service23:tcp://bob.com:12345 \
 --autostart false

ducc_services --query

please define productname in your docbook
file! Command Line Interface (CLI) 43

4.8.5. ducc_services --query
The source for this section is ducc_ducbook/documents/part-user/cli/service_query.xml

Description:

The query function returns details about all known services of all types and classes, including
the DUCC ids of the service instances (for submitted and registered services), the DUCC ids of
the jobs using each service, and a summary of each service's queue and performance statistics,
when available.

Usage:

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Query Options:

--query [service id]

This indicates that a service is to be stopped. The service id is either the numeric ID
assigned by DUCC when the service is registered, or the service endpoint string.

If no id is given, information about all services is returned.

Example: below is a query against a system with three services.

The service with endpoint UIMA-AS:FixedSleepAE_6:tcp://bluej291:61617 is a service
submitted outside of DUCC so it is marked as Internal and has no implementing processes
tha are known to DUCC. It is used by job 0 and is active, available, and being actively
pinged. The ActiveMq queue statistics are shown.

The service with endpoint UIMA-AS:FixedSleepAE_5:tcp://bluej291:61617 is a
registered service, whose registered numeric id is 2. It is registered for two instnaces and
no autostart. Since it is not autostarted, it will be terminated when it is no longer used. It
will linger for 5 seconds after the last referencing job completes, in case a subsequent job
that uses it enters the system (not a realistic linger time!). It is currently used (referenced)
by DUCC jobs 1 and 5.

The service with endpoint UIMA-AS:FixedSleepAE_1:tcp://bluej291:61617 is a
submitted service. It was submitted twice, and so has two implementors, DUCC service
jobs 0 and 1. It is referenced by job 7. It will continue to run until somebody cancels it,
even if it is not used.

Service: UIMA-AS:FixedSleepAE_6:tcp://bluej291:61617
 Service Class : Implicit
 Implementors : (N/A)
 References : 0
 Dependencies : none
 Service State : Available
 Ping Active : true
 Autostart : false
 Manual Stop : false
 Queue Statistics:
 Consum Prod Qsize minNQ maxNQ expCnt inFlgt DQ NQ Disp
 78 240 170 2 36414 0 0 636 806 636

ducc_services --submit and --cancel

44 Command Line Interface (CLI)
please define productname in your docbook

file!

Service: UIMA-AS:FixedSleepAE_5:tcp://bluej291:61617
 Service Class : Registered as ID 2 instances[2] linger[5]
 Implementors : 9 8
 References : 1 5
 Dependencies : none
 Service State : Available
 Ping Active : true
 Autostart : false
 Manual Stop : false
 Queue Statistics:
 Consum Prod Qsize minNQ maxNQ expCnt inFlgt DQ NQ Disp
 52 44 0 0 3 0 0 402 402 402

Service: UIMA-AS:FixedSleepAE_1:tcp://bluej291:61617
 Service Class : Submitted
 Implementors : 1 0
 References : 7
 Dependencies : none
 Service State : Available
 Ping Active : true
 Autostart : false
 Manual Stop : false
 Queue Statistics:
 Consum Prod Qsize minNQ maxNQ expCnt inFlgt DQ NQ Disp
 52 0 0 1 1504371 0 0 35 35 35

4.8.6. ducc_services --submit and --cancel
The source for this section is ducc_ducbook/documents/part-user/cli/service_sub_can.xml

Description:

As a convenience, both ducc_service_submit and ducc_service_cancel can be invokded from
ducc_services. Ducc_services is just a thin wrapper around those two commands.

Usage:

See the DUCC Service CLI Overview [34] for general usage considerations for
ducc_services.

Service Submit Options:

--submit [parameters]

The parameters are the same parameters as for ducc_service_submit.

Example:

 ducc_services --submit --specification 123.service

--cancel [parameters]

The parameters are the same parameters as for ducc_service_cancel.

ducc_services --submit and --cancel

please define productname in your docbook
file! Command Line Interface (CLI) 45

Example:

ducc_services --cancel --id 4

Job Logs 47

Chapter 5. Job Logs
The source for this chapter is ducc_ducbook/documents/part-user/userlogs.xml

The DUCC logs are managed by log4j and are configured using ducc_runtime/log4j.xml. It
is not in the scope of this document to describe log4j or its configuration mechanism. Details on
log4j can be found at http://logging.apache.org/log4j/1.2/.

The "user logs" are the Job Driver (JD) and Job Process (JP) logs. There is one log for each process
of a job. The JD log is divided between two physical files:

1. The logs and stdout written by the UIMA collection reader. The collection reader uses the
UIMA logger which is by default directed to stdout.

2. The diagnostic logs written the the DUCC JD wrapper around the job's collection reader.
This log is written using log4j.

A number of other usefiles are written to the log directory:

1. A properties file containing the full job specification for the job. This includes all the
parameters specified by the user as well as the default parameters. This file is written to
job-specification.properties.

2. The UIMA pipeline descriptor constructed by DUCC that describes the process that is
dispatched to each Job Process (JP). The name of this file is of the form

 JOBID-uima-ae-descriptor-PROCESS.xml

where

JOBID
This is the numerical id of the job as assigned by DUCC.

PROCESS
This is the process id of the Job Driver (JD) process.

3. The UIMA-AS service descriptor that defines the process that defines the job as as UIMA-
AS service. The name of this file is of the form

 JOBID-uima-as-dd-PROCESS.xml

where

JOBID
This is the numerical id of the job as assigned by DUCC.

PROCESS
This is the process id of the Job Driver (JD) process.

4. A Java serialized object containing the performance breakdown for the job. This is used
by the Web Server to display the breakdown. This file is written to job-performance-
summary.ser.

http://logging.apache.org/log4j/1.2/

48 Job Logs
please define productname in your docbook

file!

The JP logs are written by default to HOME/ducc/logs, where HOME is the submitting user's
home directory. In this directory, a subdirectory whose name is the numerical id of the job is
created by DUCC, where all logs for the job are written.

The collection reader's log is written to the file HOME/ducc/logs/JOBID/jd.out.log via log4j.
It is written in multiple generations, and its size is governed by the same log4j configuration file
used for the DUCC Daemon processes. The size of each generation and the number of generations
is configured in the jdout appender stanza.

Each JP log and the diagnostic JD log is of the following form:

 JOBID-TYPE-NODE-PROCESS.log

where

JOBID
This is the numerical id of the job as assigned by DUCC.

TYPE
This is either the string "UIMA" for JP logs, or "JD" for JD logs.

NODE
This is the name of the machine where the process runs.

PROCESS
This is the process id of the process on the indicated node.

This shows the contents a sample log directory for a small job that consisted of two processes.

 100-JD-bluej290-1-29383.log
 100-uima-ae-descriptor-29383.xml
 100-uima-as-dd-29383.xml
 100-UIMA-bluej290-2-32766.log
 100-UIMA-bluej291-63-13594.log
 jd.out.log
 job-performance-summary.ser
 job-specification.properties

In this example,

The file 100-JD-bluej290-1-29383.log is the diagnostic JD log, where the JD executed
on node bluej290-1 in process 29383.

The file 100-uima-ae-descriptor-29383.xml is the UIMA pipeline descriptor describing
the service process that is launched in each JP, where the JD process is 29383.

The file 100-uima-as-dd-29383.xml is the UIMA-AS service descriptor where the client is
the JD process running in process 29383.

The file 100-UIMA-bluej290-2-32766.log is a JP log for job 100, that ran on node
bluej290-2, in process 32766.

The file 100-UIMA-bluej291-63-13594.log is a JP log for job 100, that ran on node
bluej291-63, in process 13594

please define productname in your docbook
file! Job Logs 49

The file jd.out.log is the user's JD log, containing the user's collection reader output.

The file job-performance-summary.ser is the serialized performance breakdown that is
displayed in the Web Server

The file job-specification.propeties is the properties file describing the job.

Application Programming Interface (API) 51

Chapter 6. Application Programming Interface
(API)

The source for this chapter is ducc_ducbook/documents/chapter-api.xml

There is a partial DUCC API. Completion of the API is planned for the next major update and will
not be documented until the design and first implementation is complete.

Webserver 53

Chapter 7. Webserver
The source for this chapter is ducc_ducbook/documents/chapter-webserver.xml

The DUCC Web Server default address is accessed from the URL http://wshost:42133. Each
local installation configures the host for "wshost" and may override the default port of 42133

The Webserver is designed to be mostly self-documenting. The design is intentionally simple
and contains a link to this document. Column headers and reason/state codes have display a short
description if you hover your mouse over it.

The columns can all be sorted by clicking on the column headers.

7.1. Common Links
Every page contains a common header containing links and controls. The links permit navigation to
other content at the site. The controls provide page-wise configuration of the content at that page.

The following links are available on every page of the web server:

Authentication

Login - Authenticate and start a session with the Web Server.
Logout - Terminate the Web Server session

Note: Authentication is in order to cancel jobs and reservations, to create a
reservation, and to perform administration. It is not required to simply view the pages.

DuccBook
This is a link to the HTML version of the documnet you are reading.

Jobs
This navigates to the Jobs page, showing all the jobs in the system.

Reservations
This navigates to the Reservations page, showing all the reservations in the system and
provides a button that can be used to request new reservations.

Services
This navigates to the Services page, showing all the services in the system.

System
This opens a submenu with system-related links:

Administration - This opens a page with administrative functions.
Classes - This shows all the scheduling classes defined to the system.
Daemons - This shows the status of DUCC's management processes.
DuccBook - This manual.
Machines - This shows the status of all the ducc worker nodes.

7.2. Jobs Page
The Web Server's home page is also the Jobs page. This page has links to all the rest of the content
at the site and shows the status of all the jobs in the system.

Jobs Page

54 Webserver
please define productname in your docbook

file!

The Jobs page contains the following columns:

Id
This is the ID as assigned by DUCC. This field is hyperlinked to a "Job Details" page that
shows the breakdown of all the processes assigned to the job and their state.

Start
This is the time the Job is accepted into DUCC.

End
This is the time the Job completes.

User
This is the userid of the job owner.

Class
This is the resource class the job is submitted to.

State
This shows the state of the job. States include:

Received - The jobhas ben vetted, persisted, and assigned a unique ID.
WaitingForDriver - The job is waiting for the Job Driver to initialize.
WaitingForServices - The job is waiting to verify that any declared services are available.
WaitingForResources - The job is waiting to be scheduled.
Initializing - The job is in its initializaiton phase.
Running - At least one process is now initialized and running.
Completing - The last process has finished and the job is cleaning up.
Completed - The job is complete.

Reason
This is information relating to completion state.

EndOfJob - The job ran with no errors.
Error - All work items are processes but at least one had an error.
CanceledByDriver - The Job Driver (JD) terminated the job. The reason for termination is
seen by hovering over the text with your mouse.
CanceledBySystem - The job was canceled because DUCC was shutdown.
CanceledBySser - The job owner or DUCC administator canceled the job.
DriverInitializationFailure - The Job Deiver (JD) process is unable to initialize. Hover over
the field with your mouse for details (if any are available), and check your JD log.
DriverProcessFailed - The Job Driver (JD) process failed for some reason. Hover over the
field with your mouse for details (if any), and check your JD log.
ServicesUnavailable - The job declared a dependency on one or more services, and the
Service Manager (SM) cannot find or start the required service.
Premature - The job was terminated for some unknown reason before all work items were
processed. Check the JP logs for details.
ProcessInitializationFailure - Too many processes failed during initialization. Check the JP
logs for the reason.
ProcessFailure - Too many processes failed while running. Check the JP logs for the reason.
ResourcesUnavailable - The Resource Manager (RM) is unable to allocate resources for
the job. For non-preemptable jobs this could be because the limit on that type of allocaiton is
reached, or all the nodes are already allocated and work cannot be preempted to make space for
it. For all jobs, it could be because the job class is invalid.

Job Details Page

please define productname in your docbook
file! Webserver 55

Processes
This is the number of processes currently assigned to the job.

Init Fails
This is the total number of initialization failures experienced by the job. This field is
hyperlinked to pages showing the specific failures.

Run Fails
This is the total number of process failures experienced by the job. This field is hyperlinked to
a page showing the specific failures.

Size
This is the declared memory size of the job

Total
This is the total number of work items declared by the job.

Done
This is the total number of work items successfuly completed for the job.

Error
This is the total number of exceptions thrown or other errors experienced by work items. This
field is hyperlinked to a page showing the specific failures.

Dispatch
This is the total number CASs that are currently dispatched. This is usally min(Processes *
Threads, incomplete_work_items - errors)

Retry
This is the number of CASs that were retried for any reason (such as timeout).

Preempt
This is the total number of processes that have been preempted to make room for other work
due to Fair Share.

Description
This is the descriptin string from the --description string from submit.

7.3. Job Details Page
This page shows details of all the processes that run in support of a job.

The Jobs page contains the following columns:

Id
This is the DUCC process id (not the Operating System's processid). Process 0 is alwyas the
Job Driver. It is hyperlinked to jd.out.log.

Log
This is the log name for the process. It is hyperlinked to the log itself.

Size
This is the size of the log in MB. If you find you have trouble viewing the log from the web
server it could be because it is too big to view in the server and needs to be check directly.

Job Details Page

56 Webserver
please define productname in your docbook

file!

Hostname
This is the name of the node where the process ran.

PID
This is the Operating Systems' PID for the process.

State:Scheduler
This shows the Resesource Manager state of the job. It is one of:

Allocated - The node is still allocated for this job by the RM
Deallocated - The resource manager has deallocated the shares for the job on this node.

Reason:Scheduler
This shows why a process is terminated, from the system's point of view.

AutonomousStop - The process terminated unexpectedly of its own accord ("crashed") for no
detectable reason..
JobCanceled - The job was canceled by the user or a system administrator.
JobCompleted - The process is canceled because of DUCC restart.
JobFailure - The job failure limit is exceeded, causing the job to be canceled by the JD.
Exception - The process is terminated by the JD exception handler.
Failed - The process is terminated by the Agent because the JP wrapper was able to detect and
communicate a fatal condition (Exception) in the pipeline..
FailedInitialization - The process is terminated because the initialization step failed.
Forced - The node is preempted by RM for other work because of fair share.
InitializationTimeout - The initialization phase exceeded the configured timeout.
Killed - The agent terminated the process for some reason.
Stopped - The job is winding down, there's no more work for this node, so it stops.
Voluntary - The job is winding down, there's no more work for this node, so it stops.
Unknown - None of the above. This is an exceptional condition. Check the JP and JD logs for
possible causes..

State:Agent
If there's an error detected only by the agent, this shows the Agent's reason for a process's
death.

Reason:Agent
If there's an error detected only by the agent, this shows the Agent's reason for a process's
death.

Time:Init
This is the clock time this process spent in initializaiton.

Time:Run
This is the clock time this process spent in executing, not including initialization.

Time:GC
This is amount of time spent in Java Garbage Collection for the process.

Count:GC
This is the number of garbage collections performed by the process.

%GC
Process percentage of time spent in garbage collections, relative to total of initialization + run
times.

Reservation Details Page

please define productname in your docbook
file! Webserver 57

CPU
Cumulative CPU time for the process.

%RSS
Resident Storage Size, as a percentage of process memory requirement in job specification.

Time:Avg
Average seconds spent per work item in the process.

Time:min
This is the minimum time spent per work item in the process.

Time:max
This is the minimum time spent per work item in theprocess.

Done
This is the number of work items processed in this process.

Error
This is the number of exceptions processing work items in this process.

Retry
This is the number of work items that were retried for any reason, excluding preemptions.

Preempt
This is the number of work items that had to be retried because of preemption.

JConsole URL
This is a URL that can be used to connect via JMX to the processes, e.g. via jconsole.

7.4. Reservation Details Page
This page shows details of all reservations.

The Reservations page contains the following columns:

Id
This is the DUCC process id of the reservation as provided when the reservation is made.

Start
This is the time the reservation was mde.

End
This is the time the reservation was canceled.

User
This is the userid if the person who made the reservation.

Class
This is the resource class used to schedule the reservation.

Status
This is the status of the reservation. Values include:

Received - Reservation has been vetted, persisted, and assigned unique Id.

Reservation Details Page

58 Webserver
please define productname in your docbook

file!

WaitingForResources - The reservation is waitng for the Resource Manager to find and
schedule resources.
Assigned - The reservation is active.
Completed - The reservation has been canceled.

Reason
If a reservation is not active, the reason. Reasons include:

ResourcesUnavailable - The Resource Manager was unable to find free or freeable resources
to match the resource request.
CanceledBySystem - The job was canceled because DUCC was shutdown.
CanceledByUser - The owner or administrator released the reservation.

Allocation
The number of resources (shares for FIXED policy reservartions, processes for RESERVE
policy reservations) that are allocated.

Size
The memory size in GB of the each allocated unit.

List
The node names of the machines where the resource is allocated.

Description
This is the descriptin string from the --description string from submit.

Examples: Building and Testing a Simple Application 59

Chapter 8. Examples: Building and Testing a
Simple Application

The source for this chapter is ducc_ducbook/documents/chapter-webserver.xml

This chapter intentionally left blank.

To hold you over until this chapter is filled in, the complete source for the sample jobs is installed
into ducc_runtime/test/src.

Part III. DUCC Administration Guide

Installation, Configuration, and Verification 63

Chapter 9. Installation, Configuration, and
Verification

The source for this chapter is ducc_ducbook/documents/chapter-install.xml

This chapter describes how to install, configure, and verify DUCC.

In this document we refer to the machines in a DUCC cluster as the "worker" machines (or nodes)
and the "administrative" machines (or nodes). Applications are distributed to the "worker" nodes.
The DUCC processes which manage resources, process deployment, web serving, etc, are run on
the "administrative" nodes.

In secure environments it may be desirable to run both the "worker" and "administrative" processes
behind a firewall, inaccessible to the public at large. In this case it is possible to configure the
DUCC web-server to run on a gateway machine. We thus may refer to the node with the DUCC
web-server as the "web-server" node.

9.1. General Considerations
DUCC should be installed on systems dedicated to running DUCC and applications managed by
DUCC. DUCC is designed to manage applications that are highly memory-intensive. The DUCC
Resource Manager assumes that every processor in the cluster is dedicated to a single instance of
the DUCC Agent and its spawned children. Prohibitively high levels of page / swap activity may
result from sharing processors with DUCC, preventing applications from making progress and in
worst cases, locking out the processors.

9.2. Hardware Requirements
The following are minimal hardware requirements for running DUCC.

• One Intel-based or IBM Power-7 system. DUCC clusters may be heterogeneous, composed
of both Intel and Power hardware.

• Eight GB (8GB) RAM on each system. DUCC support heterogeneous memory sizes across
all configured processors.

9.3. Software Requirements
The following are minimal software requirements for DUCC. This software must be installed on all
DUCC nodes.

• A modern Linux system. DUCC has been developed and tested on SUSE and Debian
distributions.

• IBM or Sun JRE 1.6 or greater. DUCC has only been tested on 1.7 JREs.

• Python 2.x where "x" is at least 4. The oldest version of Python supported by DUCC is 2.4.
DUCC has not been tested under any version of Python 3. All modern Linux distributions
supply an acceptable version by default. It may be necessary for the System Administrator
to install Python from the Linux distribution media as it is not installed in some default
configurations.

Quick Installation Checklist

64 Installation, Configuration, and Verification
please define productname in your docbook

file!

• User and group "ducc" must be established on all machines. For security reasons, the group
"ducc" should not be shared with any other users.

Currently user "ducc" is hard-coded into the security code of DUCC and cannot be changed.
It is possible to run DUCC under any userid. However all jobs will run under the identity
of the user starting DUCC. This is acceptable for testing and system verification but is a
potential security problem for general use.

• All machines in the DUCC cluster must be connected via a shared file system and a shared
user space. DUCC assumes all user home directories as well as the "ducc" home directory
are cross mounted on all machines.

• Password-less ssh must be installed on the JD and worker machines for user id "ducc".

• At least one user id other than "ducc" that is available to all nodes, to submit jobs from.

Note: User "root" cannot be used to submit jobs to DUCC. User "ducc" should not
be used to submit jobs.

9.4. Quick Installation Checklist
Note: Throughout this document the location where DUCC is installed is referred to as
ducc_runtime. By default, the installation procedures install DUCC in the home directory
of user ducc as ~ducc/ducc_runtime where ~ducc refers to ducc's home directory.

This is an overview of the installation and verification procedures. Details for this checklist follow
in the next section.

1. Configure user ducc and group ducc on all systems.

2. Expand the distribution tarfile.

3. Run the installation script ducc_install.

4. Install the utility ducc_ling on local disk space and set permissions.

5. Update ducc_runtime/resources/ducc.properties:

• Specify location of installed ducc_ling.

• Specify the correct ActiveMQ broker address.

• Specify location of the installed JRE.

• Configure the HTTP hostname and optionally, the HTTP port for the Orchestrator.

• Configure the HTTP hostname and optionally, the HTTP port for the Service
Manager.

• Optionally specify the node for the DUCC webserver.

6. Create node configuration ducc.nodes in ducc_runtime/resources.

7. Optionally update the file ducc_runtime/resources/reserved.nodes.

8. Optionally create or update the file ducc_runtime/resources/ducc.administrators.

Detailed Installation Procedures

please define productname in your docbook
file! Installation, Configuration, and Verification 65

9. Run the verify_ducc utility, repeating and correcting problems, until no errors are reported.

10.Start the ActiveMQ broker and ensure it is running.

11.Start DUCC.

12.From a web browser, go to the URL http://ducchost:42133 and ensure the machines and
DUCC daemons are present and running, where ducchost is the nodename where the
browser is started.

13.Run the verification procedures.

9.5. Detailed Installation Procedures
This section provides detail instructions for installing DUCC.

9.5.1. Basic System Initialization
Create a user "ducc" and a group "ducc". Currently the user and group must both be "ducc". This
ID is hard-coded into the ducc_ling utility for security reasons.

Ensure Python 2.x is installed as the "default" Python. DUCC has only been tested on Python
version 2.4 and 2.6. It may not work on Python 3.0.

Ensure that the IBM or SUN JRE 1.6 is installed on every node. The full JDK is only needed
on nodes where applications are being developed. The location of this JRE must be coded into
ducc.properties as described below and is used to run the DUCC processes. It is possible for
applications to use different JREs via the job specifications.

9.5.2. Install DUCC Distribution
Log in as user ducc and expand the DUCC distribution file:

 tar -zxf [ducc-distribution-file].tgz

This creates a directory ducc=distribution-0.6.4-beta with the installation materials.

Now execute the installation scripting:

 cd ducc-distribution-0.6.4-beta
 ./ducc_install

You will be prompted for the location of the ducc_runtime and ActiveMQ installations. First-time
users should take the defaults and simply hit enter at each prompt.

This will create and populate two directories:

 ~ducc/activemq - the ActiveMQ distribution
 ~ducc/ducc_run-time - the DUCC run-time

Perform Post-Installation Tasks

66 Installation, Configuration, and Verification
please define productname in your docbook

file!

Installation also ensures all necessary programs are made executable and it installs the ActiveMQ
configuration that is tested and customized for DUCC.

Note: It is possible to use an existing ActiveMQ broker instead of the one supplied with
DUCC as long as it is fully compatible with ActiveMQ 5.5. If this is desired, enter NONE
at the prompt for the ActiveMQ location. Be aware that careful tuning of the ActiveMQ
broker may be necessary to support both the DUCC load and the existing load however.

9.5.3. Perform Post-Installation Tasks
This section describes how to configure DUCC and secure the ducc_ling utility.

9.5.3.1. ducc_ling

Ducc_ling is a setuid-root program that DUCC uses to spawn jobs under the identity of the
submitting user. To do this, ducc_ling must briefly acquire root privileges in order to switch to the
user's identity. ducc_ling itself takes care not to open any security holes while doing this but it must
be correctly installed to prevent malicious or errant processes from compromising system security.

There are three points to make about ducc_ling, described in detail below:

1. Ducc_ling must be carefully secured to avoid accidental breach of security by setting
ownership and file permissions correctly.

2. It is possible to run ducc_ling without root privileges, albeit with some restrictions of
DUCC function.

3. Ducc_ling may need to be rebuilt for your hardware.

Securing ducc_ling

To secure ducc_ling, it must be installed on local disk space (not on a shared file system), on
all of the DUCC nodes. The necessary procedure is to create a directory dedicated to containing
ducc_ling and set the privileges on that directory so only user ducc is able to access its contents.

Next, copy ducc_ling into the local, now protected, directory, and set its privileges and ownership
so that when it executes, it executes as user root. When invoked, ducc_ling immediately assumes
the identity of the job owner, sets the working directory for the process, establishes log directories
for the job, and execs into the specified job process.

The following steps illustrate how to do this. Root authority is needed to perform these steps. If
local procedures prohibit the use of setuid-root programs, or root authority cannot be obtained, it is
still possible to run DUCC; however,

1. All jobs will then run as user ducc as it will be impossible for them to assume the
submitter's identity.

2. File-system permissions must be set for all DUCC users so that user ducc is able to read
their applications and data during execution.

For the sake of these procedures, assume that ducc_ling is to be installed on local disk in the
directory:

/local/ducc/bin

Perform Post-Installation Tasks

please define productname in your docbook
file! Installation, Configuration, and Verification 67

Ducc_ling is supplied in the installation directory as

ducc_runtime/admin/ducc_ling

Remember that this procedure must be performed as root on every node in the DUCC cluster.

1. Create the directory to contain ducc_ling:

mkdir /local
mkdir /local/bin
mkdir /local/ducc/bin

2. Ensure that /local/ducc/bin has correct permissions, allowing only the ducc user to read,
write, or execute its contents.

chown ducc.ducc /local/ducc/bin
chmod 700 /local/ducc/bin

3. Copy ducc_ling into place:

cp ducc_runtime/admin/ducc_ling /local/ducc/bin

4. Set ownership of ducc_ling. It is necessary to ensure that user ownership is root and that
group ownership is ducc.

chown root.ducc /local/ducc/bin/ducc_ling

5. Set permisisons so that user root can read, write, and execute ducc_ling, group ducc can
read and execute, and that when ducc_ling is executed, it is run as the user who owns it (the
"setuid" bit).

chmod 4750 /usr/bin/ducc/ducc_ling

When done correctly, only user ducc will have the ability to access ducc_ling. ducc_ling has
internal checks to prevent it from operating when invoked by root and to prevent it from executing
jobs as user root. Assuming ducc_ling is installed in /local/ducc/bin, the ducc_ling permissions
should be as follows (the date and file-sizes will not match this example):

ducc@f7n1:~/ducc-0.1-beta> ls -l /local/ducc/bin
-rwsr-x--- 1 root ducc 22311 2011-10-08 11:42 ducc_ling

Perform Post-Installation Tasks

68 Installation, Configuration, and Verification
please define productname in your docbook

file!

NOTE the -rwsr-x--- permissions on ducc_ling. If this is not what you see then retry the procedure.

Running ducc_ling Without Root Authority

It is possible to run DUCC without giving ducc_ling root authority if there are security concerns or
simply if you wish to experiment with DUCC on a machine where you cannot get (or do not want)
root privileges. If you do this, all jobs will execute under the identity of the user that starts DUCC.
For example, if you install DUCC and start it as user "bob", then all jobs run as user "bob". Most of
DUCC is developed and tested in this mode and it is expected to work correctly.

To run ducc_ling in this mode , simply use the default configuration as distributed in
ducc.properties, and the DUCC agents will use the non-privileged version instead. Ducc_ling will
execute from the directory

ducc_runtime/admin

This is very convenient for running small test systems or for simply evaluating DUCC before
performing a more extensive installation.

The default configuration line for ducc_ling to run in this mode is as follows:

ducc.agent.launcher.ducc_spawn_path=${DUCC_HOME}/admin/ducc_ling

Notes:

• If you run in this mode, you do NOT need to install ducc_ling in local disk space; the
ducc_ling that is packaged in ducc_runtime/admin will work.

• If ducc_ling is compiled for an architecture other than the one you installed in, you will need
to rebuild it for your architecture as described below.

Running On Architectures Other Than That In The Prebuilt
Distribution.

DUCC is almost a pure-Java application. However a small bit of C code called ducc_ling is
required to allow DUCC to assume different user's identity. Your tarball will come with ducc_ling
compiled for some specific architecture. To build ducc_ling for a different architecture (e.g. Intel,
Power, or other), all that is needed is normal gcc.

To rebuild ducc_ling:

• CD to the directory with the ducc_ling source:

cd ducc_runtime/duccling/src

• Build ducc_ling:

make clean all

Update ducc.properties

please define productname in your docbook
file! Installation, Configuration, and Verification 69

When done you have an architecture-specific ducc_ling binary that must be installed as described
above.

9.5.4. Update ducc.properties
The file ducc.properties is the main configuration file for DUCC. Some properties must not be
changed or DUCC will not function; these properties control internal DUCC operations. Other
properties are tuning parameters that should not be adjusted until experience with the local
installation is gained the the tuning requirements are known. Some properties define the local
environment and must be set when DUCC is first installed.

The properties that must be updated as part of installation are:

 ducc.broker.hostname
 ducc.broker.port
 ducc.jvm
 ducc.ws.node
 ducc.ws.address
 ducc.sm.http.port
 ducc.sm.http.node
 ducc.orchestrator.http.port
 ducc.orchestrator.node
 ducc.agent.launcher.ducc_spawn.path

The full set of properties is described in ducc.properties [77]

Edit ducc_runtime/resources/ducc.properties and adjust the required properties as follows:

ducc.broker.hostname
Set this to the host where your ActiveMQ broker is running. This MUST be set to the host-
name, not "localhost", even if your broker port is configured to "localhost" or "0.0.0.0". There
is no default for this parameter.

ducc.broker.port
Set this to the port configured for ActiveMQ. The default is 61616.

ducc.jvm
Set this to the full path to the "java" command on your systems. If this is not set DUCC will
attempt to use the "java" command in its path and will fail if this is not the correct version of
java, or if it is not in the default path.

Note that Java must be installed on all nodes in the same location. For example:

ducc.jvm = /share/bin/jdk1.6/bin/java

ducc.ws.node
Set this to the node name where you want your web-server to run. If not set, the web-server
starts on the same node as the rest of the DUCC management processes.

ducc.ws.address
In multi-homed systems (more than one network card), the DUCC web-server will not know
which address it should listen on for requests. Set this address to the desired web-server
address. If the system is not multi-homed this property need not be set.

Create the DUCC Node list

70 Installation, Configuration, and Verification
please define productname in your docbook

file!

ducc.sm.http.port
This is the HTTP port for SM requests. The default is 19989. If this is acceptable, it may be left
as is; otherwise, select a port and configure it here.

ducc.sm.http.node
This MUST be configured to the node where the SM is running. The default is a placeholder,
"localhost", which will not generally work.

ducc.orchestrator.http.port
This is the HTTP port for most commands (ducc_submit, ducc_reserve, etc.) The default is
19988. If this is acceptable, it may be left as is; otherwise, select a port and configure it here.

ducc.orchestrator.node
This MUST be configured to the node where the Orchestrator is running. The default is a
placeholder, "localhost", which will not generally work.

ducc.agent.launcher.ducc_spawn.path
Set this to the full path where ducc_ling is installed.

9.5.5. Create the DUCC Node list
Update the file "ducc.nodes" in the directory "ducc_runtime/resources/". For initial installation this
should be a simple flat file with the name of each host that participates in the DUCC cluster on one
line. The section on ducc.nodes [108] provides full details on node configuration. Note that line
comments are allowed and are denoted with #. For example:

Frame 6 nodes
f6n6 # management node
f6n7
f6n8
f6n9
f6n10
Frame 7 nodes
f7n1
Frame 10 nodes
f10n1
f10n2
f10n3
f10n8
f10n9

Note: It is important that the node running the management processes is NOT in the
nodelist. If the management node is in the nodelist an agent will be started on that node
and Job Processes (JPs) will be started on it. Because JPs use a very large amount of
memory this can prevent the management processes from functioning.

9.5.6. Define the Job Driver nodepool
One node should be defined for running the Job Driver (JD) processes. This may be any node
in the cluster. The node must be reserved to prevent Job Processes (JP) from running on it. It is
permissible for the JD reserved node to be the management node, as long as sufficient memory (at
least 16GB) is available. To constrain the Job Driver node to a specific set of nodes, it is necessary
to define a nodepool containing those nodes, and to update the JobDriver class to use that node
pool. Details on nodepool and class configuration are in ducc.classes [105].

Define the system administrators

please define productname in your docbook
file! Installation, Configuration, and Verification 71

If it doesn't matter which node is reserved for the Job Driver this step may be skipped.

Configure the Job Driver node thus:

1. Create the file ducc_runtime/resources/jobdriver.nodepool

2. Add the name of the management node to the file. This should be the only line in the file.

3. Configure the JobDriver class in ducc.properties to be in the jobdriver nodepool.
For example:

bash-3.2$ cat jobdriver.nodepool
f6n6 # management and job driver node

9.5.7. Define the system administrators
Userids listed in file ducc_runtime/resources/ducc.administrators are granted expanded privileges,
for example the ability to cancel any job on the system via the DUCC web-server. The format of
the file is simply one userid per line, with commented lines denoted by a leading #. For example:

administrators
degenaro
challngr
cwiklik
eae

9.6. Run The Verification Script
The script ~ducc/ducc_runtime/admin/verify_ducc checks your ActiveMQ configuration,
ducc.nodes, and ducc_ling setup to ensure the steps above were completed correctly.

Simply execute the script, fixing problems and rerunning until no errors are reported. If ANY errors
are reported they must be fixed and verify_ducc rerun before continuing.

cd ducc_runtime/admin
./verify_ducc

9.7. Start DUCC
You should add the directory ducc_runtime/admin to your path to simplify DUCC
administration. As well you should add ducc_runtime/bin to your path in order to submit and
cancel jobs and reservations.

1. Start the ActiveMQ broker. If you're using the broker supplied with DUCC use the
following procedure, otherwise use your local procedures.

cd ~ducc/activemq/apache-activemq-5.5.0/bin

Start DUCC

72 Installation, Configuration, and Verification
please define productname in your docbook

file!

./activemq start

2. Ensure the broker is running. If you use the ActiveMQ distribution supplied with DUCC
and are using the default port, then use the following command, otherwise use your local
procedures

netstat -an | grep 61616 | grep LISTEN

You should see something similar to the following if ActiveMQ is started correctly. Be sure
ActiveMQ is started before continuing (because ActiveMQ manages all message flows and
acts as the DUCC name server.)

tcp46 0 0 *.61616 *.* LISTEN

3. Start DUCC. The command below starts DUCC using the default node list, ducc.nodes. See
the section describing start_ducc for other options.

cd ~ducc/ducc_runtime/admin
./start_ducc

4. Make sure DUCC is running on all the expected nodes by running the check_ducc script.
You would expect to see a process for each of

• rm: the Resource manager

• sm - the Services manager

• pm - the Process manager

• ws - the web-server

• or - the job flow manager
and you would expect to see one agent on each node specified in ducc.nodes.

For example:

 ducc@f10n1:~/projects/ducc/ducc_build/runtime/admin> ./check_ducc
 Checking f10n1 ... Found rm @ f10n1 PID 95288 owned by ducc
 Found pm @ f10n1 PID 95337 owned by ducc
 Found sm @ f10n1 PID 95409 owned by ducc
 Found or @ f10n1 PID 95478 owned by ducc
 Found agent @ f10n1 PID 95621 owned by ducc
 Checking f10n2 ... Found agent @ f10n2 PID 92113 owned by ducc
 Checking f10n3 ... Found agent @ f10n3 PID 58602 owned by ducc
 Checking f10n4 ... Found agent @ f10n4 PID 31689 owned by ducc
 Checking f10n5 ... Found agent @ f10n5 PID 122128 owned by ducc
 Checking f10n6 ... Found agent @ f10n6 PID 8301 owned by ducc
 Checking f10n7 ... Found agent @ f10n7 PID 106659 owned by ducc

Start DUCC Browser

please define productname in your docbook
file! Installation, Configuration, and Verification 73

 Checking f10n8 ... Found agent @ f10n8 PID 43946 owned by ducc
 Checking f10n9 ... Found agent @ f10n9 PID 115101 owned by ducc
 Checking f10n10 ... Found agent @ f10n10 PID 93730 owned by ducc
 Checking f9n2 ... Found ws @ f9n2 PID 88351 owned by ducc

9.8. Start DUCC Browser
Open a browser to the URL http://wshost:42133, where "wshost" is the host where the DUCC web-
server is started in the previous step. Feel free to explore.

Click the "Status" and then "Machines" link at the upper left to see the machines that are configured
above. If they do not show up after a minute or two there is something wrong with the installation.

Click the "Status" and then "Reservations" link. This should show a reservation for user "System"
and class "JobDriver". The status should show "Assigned" or "Waiting For Resources". If it shows
"Waiting For Resources" it may take two to three minutes to advance to "Assigned". If it never
becomes "Assigned" there is something wrong with the installation.

Once the machines and JobDriver reservation show up correctly DUCC is ready to run work.

9.9. Run a Job
Note: Jobs cannot be scheduled until all DUCC components have initialized and
stabilized, which can take a minute or two. Check the web console, under Status ->
Reservations and wait until the reservation for JobDriver is in state "Assigned" before
attempting to run jobs.

A set of very simple jobs is provided in the distribution for testing and demonstration. The jobs
are installed into ducc_run-time/test as part of the installation above. The jobs run UIMA
analytics but instead of computation, they simply sleep, in order to verify and demonstrate DUCC
without the need for high-powered hardware and complex software installation.

To run a job:

1. Set your path to include ducc_runtim/bin. This directory has all the commands for the
Command Line Interface (CLI).

2. As some user other than ducc, go to the directory ducc_runtime/test/jobs and run
ducc_submit:

cd ~ducc/ducc_runtime/test/jobs
ducc_submit --specification 1.job

A job id number is printed to the console.

It will take a few moments for resources to be scheduled and the job to start up. You can follow the
progress of the job in the web browser using the Status -> Jobs link.

In your home directory expect to find the following:

• The directory ducc/logs is created.

Shutdown DUCC

74 Installation, Configuration, and Verification
please define productname in your docbook

file!

• Inside ducc/logs is a directory with the same id as was given when you submitted should
appear. As the job progresses, a number of logs and other files will be created in this
directory.

There are five sample jobs provided, each of which runs a different number of work items, and one
which submits a reservation. One need not wait for one job to complete before submitting another;
try submitting several of the jobs and watch progress on the web-server and visualization.

You may cancel any job while it is running by executing ducc_cancel:

ducc_cancel --id [id]

where the ID you supply is the one returned by ducc_submit. The ID is also shown in the web-
server.

To submit a reservation:

ducc_reserve --specification reserve.job

This will take a few moments and if all is well, will return an ID. The reservation will have been
scheduled when the ID is returned. It is possible to view the reservation in the web-server under
Status -> Reservations.

To cancel the reservation:

ducc_unreserve --id [id]

again, using the ID returned from ducc_reserve.

The commands issued here and the format of the inputs are described in detail in the Command
Line Interface chapter.

9.10. Shutdown DUCC
To stop DUCC, execute

~ducc/ducc_runtime/admin/ducc_stop -a

This broadcasts a message to all DUCC processes instructing them to terminate. Any job processes
still alive are also killed.

Shutdown attempts to be "graceful". If there is still a job running a signal is sent indicating
shutdown is occurring and DUCC waits a few moments for processes to exit. If the processes do
not exit DUCC issues kill -9 to forcibly stop them, and then exits.

Occasionally system problems prevent a DUCC process from stopping. It is good practice, after
stopping DUCC, to ensure the processes actually exited by running

Shutdown DUCC

please define productname in your docbook
file! Installation, Configuration, and Verification 75

check_ducc

check_ducc searches all the nodes in the node list and the local node for DUCC processes and
prints a status line for everything it finds.

If, after a minute or two, check_ducc shows some DUCC process still running, you can have
check_ducc issue kill -9 against them:

check_ducc -k

Administration 77

Chapter 10. Administration
The source for this chapter is ducc_ducbook/documents/chapter-admin.xml

This chapter describes how to start, stop, and generally administer DUCC.

There are several files used to configure DUCC:

ducc.properties
Ducc.properties contains primary configuration for all the DUCC processes including URL
and port specifications, tuning parameters, and protocols.

ducc.classes
Ducc.classes configures the scheduling classes used by the Resource Manager.

Node lists
Node lists contain the names of the machines that comprise a DUCC cluster. The default
nodelist is called ducc.nodes

Node pools
Nodepool files are used by the Resource Manager to logically group nodes by function. Jobs,
reservations, and services may be restricted to specific pools of nodes.

These are several administrative commands. To use these one should add ducc_runtime/admin to
their PATH. It is not necessary to add DUCC_HOME to the environment as the commands infer its
location from where they are invoked.

start_ducc
Use start_ducc to start DUCC administrative processes and agents. The DUCC processes may
be started individually or at once.

stop_ducc
Use stop_ducc to stop DUCC administrative processes and agents. The DUCC processes may
be stopped individually or at once.

check_ducc
Use check_ducc to query the state of DUCC processes in the cluster. It may be used to force-
kill DUCC processes and user processes that cannot be stopped by stop_ducc for any reason.

verify_ducc
Use verify_ducc validate the integrity of your DUCC installation. It performs extensive checks
to insure components are installed as expected.

10.1. ducc.properties
The source for this chapter is ducc_ducbook/documents/admin/ducc-properties.xml

The primary configuration file is called ducc.properties and always resides in the directory
ducc_runtime/resources.

Some of the properties in ducc.properties are intended as the "glue" that brings the various
DUCC components together and lets then run as a coherent whole. These types of properties should
be modified only by developers of DUCC itself. In the description below these properties are
classified as "Private".

General DUCC Properties

78 Administration
please define productname in your docbook

file!

Some of the properties are tuning parameters: timeouts, heartbeat intervals, and so on. These may
be modified by DUCC administrators, but only after experience is gained with DUCC, and only
to solve specific performance problems. The default tuning parameters have been chosen by the
DUCC system developers to provide "best" operation under most reasonable situations. Changing
these parameters may create imbalances in the system and result in performance problems or even
prevent DUCC from operating at all. In the description below these properties are classified as
"Tuning".

Some of the properties are standard configuration properties: the location of the ActiveMQ
broker, the location of the Java JRE, port numbers, etc. These should be modified by the DUCC
administrators to configure DUCC to each individual installation. In the description below these
properties are classified as "Local".

10.1.1. General DUCC Properties

ducc.jms.provider

Default Value
activemq

Type
Private

Purpose
Declare the type of middleware providing the JMS service used by DUCC.

ducc.broker.protocol

Default Value
tcp

Type
Private

Purpose
Declare the wire protocol used to communicate with ActiveMQ.

ducc.broker.hostname

Default Value
localhost

Type
Local

Purpose
This declares the node name where the ActiveMQ broker resides. It MUST be updated to
the actual node where the broker is running as part of DUCC installation. The default value
will not work.

ducc.broker.port

Default Value
61616

General DUCC Properties

please define productname in your docbook
file! Administration 79

Type
Local

Purpose
This declares the port on which the ActiveMQ broker is listening for messages. It MAY be
updated as part of DUCC installation. ActiveMQ ships with port 61616 as the default port,
and DUCC uses that default.

ducc.broker.decoration

Default Value
wireFormat.maxInactivityDuration=0

Type
Local

Purpose
From the ActiveMQ documentation: "The maximum inactivity duration (before which the
socket is considered dead) in milliseconds. On some platforms it can take a long time for
a socket to appear to die, so we allow the broker to kill connections if they are inactive for
a period of time. Use by some transports to enable a keep alive heart beat feature. Set to a
value less-than-or-equal0 to disable inactivity monitoring. Declare the wire protocol used
to communicate with ActiveMQ."

This decoration is used to keep the broker connection alive while a JVM is in a long
garbage collection. The applications that DUCC is designed to support can spend
significant time in garbage collection, which can cause spurious timeouts. By default the
DUCC configuration disables the timeout by setting it to 0.

ducc.broker.name

Default Value
localhost

Type
Local

Purpose
This is the internal name of the broker, used to locate Broker's MBean in JMX Registry.
It is NOT related to any node name. When using the ActiveMQ distribution supplied with
DUCC it should always be set to "localhost". When using another broker, this name must
match the "brokerName" parameter in the local ActiveMQ configuration.

ducc.broker.jmx.port

Default Value
1099

Type
Local

Purpose
This is the port used to make JMX connections to the broker. When using the ActiveMQ
broker supplied with DUCC this should normally not be changed. If using another
ActiveMQ broker this must match the configured JMX port.

General DUCC Properties

80 Administration
please define productname in your docbook

file!

ducc.cluster.name

Default Value
Welcome To DUCC!

Type
Local

Purpose
This is a string used in the Web Server banner to identify the local cluster. It may be set to
anything desired.

ducc.runmode

Default Value
unconfigured.

Type
Local

Purpose
When set to "Test" this property bypasses userid and authentication checks. It is intended
for use ONLY by DUCC developers. It allows developers of DUCC to simulate a multi-
user environment without the need for root privileges.

Note: WARNING! Enabling this feature in a production DUCC system is a
serious security breach. It should only be set by DUCC developers running with
an un-privileged ducc_ling.

ducc.locale.language

Default Value
en

Type
Private

Purpose
Establish the language for national language support of messages. Currently only "en" is
supported.

ducc.locale.country

Default Value
us

Type
Private

Purpose
Establish the country for National Language Support of messages. Currently only "us" is
supported.

ducc.jvm

Default Value
java

General DUCC Properties

please define productname in your docbook
file! Administration 81

Type
Local

Purpose
Specifies the full path to the JVM to be used by the DUCC processes. If not specified,
"java" must be in the default path for user "ducc".

ducc.jmx.port

Default Value
2099

Type
Private

Purpose
Every process started by DUCC has JMX enabled by default. When more than one process
runs on the same machine this can cause port conflicts. The property "ducc.jmx.port" is
used as the base port for JMX. If the port is busy, it is incremented internally until a free
port is found.

The web server's "System -> Daemons" tab is used to find the JMX URL that gets assigned
to each of the DUCC management processes. The web server's job details page for each
job is used to find the JMX URL that is assigned to each JP.

ducc.agent.jvm.args

Default Value
Xmx100M

Type
Tuning

Purpose
This specifies the list of arguments passed to the JVM when spawing the Agent.

ducc.orchestrator.jvm.args

Default Value
Xmx1G

Type
Tuning

Purpose
This specifies the list of arguments passed to the JVM when spawing the Orchestrator.

ducc.rm.jvm.args

Default Value
Xmx1G

Type
Tuning

General DUCC Properties

82 Administration
please define productname in your docbook

file!

Purpose
This specifies the list of arguments passed to the JVM when spawing the Resource
Manager.

ducc.agent.jvm.args

Default Value
Xmx1G

Type
Tuning

Purpose
This specifies the list of arguments passed to the JVM when spawing the Process Manager.

ducc.sm.jvm.args

Default Value
Xmx1G

Type
Tuning

Purpose
This specifies the list of arguments passed to the JVM when spawing the Service Manager.

ducc.ws.jvm.args

Default Value
Xmx8G

Type
Tuning

Purpose
This specifies the list of arguments passed to the JVM when spawing the Webserver.

ducc.admin.endpoint

Default Value
ducc.admin.channel

Type
Private

Purpose
This is the JMS endpoint name used for DUCC administration messages.

ducc.admin.endpoint.type

Default Value
topic

Type
Private

General DUCC Properties

please define productname in your docbook
file! Administration 83

Purpose
This is the JMS message type used for DUCC administration requests. If changed DUCC
admin may not work.

ducc.submit.threads.limit

Default Value
(unconfigured)

Type
Local

Purpose
This enforces a maximum number of threads per job, amortized over all the processes. No
job will have more threads than this dispatched. This limit is disabled by default.

ducc.driver.jvm.args

Default Value
(unconfigured)

Type
Local

Purpose
If enabled, the arguments here are automatically added to the JVM arguments specified for
the Job Driver process.

ducc.process.jvm.args

Default Value
(unconfigured)

Type
Private

Purpose
If enabled, the arguments here are added by DUCC to the JVM arguments in the user's job
processes.

ducc.cli.httpclient.sotimeout

Default Value
0

Type
Tuning

Purpose
This is the timeout used by the CLI to communicate with DUCC, in millisseconds. If no
response is heard within this time, the request times out and is aborted. When set to 0 (the
default), the request never times out.

ducc.signature.required

Default Value
on

Web Server Properties

84 Administration
please define productname in your docbook

file!

Type
Tuning

Purpose
When set, the CLI signs each request so the Orchestrator can be sure the requestor is
actually who he claims to be.

10.1.2. Web Server Properties
ducc.ws.configuration.class

Default Value
org.apache.uima.ducc.ws.config.WebServerConfiguration

Type
Private

Purpose
The name of the pluggable java class used to implement the Web Server.

ducc.ws.node

Default Value
(unconfigured)

Type
Local

Purpose
This is the name of the node the web server is started on. If not specified, the web server is
started on the node where start_ducc is run.

ducc.ws.ipaddress

Default Value
(unconfigured)

Type
Local

Purpose
In multi-homed systems it may be necessary to specify to which of the multiple addresses
the Web Server listens for requests. This property is an IP address that specifies to which
address the Web Server listens.

ducc.ws.port

Default Value
42133

Type
Local

Purpose
This is the port on which the DUCC Web Server listens for requests.

Job Driver Properties

please define productname in your docbook
file! Administration 85

ducc.ws.port.ssl

Default Value
42155

Type
Local

Purpose
This is the port that the Web Server uses for SSL requests (such as authentication).

ducc.ws.port.ssl.pw

Default Value
quackquack

Type
Local

Purpose
This is the SSL password used for SSL requests.

ducc.ws.session.minutes

Default Value
60

Type
Local

Purpose
Once authenticated, this property determines the lifetime of the authenticated session to the
Web Server.

ducc.ws.max.history.entries

Default Value
200

Type
Local

Purpose
The Web Server maintains a history of jobs over time. To avoid overloading the system
with data about old and obsolete jobs it prunes the history. This property determines the
size of the history that is kept.

10.1.3. Job Driver Properties
ducc.jd.configuration.class

Default Value
org.apache.uima.ducc.jd.config.JobDriverConfiguration

Type
Private

Job Driver Properties

86 Administration
please define productname in your docbook

file!

Purpose
The name of the pluggable java class used to implement the Job Driver.

ducc.jd.state.update.endpoint

Default Value
ducc.jd.state

Type
Private

Purpose
This is the JMS endpoint name by the Job Driver to send state to the Orchestrator.

ducc.jd.state.update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS message type used to send state to the Orchestrator.

ducc.jd.state.publish.rate

Default Value
15000

Type
Tuning

Purpose
The frequency in milliseconds that JD publishes its state to the Orchestrator. A higher rate
may slightly increase system response but will increase network load. A lower rate will
somewhat decrease system response and lower network load.

ducc.jd.queue.prefix

Default Value
ducc.jd.queue.

Type
Private

Purpose
This is a human-readable string used to form queue names for the JMS queues used to pass
CASs from the Job Driver to the Job Processes.

ducc.jd.host.class

Default Value
JobDriver

Type
Tuning

Job Driver Properties

please define productname in your docbook
file! Administration 87

Purpose
This is the scheduling class used to request a reservation from the Resource Manager for
the machine that will be used to run the Job Driver processes. This class must also be
configured in ducc.classes with scheduling policy RESERVE.

ducc.jd.host.description

Default Value
Job Driver

Type
Tuning

Purpose
This is a name to be associated with the reservation that is made for the Job Driver Node.
It can be any string and is displayed in the Reservations page on the Web Server.

ducc.jd.memory.size

Default Value
8GB

Type
Tuning

Purpose
This is the amount of memory that is requested in the Job Driver reservation. It is used
in conjunction with the configuration of the class specified for the job driver (by default,
JobDriver) to schedule a node. The default configuration for this class uses a node pool
instead of memory to allocate the Job Driver node so by default, this parameter is ignored.

ducc.jd.number.of.machines

Default Value
1

Type
Tuning

Purpose
This is the number of machines to request for Job Driver nodes. This may be increased if
there are many jobs in the system and the load on the JD node is high enough to slow the
JD processes.

ducc.jd.host.user

Default Value
System

Type
Tuning

Purpose
This is the userid that is associated with the Job Driver reservation. It does not need to be
a "real" userid as the actual owner of the reservation is user "ducc". It is primarily used as
annotation of the reservation in the Web Server and logs.

Service Manager Properties

88 Administration
please define productname in your docbook

file!

10.1.4. Service Manager Properties
ducc.sm.configuration.class

Default Value
org.apache.uima.ducc.sm.config.JobDriverConfiguration

Type
Private

Purpose
This is the name of the pluggable java class used to implement the Service Manager.

ducc.sm.state.update.endpoint

Default Value
ducc.sm.state

Type
Private

Purpose
This is the JMS endpoint name used for state messages sent by the Service Manager.

ducc.sm.state.update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS message type used for state messages sent by the Service Manager.

ducc.sm.meta.ping.rate

Default Value
60000

Type
Tuning

Purpose
This is the time, in milliseconds, between pings by the Servic Manager to each known,
running service.

ducc.sm.meta.ping.stability

Default Value
10

Type
Tuning

Purpose
This is the number consecutive pings that may be missed before a service is considered
unavailable.

Orchestrator Properties

please define productname in your docbook
file! Administration 89

ducc.sm.meta.ping.timeout

Default Value
5000

Type
Tuning

Purpose
This is the time in milliseconds the SM waits for a response to a ping. If the service does
not respond within this time the ping is accounted for as a "missed" ping.

ducc.sm.http.port

Default Value
19989

Type
Local

Purpose
This is the HTTP port used by the SM to field requests from the CLI / API.

ducc.sm.http.node

Default Value
localhost

Type
Local

Purpose
This is the node where the service manager runs. It MUST be configured as part of DUCC
setup.

ducc.sm.default.linger

Default Value
300

Type
Tuning

Purpose
This is the length of time, in seconds, that the SM allows a service to remain alive after
all referenceing jobs have exited. If no new job enters the system by the time this time has
expired, the SM stops the service.

10.1.5. Orchestrator Properties
ducc.orchestrator. configuration.class

Default Value
org.apache.uima.ducc.orchestrator.config.OrchestratorConfiguration

Type
Private

Orchestrator Properties

90 Administration
please define productname in your docbook

file!

Purpose
This is the name of the pluggable java class used to implement the DUCC Orchestrator.

ducc.orchestrator.checkpoint

Default Value
on

Type
Private

Purpose
This controls Orchestrator state checkpointing. If set off, no state is saved across restarts of
the Orchestrator except for the current job numbering. This should generally be left on.

ducc.orchestrator.start.type

Default Value
warm

Type
Tuning

Purpose
This indicates the level of recovery to be taken on restarting a system. In general, if DUCC
is fully shutdown, only cold and warm starts make sense because the Job Processes and
Job Drivers are terminated during the shutdown. However if a management process died
or was terminated by the administrators, most work can be recovered without interruption,
allowing for a hot start. There are three level of startup:

• cold. All reservations are canceled, all currently running jobs (if any) are
terminated. All services are terminated. The system starts with no jobs, reservations,
or services active.

• warm. All reservations are restored. All currently running jobs (if any) are
terminated. All services are started or restarted as indicated by their state when
the system went down. The system starts with no jobs active, but reservations and
services are preserved.

• hot. All reservations are restored. The system attempts to reattach to all jobs that are
still running. The system attempts to reattach to any services that are still running.
Any services that need to be restarted are restarted.

ducc.orchestrator.state.endpoint

Default Value
ducc.orchestrator.state

Type
Private

Purpose
This is the name of the JMS endpoint through which the Orchestrator broadcasts its full
state messages. These messages include full job information and can be large. This state is
used by the Process Manager and the Webserver.

Orchestrator Properties

please define productname in your docbook
file! Administration 91

ducc.orchestrator.state. update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used for the "full" state messages sent by the Orchestrator.

ducc.orchestrator.state.publish.rate

Default Value
15000

Type
Private

Purpose
This is the frequency in milliseconds that the Orchestrator publishes its non-abbreviated
state.

ducc.orchestrator.abbreviated. state.endpoint

Default Value
ducc.orchestrator.abbreviated.state

Type
Private

Purpose
This is the name of the JMS endpoint through which the Orchestrator broadcasts its
abbreviated state. This state state is used by the Resource Manager and Service Manager.

ducc.orchestrator.abbreviated. state.update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used for the "abbreviated" state messages sent by the
Orchestrator.

ducc.orchestrator.abbreviated. state.publish.rate

Default Value
15000

Type
Private

Purpose
This is the frequency in milliseconds that the Orchestrator publishes its abbreviated state.

Resource Manager Properties

92 Administration
please define productname in your docbook

file!

ducc.orchestrator.maintenance.rate

Default Value
60000

Type
Tuning

Purpose
This is the frequency in milliseconds that the Orchestrator checks and updates history and
state.

ducc.orchestrator.job.factory.classpath.order

Default Value
user-before-ducc

Type
Tuning

Purpose
When the DUCC Agent spawns a process it must set the process's Java CLASSPATH.
This CLASSPATH must contain a minimum set of entries, which are supplied by the
Agent. However, users may want their own CLASSPATH to take precedence; for
example, they may have a different version of some .jar file. In this case the user's
CLASSPATH should be set before DUCC's. To control this, set this tuning parameter to
one of two values:

• user-before-ducc

• ducc-before-user

10.1.6. Resource Manager Properties
ducc.rm.configuration.class

Default Value
org.apache.uima.ducc.rm.config.ResourceManagerConfiguration

Type
Private

Purpose
This is the name of the pluggable java class used to implement the DUCC Resource
Manager.

ducc.rm.state.update.endpoint

Default Value
ducc.rm.state

Type
Private

Purpose
This is the name of the JMS endpoint through which the Resource Manager broadcasts its
abbreviated state.

Resource Manager Properties

please define productname in your docbook
file! Administration 93

ducc.rm.state.update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used for state messages sent by the Resource Manager..

ducc.rm.state.publish.rate

Default Value
60000

Type
Tuning

Purpose
This is the rate, in milliseconds, at which the Resource Manager publishes its state to the
Orchestrator.

ducc.rm.share.quantum

Default Value
15

Type
Tuning

Purpose
The share quantum is the smallest amount of RAM that is schedulable for jobs, in GB.
Jobs are scheduled based entirely on their memory requirements. Memory is allocated in
multiples of the share quantum.

The job's declared process_memory_size is used to determine the overall memory
requirements in terms of share quanta according to the formula: physical_requirement =
ciel(process_memory_size / share_quantum) * share_quantum.

For example suppose a process declares it's memory requirement to be 20GB. Then
physical_requirement = ciel(20 / 15) * 15 = 2 * 15 = 30 GB. The processes for this job
are scheduled only on machines with at least 30 GB of reported RAM, and the Resource
Manager insures that no other processes are scheduled on the machine that might encroach
on this 30 GB.

The share quantum is also used to determine each user's fair share of the resources. The
scheduler's goal is to ensure that all user's are allocated the same number of quantum
shares. Conceptually, the total memory in the system is divided by the share quantum and
then allocated in equal portions to all users in the system.

Thus, jobs that require less memory will generally have more processes scheduled than
jobs that require more memory, but the total memory scheduled is approximately the same
for all jobs.

Resource Manager Properties

94 Administration
please define productname in your docbook

file!

ducc.rm.scheduler

Default Value
org.apache.uima.ducc.rm.scheduler.NodepoolScheduler

Type
Private

Purpose
The component that implements the scheduling algorithm is pluggable. This specifies the
name of that class.

ducc.rm.class.definitions

Default Value
ducc.classes

Type
Tuning

Purpose
This specifies the name of the file that contains the site's class definitions. This file is
described in detail the section on ducc.properties [77].

ducc.rm.default.tasks

Default Value
10

Type
Tuning

Purpose
In order to calculate the number of processes to allocate to a job, the scheduler must know
how many tasks or work items the job will execute. If the job does not declare that number,
default.tasks is used.

ducc.rm.default.memory

Default Value
15

Type
Tuning

Purpose
If a job does not declare the amount of memory each process requires, the scheduler uses
default.memory for scheduling. The unit is GB.

Note that the Agents enforce the declared memory, so if a process understates its
requirements it will generally be killed.

ducc.rm.default.threads

Default Value
4

Resource Manager Properties

please define productname in your docbook
file! Administration 95

Type
Tuning

Purpose
Each job process will be dispatched with some number of threads such that DUCC will
dispatch work items to these threads. The scheduler uses this number to calculate the
number of processes that must be allocated.

The maximum number of processes a job requites is determined by the formula:
num_processes = ciel(num_work_items / num_threads).

Thus, a job that declares 100 work items and 4 threads is assigned a maximum of
ciel(100/4) = 25 processes.

ducc.rm.node.stability

Default Value
5

Type
Tuning

Purpose
The RM receives regular "heartbeats" from the DUCC agents in order to know what
nodes are available for scheduling. The node.stability property configures the number of
consecutive heartbeats that may be missed before the Resource Manager considers the
node to be inoperative.

If a node becomes inoperative, the Resource Manager deallocates all processes on that
node and attempts to reallocate them on other nodes. The node is marked offline and is
unusable until its heartbeats start up again.

The default configuration declares the agent heartbeats to occur at 1 minute intervals.
Therefore heartbeats must be missed for five minutes before the Resource Manager takes
corrective action.

ducc.rm.init.stability

Default Value
3

Type
Tuning

Purpose
During DUCC initialization the Resource Manager must wait some period of time for
all the nodes in the cluster to check-in via their "heartbeats". If the RM were to start
scheduling too soon there would be a period of significant "churn" as the perceived cluster
configurations changes rapidly. As well, it would be impossible to recover work in a warm
or hot start if the affected nodes had not yet checked in.

The init.stability property indicates how many heartbeat intervals the RM must wait before
it starts scheduling after initialization.

ducc.rm.eviction.policy

Default Value
SHRINK_BY_INVESTMENT

Resource Manager Properties

96 Administration
please define productname in your docbook

file!

Type
Tuning

Purpose
The alternative value is SHRINK_BY_MACHINE.

The eviction.policy is a heuristic to choose which processes of a job to preempt because of
competition from other jobs.

The SHRINK_BY_INVESTMENT policy attempts to preempt processes such that the
least amount of work is lost. It chooses candidates for eviction in order of:

1. Processes still initializing, with the smallest time spent in the initializing step.

2. Processes whose currently active work items have been executing for the shortest
time.

The SHRINK_BY_MACHINE policy attempts to preempt processes so as to minimize
fragmentation on machines with large memories that can contain multiple job processes.
No consideration of execution time or initialization time is made.

ducc.rm.initialization.cap

Default Value
2

Type
Tuning

Purpose
The type of jobs supported by DUCC generally have very long and often fragile
initialization periods. Errors in the applications and other problems such is missing or
errant services can cause processes to fail during this phase.

To avoid preempting running jobs and allocating a large number of resources to jobs only
to fail during initialization, the Resource Manager schedules a small number of processes
until it is determined that the initialization phase will succeed.

The initialization.cap determines the maximum number of processes allocated to a job
until at least one process successfully initializes. Once any process initializes the Resource
Manager will proceed to allocate the job its full fair share of processes.

The initialization cap can be overridden on a class basis by configuration via
ducc.classes [105].

ducc.rm.expand.by.doubling

Default Value
true

Type
Tuning

Purpose
When a job expands because its fair share has increased, or it has completed initialization,
it may be desired to govern the rate of expansion. If expand.by.doubling is set to "true",

Agent Properties

please define productname in your docbook
file! Administration 97

rather than allocate the full fair share of processes, the number of processes is doubled
each scheduling cycle, up to the maximum allowed.

Expand.by.doublingcan be overridden on a class basis by configuration via
ducc.classes [105].

ducc.rm.prediction

Default Value
true

Type
Tuning

Purpose
Because initialization time may be very long, it may be the case that a job that might be
eligible for expansion will be able to complete in the currently assigned shares before any
new processes are able to complete their initialization. In this case expansion results in
waste of resources and potential eviction of processes that need not be evicted.

The Resource Manager monitors the rate of task completion and attempts to predict the
maximum number of processes that will be needed at a time in the future based on the
known process initialization time. If it is determined that expansion is unnecessary then it
is not done for the job.

predictioncan be overridden on a class basis by configuration via ducc.classes [105].

ducc.rm.prediction.fudge

Default Value
10000

Type
Tuning

Purpose
When ducc.rm.prediction is enabled, the known initialization time of a job's processes plus
some "fudge" factor is used to predict the number of future resources needed. The "fudge"
is specified in milliseconds.

The default "fudge" is very conservative. Experience and site policy should be used to set a
more practical number.

Prediction.fudgecan be overridden on a class basis by configuration via
ducc.classes [105].

10.1.7. Agent Properties
ducc.agent.configuration.class

Default Value
org.apache.uima.ducc.nodeagent.config.AgentConfiguration

Type
Private

Agent Properties

98 Administration
please define productname in your docbook

file!

Purpose
This is the name of the pluggable java class used to implement the DUCC Agents.

ducc.agent.request.endpoint

Default Value
ducc.agent

Type
Private

Purpose
This is the JMS endpoint through which agents receive state from the Process Manager.

ducc.agent.request.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used for state messages sent by the Process Manager.

ducc.agent.managed.process. state.update.endpoint

Default Value
ducc.managed.process. state.update

Type
Private

Purpose
This is the JMS endpoint used to communicate from the managed process to the Agent
(Job Process).

ducc.agent.managed.process. state.update.endpoint.type

Default Value
socket

Type
Private

Purpose
This is the JMS endpoint type used to communicate from the managed process (Job
Process) to the Agent.

ducc.agent.managed.process. state.update.endpoint.params

Default Value
transferExchange=true&sync=false

Type
Private

Agent Properties

please define productname in your docbook
file! Administration 99

Purpose
These are configuration parameters for the Agent-to-JP communication socket. These
should only be modified by DUCC developers.

ducc.agent.node. metrics.endpoint

Default Value
ducc.node.metrics

Type
Private

Purpose
This is the JMS endpoint used to send node metrics updates to listeners. Listeners
are usually the Resource Manager and Web Server. These messages serve as node
"heartbeats". As well, the node metrics heartbeats contain the amount of RAM on the node
and the number of processors.

ducc.agent.node. metrics.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used to send node metrics updates from the agents.

ducc.agent.node. metrics.publish.rate

Default Value
60000

Type
Tuning

Purpose
This is the rate at which node metrics updates are published in milliseconds.

This value MUST be coordinated with the Orchestrator publish rate and the
Resource Manager publish ratio. The rate must be at least ducc.rm.state.publish.ratio
* ducc.orchestrator.state.publish.rate. In the default configuration the
ducc.rm.state.publish.ratio is 4 and the ducc.orchestrator.state.publish.rate is 15
seconds, so the ducc.agent.node.metrics.publish.rate must be st least 60 seconds or 60000
milliseconds.

Failure to set this correctly may result in incorrectly reported missed heartbeats.

ducc.agent.node. inventory.endpoint

Default Value
ducc.node.inventory

Type
Private

Agent Properties

100 Administration
please define productname in your docbook

file!

Purpose
This is the JMS endpoint used to send node inventory messages to listeners. Listeners are
usually the Orchestrator and Web Server. Information in these messages include a map of
processes being managed on the node.

ducc.agent.node.inventory. endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used to send node inventory updates from the agents.

ducc.agent.node. inventory.publish.rate

Default Value
10000

Type
Tuning

Purpose
This is the rate at which node inventory updates are published in milliseconds.

If the inventory has not changed since the last update the agent bypasses sending the
update, up to a maximum of ducc.agent.node.inventory.publish.rate.skip times.

ducc.agent.node. inventory.publish.rate.skip

Default Value
30

Type
Tuning

Purpose
This is the number of times the agent will bypass publishing its node inventory if the
inventory has not changed.

ducc.agent.launcher. thread.pool.size

Default Value
10

Type
Tuning

Purpose
This is establishes the size of the agent's threadpool used to manage spawned processes.

ducc.agent.launcher. use.ducc.spawn

Default Value
true

Agent Properties

please define productname in your docbook
file! Administration 101

Type
Private

Purpose
This specifies whether to launch job processes via ducc_ling. When set to false the process
is launched directly as a child of the agent. Log indirection is not performed, the working
directory is not set, and the the process does not change its identity to that of the submitter.
This property is intended for the use of DUCC developers.

ducc.agent.launcher. ducc_spawn_path

Default Value
${DUCC_HOME}/admin/ducc_ling

Type
Tuning

Purpose
This property specifies the full path to the ducc_ling utility. During installation ducc_ling
is normally moved to local disk and given setuid-root privileges. Use this property to tell
the DUCC agents the location of the installed ducc_ling.

ducc.agent.launcher. process.stop.timeout

Default Value
60000

Type
Tuning

Purpose
This property specifies the time, in milliseconds, the agent should wait before forcibly
terminating a job process (JP) after an attempted graceful shutdown. If the child process
does not terminate in the specified time, it is forcibly terminated with kill -9.

This type of stop can occur because of preemption or system shutdown.

ducc.agent.launcher. process.init.timeout

Default Value
7200000

Type
Tuning

Purpose
This property specifies the time, in milliseconds, that the agent should wait for a job
process (JP) to complete initialization. If initialization is not completed in this time the
process is terminated and and InitializationTimout status is send to the job driver (JD)
which decides whether to retry the process or terminate the job.

Note that it is normal for the types of processes that DUCC is designed for to have very
long initialization times.

ducc.agent.launcher. share.size.fudge.factor

Default Value
5

Process Manager Properties

102 Administration
please define productname in your docbook

file!

Type
Tuning

Purpose
The DUCC agent monitors the size of the resident memory of its spawned processes. If a
process exceeds its declared memory size by any significant amount it is terminated and
a ShareSizeExceeded message is sent. The Job Driver counts this towards the maximum
errors for the job and will eventually terminate the job if excessive such errors occur.

This property defines the percentage over the declared memory size that a process is
allowed to grow to before being terminated.

To disable this feature, set the value to -1.

ducc.agent.rogue.process.user.exclusion.filter

Default Value
root,posstfix,ntp,nobody,daemon,100

Type
Tuning

Purpose
The DUCC Agents scan nodes for processes that should not be running; for example,
a job may have left a 'rogue' process alive when it exits, or a user may log in to a node
unexpectedly. These processes are reported to the administrators via the webserver for
possible action.

This configuration parameter enumerates userids which are ignored by the rogue-process
scan.

ducc.agent.rogue.process.exclusion.filter

Default Value
sshd:,-bash,-sh,/bin/sh,/bin/bash,grep,ps

Type
Tuning

Purpose
The DUCC Agents scan nodes for processes that should not be running; for example,
a job may have left a 'rogue' process alive when it exits, or a user may log in to a node
unexpectedly. These processes are reported to the administrators via the webserver for
possible action.

This configuration parameter enumerates processes by name which are ignored by the
rogue process detector.

10.1.8. Process Manager Properties
ducc.pm.configuration.class

Default Value
org.apache.uima.ducc.pm.config.ProcessManagerConfiguration

Type
Private

Process Manager Properties

please define productname in your docbook
file! Administration 103

Purpose
This is the name of the pluggable java class used to implement the DUCC Process
Manager.

ducc.pm.request.endpoint

Default Value
ducc.pm

Type
Private

Purpose
This is the endpoint through which process manager receive state from the Orchestrator.

ducc.pm.request.endpoint.type

Default Value
queue

Type
Private

Purpose
This is the JMS endpoint type used for state messages sent by the Orchestrator.

ducc.pm.state.update.endpoint

Default Value
ducc.pm.state

Type
Private

Purpose
This is the endpoint through which process manager sends its heartbeat. The main receiver
is the Web Server for it's daemon status page.

ducc.pm.state.update.endpoint.type

Default Value
topic

Type
Private

Purpose
This is the JMS endpoint type used for process manager heartbeats. The primary receiver
is the Web Server for its daemon status page.

ducc.pm.state.publish.rate

Default Value
25000

Type
Private

Job Process Properties

104 Administration
please define productname in your docbook

file!

Purpose
This is the rate at which the process manager publishes its heartbeat, in milliseconds.

10.1.9. Job Process Properties
ducc.uima-as.configuration.class

Default Value
org.apache.uima.ducc.agent.deploy.uima.UimaAsServiceConfiguration

Type
Private

Purpose
This is the name of the pluggable java class that implements the the UIMA-AS service
shell for job processes (JPs).

ducc.uima-as.endpoint

Default Value
ducc.job.managed.service

Type
Private

Purpose
This is the endpoint through which job processes (JPs) receive messages from the Agents.

ducc.uima-as.endpoint.type

Default Value
socket

Type
Private

Purpose
This is the JMS endpoint type used for messages sent to the JPs from the Agents.

ducc.uima-as.endpoint.params

Default Value
transferExchange=true&sync=false

Type
Private

Purpose
This configures the JP-to-Agent communication socket. It should be changed only by
DUCC developers.

ducc.uima-as.saxon.jar.path

Default Value
file:${DUCC_HOME}/lib/saxon8/saxon8.jar

ducc.classes

please define productname in your docbook
file! Administration 105

Type
Private

Purpose
This configures the path the required Saxon jar.

ducc.uima-as.dd2spring.xsl.path

Default Value
${DUCC_HOME}/admin/dd2spring.xsl

Type
Private

Purpose
This configures the path the required dd2spring xsl definitions.

ducc.uima-as.flow_controller.specifier

Default Value
org.apache.uima.ducc.uima.DuccJobProcessFC

Type
Private

Purpose
This configures the pluggable class that implements the default flow controller used in the
DUCC job processes (JPs).

10.2. ducc.classes
The source for this chapter is ducc_ducbook/documents/admin/ducc-classes.xml

The class configuration file is used by the Resource Manager configure the rules used for job
scheduling. See the Resource Manager chapter for a detailed description of the DUCC schedueler.

The name of class configuration file is specified in ducc.properties. The default name is
ducc.classes [105] and is specified by the property ducc.rm.class.definitions property.

This file configures the classes and the associate scheduling rules of each class. It contains
properties to declare the following:

1. The names of each class.

2. The default class to use if none is specified with the job.

3. The names of all the nodepools.

4. For each nodepool, the name of the file containing member nodes.

5. A set of properties for each class, declaring the rules enforced by that class.

The general properties are as follows. The default values are the defaults in the system as initially
installed.

ducc.classes

106 Administration
please define productname in your docbook

file!

scheduling.class.set

Default Value
background low normal high urgent weekly fixed reserve JobDriver

Purpose
This lists the names of classes defined in the file.

scheduling.default.name

Default Value
normal

Purpose
This is the default class that jobs are assigned to, when not otherwise designated in their
submission properties.

Nodepools are declared with a set of properties to name each nodepool and to name a file for
each pool that declares membership in the nodepool. For each nodepool a property of the form
scheduling.nodepool.NODEPOOLNAME is declared, where NODEPOOLNAME is one of the
declared nodepools.

The property to declare nodepool names is as follows:

scheduling.nodepool

Default Value
reserve

Purpose
This is the list of nodepool names. For example:

scheduling.nodepool = res res1 res2

This is an example of a declaration of three nodepools.

scheduling.nodepool = res res1 res1
scheduling.nodepool.res = res.nodes
scheduling.nodepool.res1 = res1.nodes
scheduling.nodepool.res2 = res2.nodes

There is no way to enforce priority assignment to any given nodepool. It is possible to declare a
"preference", such that the resources in a given nodepool are considered first when searching for
nodes. To configure a preference, use the order decorattion on a nodepool specificaion.

To declare nodepool order, specify

scheduling.nodepool.[poolname].order. The nodepools are sorted numerically according to
their order, and pools with lower order are searched before pools with higher order. The global
nodepool always order "0" so it is usally searched first. For example, the pool configuration below
establishes a search order of

1. global

ducc.classes

please define productname in your docbook
file! Administration 107

2. res2

3. res

4. res1

This is an example of a declaration of three nodepools.

scheduling.nodepool = res res1 res1
scheduling.nodepool.res = res.nodes
scheduling.nodepool.res.order = 4
scheduling.nodepool.res1 = res1.nodes
scheduling.nodepool.res1.order = 7
scheduling.nodepool.res2 = res2.nodes
scheduling.nodepool.res2.order = 2

For each class named in scheduling.class.set a set of properties is specified, defining the rules
implemented by that class. Each such property is of the form

scheduling.class.CLASSNAME.RULE = VALUE

where

CLASSNAME
This is the name of the class.

RULE
This is the name of the rule. Rules are described below.

VALUE
This is the value of the rule, as described below.

The rules are:

policy
This is the scheduling policy, required, and must be one of:

FAIR_SHARE
FIXED_SHARE
RESERVE

share_weight
This is any integer. This is the weighted-fair-share weight for the class as discussed above. It is
only used when policy = FAIR_SHARE.

priority
This is the evaluation priority for the class as discussed above. This is used for all scheduling
policies.

cap
This is an integer, or an integer with "%" appended to denote a percentage. It is used for all
scheduling classes.

This is the class cap as discussed above. It may be an absolute value, in processes (which may
comprise more than one share quanta), or it may be specified as a percentage by appending

ducc.nodes

108 Administration
please define productname in your docbook

file!

"%" to the end. When specified as a percentage, it caps the shares allocated to this class as
that percentage of the total shares remaining when the class is evaluated.. It does not consider
shares that may have been available and assigned to higher-priority classes.

nodepool
This is the name of the nodepool associated with this class. It must be one of the names
declared in the property scheduling.nodepool.

prediction
Acceptable values are true and false. When set to true the scheduler uses prediction when
allocating shares. It is only used when policy = FAIR_SHARE.

prediction.fudge
Acceptable values are any integer, denoting milliseconds. This is the prediction fudge as
discussed above. It is only used when policy = FAIR_SHARE.

expand.by.doubling
Acceptable values are true and false. When set to true the scheduler doubles a job's shares
up to it's fair-share when possible, as discussed above. It is only used when policy =
FAIR_SHARE.

expand.by.doubling
Acceptable values are true and false. When set to true the scheduler doubles a job's shares up
to it's fair-share when possible, as discussed above. When set in ducc.classes it overrides the
defaults from ducc.properties. It is only used when policy = FAIR_SHARE.

initialization.cap
Acceptable values are any integer. This is the maximum number of processes assigned to a job
until the first process has successfully completed initialization. To disable the cap, set it to zero
0. It is only used when policy = FAIR_SHARE.

max_processes
Acceptable values are any integer. This is the maximum number of processes assigned to a
FIXED_SHARE request. If more are requested, the request is canceled. It is only used when
policy = FIXED_SHARE. If set to 0 or not specified, there is no enforced maximum.

max_machines
Acceptable values are any integer. This is the maximum number of machines assigned to a
RESERVE request. If more are requested, the request is canceled. It is only used when policy =
RESERVE. If set to 0 or not specified, there is no enforced maximum.

enforce.memory
Acceptable values are true and false. When set to true the scheduler requires that any machine
selected for a reservation matches the reservation's declared memory. The declared memory
is converted to a number of quantum shares. Only machines whose memory, when converted
to share quanta are selected. When set to false, any machine in the configured nodepool is
selected. It is only used when policy = RESERVE.

10.3. ducc.nodes
The source for this chapter is ducc_ducbook/documents/admin/ducc-nodes.xml

The DUCC node list is used to configure the nodes used to run jobs and assign reservations. A
DUCC Agent is started by DUCC on every node in the node list.

Nodepool Configuration

please define productname in your docbook
file! Administration 109

The node list can be composed of multiple node lists to assist organization of the DUCC cluster.
All the administrative commands operate upon node lists. By carefully organized these lists it is
possible to administer portions of a cluster independently.

A node list is a simple flat file where each line consists of a single node name or an import
statement. Nodes may be designated by IP address or by name. The node list may be commented
using the comment delimeter "#".

An import statement is of the form

import filename

where "filename" is the name of another node list. The imported nodelist may itself contain import
statements to allow a nested organization of lists.

When an import statement is encountered, the named file is read and its contents appended to the
stream of incoming nodes. The list of nodes used by commands is composed of the nodes in the
first list and all imported files.

Examples:

cat ducc.nodes

First four nodes
ducc01.local.net # 64 GB
ducc02.local.net # 64 GB
ducc03.local.net # 128 GB
ducc04.local.net # 128 GB
import big.nodes

cat big.nodes

Large memory nodes, all with 256 GB
ducc11.local.net
ducc12.local.net
ducc13.local.net
ducc14.local.net

10.4. Nodepool Configuration
The source for this chapter is ducc_ducbook/documents/admin/ducc-nodepool.xml

Nodepool files are constructed identically to ducc.nodes [108]. Nodes may legally occur in either

No nodepool whatever. In this case, the node is considered a member of the defaultglobal
nodepool.
Exactly ONE nodepool file. No node may be a member of more than one nodepool.

The nodepool file is read when the Resource Manager initializes. Every node that checks-in with
the RM is then associated with one of the configured nodepools, or with the global nodepool.

start_ducc

110 Administration
please define productname in your docbook

file!

10.5. start_ducc
The source for this chapter is ducc_ducbook/documents/admin/start-ducc.xml

Description:

Start_ducc is used to start DUCC processes. If run with no parameters it takes the following
actions:

Starts the management processes Resource Manager, Orchestrator, Process Manager,
Services Manager, and Web Server on the local node (where start_ducc is executed.

Starts an agent process on every node named in the default node list.

Usage:

start_ducc [options]

If no options are given, all DUCC processes are started, using the default node list,
ducc_runtime/resources/ducc.nodes. This is the equivalent of

start_ducc -n $DUCC_HOME/resources/ducc.nodes -m

Options:

-n, --nodelist [nodefile]

Start agents on the nodes in the nodefile. Multiple nodefiles may be specified:

start_ducc -n foo.nodes -n bar.nodes -n baz.nodes

-m, --management

Start the management processes (rm, sm, pm, orchestrator) on the local node. The
webserver is started on the local node, or the node configured in ducc.properties.

-c, --component [component]

Start a specific DUCC component, optionally on a specific node. If the component
name is qualified with a nodename, the component is started on that node. To qualify
a component name with a destination node, use the notation component@nodename.
Multiple components may be specified:

start_ducc -c sm -c pm -c rm -c or@bj22 -c agent@n1 -c agent@n2

Components include:

rm
The Resource Manager.

or
The Orchestrator.

pm
The Process Manager.

start_ducc

please define productname in your docbook
file! Administration 111

sm
The Service Manager.

ws
The Web Server.

agent
Node Agents.

Notes:

A different nodelist may be used to specify where Agents are started. As well multiple node
lists may be specified, in which case Agents are started on all the nodes in the multiple node
lists.

To start only agents, run start_ducc specifying a nodelist explicitly. When started like this, the
management daemons are not started unless explicitly requested.

To start only management processes, run start_ducc with the -m or --management flags. When
started like the the agents are not started unless explicitly requested.

To start a specific management process, run start_ducc with the -c component parameter,
specify the component that should be started.

Examples:

Start all DUCC processes, using custom nodelists:

start_ducc -m -n foo.nodes -n bar.nodes

Start just management processes:

start_ducc -m

Start just agents on a specific set of nodes:

start_ducc -n foo.nodes -n bar.nodes

Start and agent on a specific node:

start_ducc -c agent@a.specific.node

Start the webserver on node 'bingle':

start_ducc -c ws@bingle

stop_ducc

112 Administration
please define productname in your docbook

file!

10.6. stop_ducc
The source for this chapter is ducc_ducbook/documents/admin/stop-ducc.xml

Description:

Stop_ducc is used to stop DUCC processes. If run with no parameters it takes the following
actions the help text is printed to the console.

Usage:

ducc_stop [options]

If no options are given, help text is presented. At least one option is required, to avoid
accidental cluster shutdown.

Options:

-a --all

Stop all the DUCC processes, including agents and management processes. This
broadcasts a "shutdown" command to all DUCC processes. Shutdown is normally
performed gracefully will all process including job processes given time to save state.
All user processes, both jobs and services, are sent shutdown signals. Job and service
processes which do not shutdown within a designated grace period are then forcibly
terminated with kill -9.

stop_ducc -a

-n, --nodelist [nodefile]

Only the DUCC agents in the designated nodelists are shutdown. The processes are sent
kill -INT signals which triggers the Java shutdown hooks and enables graceful shutdown.
All user processes on the indicated nodes, both jobs and services, are sent "shutdown"
signals and are given a minute to shutdown gracefully. Job and service processes which do
not shutdown within a designated grace period are then forcibly terminated with kill -9.

stop_ducc -n foo.nodes -n bar.nodes -n baz.nodes

-m, --management

Stop only the management processes rm, pm, or, sm, and ws. All agents are left running;
all job drivers are left running, all job processes are left running.

-c, --component [component]

Stop a specific DUCC component.

This may be used to stop an errant management component and subsequently restart it
(with start_ducc).

This may also be used to stop a specific agent and the job and services processes it is
managing, without the need to specify a nodelist.

Stop agents on nodes n1 and n2:

check_ducc

please define productname in your docbook
file! Administration 113

stop_ducc -c agent@n1 -c agent@n2

Stop and restart the rm:

stop_ducc -c rm

start_ducc -c rmc

Components include:

rm
The Resource Manager.

or
The Orchestrator.

pm
The Process Manager.

sm
The Service Manager.

ws
The Web Server.

agent
Node Agents.

-k, --kill

Use this to forcibly kill a component using kill -9. This should only be used if the -a option
does not work. This normally has the same effect as check_ducc -k, with the difference that
check_ducc indiscriminately kills all the DUCC processes it can find, whereas stop_ducc-k
can be directed to a specific instance of a component.

10.7. check_ducc
The source for this chapter is ducc_ducbook/documents/admin/check-ducc.xml

Description:

Check_ducc is used to find and report on DUCC processes. It can be used to find processes
owned by ducc (management processes, agents, and job processes), or ducc jobs owned by
users.

Check_ducc can also be used to clean up errant DUCC processes when stop_ducc is unable
to do so. The difference is that stop_ducc generally tries more gracefully stop processes.
check_ducc is used as a last resort, or if a fast but graceless shutdown is desired.

Usage:

check_ducc [options]

If no options are given this is the equivalent of:

verify_ducc

114 Administration
please define productname in your docbook

file!

check_ducc -n ../resources/ducc.nodes

This searches for all the processes owned by user ducc on all the nodes in ducc.nodes. User
processes are not searched for.

Options:

-n --nodelist [nodefile]

Only the nodes specified in the nodefile are searched. The option may be specified
multiple times for multiple nodefiles. Note that the "local" node is always checked as well.

check_ducc -n nlist1 -n nlist2

-u --user [userid]

The userid specifies the user whose processes check_ducc searches for. If not specified, the
user executing check_ducc is used. If the user is specified as 'all' then all ducc processes
belonging to all users are searched for.

check_ducc -u billy

-p --pids

Rewrite the PID file. The PID file contains the process ids of all known DUCC
management and agent processes. The PID file is normally managed by start_ducc and
stop_ducc and is stored in ducc_runtime/state/ducc.pids.

Occasionally the PID file can become partially or fully corrupted; for example, if a DUCC
process dies spontaneously. Use check_ducc -p to search the cluster for processes and
refresh the PID file.

-r --reap

Reap user processes. This uses kill -9 and ducc_ling to forcibly terminate user processes.
Only processes specified by '-u' or '--userid' are targeted. If the user "all" is specified, then
all user processes are terminated. The intent of this is to easily find and terminate "rogue"
user processes that do not terminate.

Use this option with care. It does not distinguish user processes by specific job id. Every
process started by DUCC owned by the designated user is killed.

check_ducc -u billy -u bobby -r

10.8. verify_ducc
The source for this chapter is ducc_ducbook/documents/admin/verify-ducc.xml

Description:

verify_ducc performs a number of internal consistency checks to insure the DUCC installation
is complete and has no obvious configuration errors. The following checks are performed:

Logs

please define productname in your docbook
file! Administration 115

• Insure ducc_ling is installed in the configured location and has correct permission and
ownership on all nodes.

• Insure ActiveMQ is installed and configured in a way compatible with the ActiveMQ
URL in ducc.properties.

• Insure all nodelists exist and are readable.

• Insure all nodes can be reached via ssh.

• Insure all nodes are running identical versions of DUCC.

• Insure java is installed in the location configured in ducc.properties on all nodes.

• Print the version of java on all nodes.

• Print the version of operating system on all nodes.

• Print the amount of RAM on all nodes.

• Insure all configured nodepools in ducc.classes exist and reference nodes are configured
in the nodelists.

• Insure that all nodepools referenced by classes also defined.

Usage:

verify_ducc [options]

If no options are given, the nodes in ducc_runtime/resources/ducc.nodes are used
and the default ActiveMQ broker location of ~ducc/activemq is used.

Options:

-b [broker_install_dir]

This specifies the name of the ActiveMQ broker configuration file that you are using.

verify_ducc -b /home/challngr/amqbroker/amq/conf/activemq-nojournal5.xml

-n [nodelist]

This specifies the nodelist against which the DUCC installation is verified. This nodelist
should be the same nodelist that DUCC will be started with.

Notes:

It may take a couple attempts to get verify_ducc to run without error. It is important that all
problems reported by verify_ducc are handled before trying to start DUCC the first time.

It is recommended that verify_ducc be run after any update to the DUCC configuration, most
importantly, the addition of nodes. Verify_ducc checks the ducc_ling configuration on the new
nodes as well as verifies network and ssh connectivity.

10.9. Logs
The source for this chapter is ducc_ducbook/documents/admin/logs.xml

Logs

116 Administration
please define productname in your docbook

file!

There are two sets of DUCC logs:

1. daemon logs

2. user logs

User logs are described in the User's Guide section of this book.

The DUCC logs are managed by log4j and are configured using ducc_runtime/log4j.xml. It
is not in the scope of this document to describe log4j or its configuration mechanism. Details on
log4j can be found at http://logging.apache.org/log4j/1.2/.

The daemon logs are written by the DUCC administrative processes and reside in ducc_runtime/
logs.

The logs are based on log4j's RollingFileAppender and are configured to roll over after they
reach a certain size to prevent them from overflowing their disk space. When a log file reaches a
maximum size it is renamed and a new generation of log is created. The maximum size and the
number of generations is configured in ducc_runtime/log4j.xml.

To configure the size and number of generations of files for each log, the following parameters,
specific to each log, may be updated in log4j.xml:

maxBackupIndex
This is the maximum number of generations of the log that will be created. For example, to
configure a maximum of 20 generations:

<param name="maxBackupIndex" value="20" />

maxFileSize
This is the maximum size of any generation of log file. For example, to configure the
maximum to 20 MB:

<param name="maxFileSize" value="20MB" />

The relevant log4j appenders include:

rmlog
This is the log for the Resource Manager.

pmlog
This is the log for the Process Manager.

orlog
This is the log for the Orchestrator.

smlog
This is the log for the Service Manager.

wslog
This is the log for the Web Server.

agentlog
This is the log for the Agents.

http://logging.apache.org/log4j/1.2/

Resource Management, Operation, and Configuration 117

Chapter 11. Resource Management, Operation,
and Configuration

The source for this chapter is ducc_ducbook/documents/chapter-resource-manager.xml

11.1. Overview
The DUCC Resource Manager is responsible for allocating cluster resources among the various
requests for work in the system. DUCC recognizes three classes of work:

1. Managed Jobs. Managed jobs are Java applications implemented in the UIMA framework.
They are scaled out by DUCC using UIMA-AS. Managed jobs are executed as some
number of discrete processes distributed over the cluster resources. All processes of all jobs
are by definition preemptable; the number of processes is allowed to increase and decrease
over time in order to provide all users access to the computing resources.

2. Services. Services are long-running processes which perform some function on behalf of
jobs or other services. Most DUCC services are UIMA-AS services and are managed the
same as managed jobs. From a scheduling point of view, there is no difference between
services and managed jobs.

3. Reservations. A reservation provides persistent, dedicated use of some portion of the
resources to a specific user. A reservation may be for an entire machine, or it may be for
some portion of a machine. Machines are subdivided according to the amount of memory
installed on the machine.

The work that DUCC is designed to support is extremely memory-intensive. In most cases
resources are significantly more constrained by memory than by CPU processing poser. The entire
resource pool in a DUCC cluster therefore consists of the total memory of all the processors in the
cluster.

In order to apportion the cumulative memory resource among requests, the Resource Manager
defines some minimum unit of memory and allocates machines such that a "fair" number of
"memory units" are awarded to every user of the system. This minimum quantity is called a share
quantum, or simply, a share. The scheduling goal is to award an equitable number of memory
shares to every user of the system.

The Resource Manager awards shares according to a fair share policy. The memory shares in a
system are divided equally among all the users who have work in the system. Once an allocation
is assigned to a user, that user's jobs are then also assigned an equal number of shares, out of the
user's allocation. Finally, the Resource Manager maps the share allotments to physical resources.

To map a share allotment to physical resources, the Resource Manager considers the amount of
memory that each job declares it requires for each process. That per-process memory requirement
is translated into the minimum number of collocated quantum shares required for the process to
run.

For example, suppose the share quantum is 15GB. A job that declares it requires 14GB per process
is assigned one quantum share per process. If that job is assigned 20 shares, it will be allocated 20
processes across the cluster. A job that declares 28GB per process would be assigned two quanta
per process. If that job is assigned 20 shares, it is allocated 10 processes across the cluster. Both

Scheduling policies

118 Resource Management, Operation, and Configuration
please define productname in your docbook

file!

jobs occupy the same amount of memory; they consume the same level of system resources. The
second job does so in half as many processes however.

The output of each scheduling cycle is always in terms of processes, where each process is allowed
to occupy some number of shares. The DUCC agents implement a mechanism to ensure that no
user's job processes exceed their allocated memory assignments.

Some work may be deemed to be more "important" than other work. To accommodate this, DUCC
allows jobs to be submitted with an indication of their relative importance: more important jobs are
assigned a higher "weight"; less important jobs are assigned a lower weight. During the fair share
calculations, jobs with higher weights are assigned more shares proportional to their weights; jobs
with lower weights are assigned proportionally fewer shares. Jobs with equal weights are assigned
an equal number of shares. This weighed adjustment of fair-share assignments is called weighted
fair share.

The abstraction used to organized jobs by importance is the job class or simply class. As jobs enter
the system they are grouped with other jobs of the same importance and assigned to a common
class. The class and its attributes are described in subsequent sections.

The scheduler executes in two phases:

1. The How-Much phase: every job is assigned some number of shares, which is converted to
the number of processes of the declared size.

2. The What-Of phase: physical machines are found which can accommodate the number of
processes allocated by the How-Much phase. Jobs are mapped to physical machines such
that the total declared per-process amount of memory does not exceed the physical memory
on the machine.

The How-Much phase is itself subdivided into three phases:

1. Class counts:Apply weighed fair-share to all the job classes that have jobs assigned to
them. This apportions all shares in the system among all the classes according to their
weights.

2. User counts: For each class, collect all the users with jobs submitted to that class, and apply
fair-share (with equal weights) to equally divide all the class shares among the users. This
apportions all shares assigned to the class among the users in this class.

A user may have jobs in more than one class, in which case that user's fair share is
calculated independently within each class.

3. Job counts: For each user (independently within each class), collect all the jobs assigned to
that user and apply fair-share to equally divide all the user's shares among their jobs. This
apportions all shares given to this user for each class among the user's jobs in that class.

Reservations are relatively simple. If the number of shares or machines requested is available
or can be made available through preemption of fair-share jobs, the reservation is satisfied and
resources are allocated. If not, the reservation fails. In the case where preemptions are required, the
reservation is delayed until all necessary resources have been freed.

11.2. Scheduling policies
The Resource Manager implements three coexistent scheduling policies.

Priority vs Weight

please define productname in your docbook
file! Resource Management, Operation, and Configuration 119

FAIR_SHARE
This is the weighted-fair-share policy described in detail above.

FIXED_SHARE
The FIXED_SHARE policy is used to reserve a portion of a machine. The allocation is treated
as a reservation in that it is permanently allocated (until it is canceled) and it cannot be
preempted by any other request.

A fixed-share request specifies a number of processes of a given size, for example, "10
processes of 32GB each". The ten processes may or may not be collocated on the same
machine. Note that the resource manager attempts to minimize fragmentation so if there is a
very large machine with few allocations, it is likely that there will be some collocation of the
assigned processes.

A fixed-share allocation may be thought of a reservation for a "partial" machine.

RESERVE
The RESERVE policy is used to reserve a full machine. It always returns an allocation for an
entire machine. The reservation is permanent (until it is canceled) and it cannot be preempted
by any other request.

It is possible to configure the scheduling policy so that a reservation returns any machine in
the cluster that is available, or to restrict it to machines of the size specified in the reservation
request.

11.3. Priority vs Weight
It is possible that the various policies may interfere with each other. It is also possible that the fair
share weights are not sufficient to guarantee sufficient resources are allocated to high importance
jobs. Priorities are used to resolve these conflicts

Simply: priority is used to specify the order of evaluation of the job classes. Weight is used to
specify the importance (or weights) of the job classes for use by the weighted fair-share scheduling
policy.

Priority. It is possible that conflicts may arise in scheduling policies. For example, it may be
desired that reservations be fulfilled before any fair-share jobs are scheduled. It may be desired
that some types of jobs are so important that when they enter the system all other fair-share jobs be
evicted. Other such examples can be found.

To help resolve this, the Resource Manager allows job classes to be prioritized. Priority is used to
determine the order of evaluation of the scheduling classes.

When a scheduling cycle starts, the scheduling classes are ordered from "best" to "worst" priority.
The scheduler then attempts to allocate ALL of the system's resources to the "best" priority class.
If any resources are left, the scheduler goes on to the next class and so on, until either all the
resources are exhausted or there is no more work to schedule.

It is possible to have multiple job classes of the same priority. What this means is that resources
are allocated for the set of job classes from the same set of resources. Resources for higher priority
classes will have already been allocated, resources for lower priority classes may never become
available.

To constrain high priority jobs from completely monopolizing the system, class caps may be
assigned. Higher priority guarantees that some resources will be available (or made available) but
doesn't that that all resources necessarily be used.

Node Pools

120 Resource Management, Operation, and Configuration
please define productname in your docbook

file!

Weight. Weight is used to determine the relative importance of jobs in a set of job classes of
the same priority when doing fair-share allocation. All job classes of the same priority are assigned
shares from the full set of available resources according to their weights using weighted fair-share.
Weights are used only for fair-share allocation.

Class caps may also be used to insure that very high importance jobs cannot fully monopolize all of
the resources in the system.

11.4. Node Pools
It may be desired or necessary to constrain certain types of resource allocations to a specific subset
of the resources. Some nodes may have special hardware, or perhaps it is desired to prevent certain
types of jobs from being scheduled on some specific set of machines. Nodepools are designed to
provide this function.

Nodepools impose hierarchical partitioning on the set of available machines. A nodepool is a
subset of the full set of machines in the cluster. Nodepools may not overlap. A nodepool may itself
contain non-overlapping subpools. The highest level nodepool is called the "global" nodepool. If a
job class does not have an associated nodepool, the global nodepool is implicitly associated with he
class.

Nodepools are associated with job classes. During scheduling, a job may be assigned resources
from its associated nodepool, or from any of the subpools which divide the associated nodepool.
The scheduler attempts to fully exhaust resources in the associated nodepool before allocating
within the subpools, and during eviction, attempts to first evict from the subpools. The scheduler
insures that the nodepool mechanism does not disrupt fair-share allocation.

If it is desired that jobs assigned to some subpool take priority over jobs that have spilled over
from the "superpool", then the class associated with the subpool should be given greater weight, or
greater priority, as appropriate. (See the Weight vs Priority discussion.)

There is no explicit priority associated with nodepools. However, it is possible to assign a
"preference" to a specific nodepool, if it is desired that those nodes be chosen first when the are
available. Use the nodepool configurations "order" directive to do this.

11.5. Job Classes
The primary abstraction to control and configure the scheduler is the class. A class is simply a set
of rules used to parameterize how resources are assigned to jobs. Every job that enters the system is
associated with one job class.

The job class defines the following rules:

Priority
This is the order of evaluation and assignment of resources to this class. See the discussion of
Priority vs Weight for details.

Weight
This defines the "importance" of jobs in this class and is used in the weighted fair-share
calculations.

Scheduling Policy
This defines the policy, fair share, fixed share, or reserve used to schedule the jobs in this
class.

Job Classes

please define productname in your docbook
file! Resource Management, Operation, and Configuration 121

Caps
Class caps limit the total resources assigned to a class. This is designed to prevent high
importance and high priority job classes from fully monopolizing the resources. It can be used
to limit the total resources available to lower importance and lower priority classes.

Nodepool
A class may be associated with exactly one nodepool. Jobs submitted to the class are assigned
only resources which lie in that nodepool, or in any of the subpools defined within that
nodepool.

Prediction
For the type of work that DUCC is designed to run, new processes typically take a great deal
of time initializing. It is not unusual to experience 30 minutes or more of initialization before
work items start to be processed.

When a job is expanding (i.e. the number of assigned processes is allowed to dynamically
increase), it may be that the job will complete before the new processes can be assigned and
the work items within them complete initialization. In this situation it is wasteful to allow the
job to expand, even if its fair-share is greater than the number of processes it currently has
assigned.

By enabling prediction, the scheduler will consider the average initialization time for processes
in this job, current rate of work completion, and predict the number of processes needed to
complete the job in the optimal amount of time. If this number is less than the job's fair, share,
the fair share is capped by the predicted needs.

Prediction Fudge
When doing prediction, it may be desired to look some time into the future past initialization
times to predict if the job will end soon after it is expanded. The prediction fudge specifies a
time past the expected initialization time that is used to predict the number of future shares
needed.

Initialization cap
Because of the long initialization time of processes in most DUCC jobs, process failure during
the initialization phase can be very expensive in terms of wasted resources. If a process is
going to fail because of bugs, missing services, or any other reason, it is best to catch it early.

The initialization cap is used to limit the number of processes assigned to a job until it is
known that at least one process has successfully passed from initialization to running. As soon
as this occurs the scheduler will proceed to assign the job its full fair-share of resources.

Expand By Doubling
Even after initialization has succeeded, it may be desired to throttle the rate of expansion of a
job into new processes.

When expand-by-doubling is enabled, the scheduler allocates either twice the number of
resources a job currently has, or its fair-share of resources, whichever is smallest.

Maximum Shares
This is for FIXED_SHARE policies only. Because fixed share allocations are not preemptable,
it may be desirable to limit the number of shares that any given request is allowed to receive.

Enforce Memory
This is for RESERVE policies only. It may be desired to allow a reservation request receive
any machine in the cluster, regardless of its memory capacity. It may also be desired to require

Job Classes

122 Resource Management, Operation, and Configuration
please define productname in your docbook

file!

that an exact size be specified (to ensure the right size of machine is allocated). The enforce
memory rule allows installations to create reservation classes for either policy.

	Distributed UIMA Cluster Computing
	Table of Contents
	Part I. Introduction to DUCC
	Chapter 1. DUCC Overview
	1.1. What is DUCC?
	1.2. DUCC Job Model
	1.3. Default Collection Readers and CAS Consumers
	1.4. Error Management
	1.5. Cluster and Job Management
	1.6. Service Management

	Chapter 2. DUCC Application Quick Start
	2.1. Section 1

	Chapter 3. DUCC Terminology, Acronuyms, and Glosssary
	3.1. Terms
	3.2. Acronyms

	Part II. DUCC User's Guide
	Chapter 4. Command Line Interface (CLI)
	4.1. ducc_submit
	4.2. ducc_cancel
	4.3. ducc_reserve
	4.4. ducc_unreserve
	4.5. ducc_monitor
	4.6. ducc_service_submit
	4.7. ducc_service_cancel
	4.8. ducc_services
	4.8.1. ducc_service --register
	4.8.2. ducc_services --start
	4.8.3. ducc_services --stop
	4.8.4. ducc_services --modify
	4.8.5. ducc_services --query
	4.8.6. ducc_services --submit and --cancel

	Chapter 5. Job Logs
	Chapter 6. Application Programming Interface (API)
	Chapter 7. Webserver
	7.1. Common Links
	7.2. Jobs Page
	7.3. Job Details Page
	7.4. Reservation Details Page

	Chapter 8. Examples: Building and Testing a Simple Application

	Part III. DUCC Administration Guide
	Chapter 9. Installation, Configuration, and Verification
	9.1. General Considerations
	9.2. Hardware Requirements
	9.3. Software Requirements
	9.4. Quick Installation Checklist
	9.5. Detailed Installation Procedures
	9.5.1. Basic System Initialization
	9.5.2. Install DUCC Distribution
	9.5.3. Perform Post-Installation Tasks
	9.5.3.1. ducc_ling
	Securing ducc_ling
	Running ducc_ling Without Root Authority
	Running On Architectures Other Than That In The Prebuilt Distribution.

	9.5.4. Update ducc.properties
	9.5.5. Create the DUCC Node list
	9.5.6. Define the Job Driver nodepool
	9.5.7. Define the system administrators

	9.6. Run The Verification Script
	9.7. Start DUCC
	9.8. Start DUCC Browser
	9.9. Run a Job
	9.10. Shutdown DUCC

	Chapter 10. Administration
	10.1. ducc.properties
	10.1.1. General DUCC Properties
	10.1.2. Web Server Properties
	10.1.3. Job Driver Properties
	10.1.4. Service Manager Properties
	10.1.5. Orchestrator Properties
	10.1.6. Resource Manager Properties
	10.1.7. Agent Properties
	10.1.8. Process Manager Properties
	10.1.9. Job Process Properties

	10.2. ducc.classes
	10.3. ducc.nodes
	10.4. Nodepool Configuration
	10.5. start_ducc
	10.6. stop_ducc
	10.7. check_ducc
	10.8. verify_ducc
	10.9. Logs

	Chapter 11. Resource Management, Operation, and Configuration
	11.1. Overview
	11.2. Scheduling policies
	11.3. Priority vs Weight
	11.4. Node Pools
	11.5. Job Classes

