
1

 Beyond: the Usable Enterprise

Sean Finan, Timothy Miller, Chen Lin and Guergana Savova
Boston Children’s Hospital and Harvard Medical School

 Introduction 1

This pamphlet accompanied a hands-on training session for Apache clinical Text Analysis and Knowledge
Extraction System (cTAKES; ctakes.apache.org) with a focus on usability. The intended audience includes
Natural Language Processing (NLP) researchers, clinical researchers, software developers and anyone
considering the use of NLP
software for clinical research or
other purposes.

Audience members can have
any level of experience with
cTAKES or NLP in general, as
the session covers several
topics and start from a basic
foundation knowledge.

 Background 2

cTAKES focuses on extracting knowledge from clinical text through NLP techniques. cTAKES can supply
commonly extracted biomedical concepts such as symptoms, procedures, diagnoses, medications and
anatomy with attributes and standard
codes. cTAKES is engineered in a modular
fashion to make extensions easy, and
worldwide research investigations are
continuously adding the latest, leading
edge rule-based and machine learning
probabilistic methods to cTAKES. These
powerful components can perform tasks
as complex as identifying temporal
events, dates and times – resulting in
placement of events in a patient timeline.
For more details on the capabilities of
cTAKES see section 10.7.

2

 How to use this manual 3

This manual is not a cTAKES for Dummies, nor is it
an Expert’s Guide to cTAKES. It is an amalgamation,
usable by three expertise levels based loosely
upon the user’s background and purpose.

1) Beginner: Curious about NLP, developing a

project or using clinical notes for research.
2) Intermediate: Between levels 1 and 3
3) Expert: Using natural language processing,

machine learning , cTAKES or UIMA.

Special terms used in this text can be found in the
Glossary.

The style used in this manual follows.

Workflows:
1. General action and information.
2. Software Action Button or GUI Label.
3. directory/path/ , file/path , code.package.

Command lines:

File contents:

Code snippets:

 Table Title

 Column Name Column Name

Row Name value value

Row Name value value

“The expert at anything was once a beginner.” - Helen Hayes

command option parameter_value

command parameter_value

parameter_name=parameter_value

Class object = new Class(value);

object.method();

Helpful or important
information.

Contents
1 Introduction 1
2 Background 1
3 How to use this manual 2
4 Installation 3
 4.1 Binary Release............................. 3
 4.2 Dictionary Releases 3
 4.3 Code Repository 4
 4.4 cTAKES-the-API 4
5 Pipelines 5
 5.1 Default Pipeline 5
 5.2 Custom Pipelines 5
6 Dictionaries 7
 6.1 Dictionary Creator GUI 7
 6.2 BSV Dictionaries 8
7 Analysis Engines 8
8 Models ... 8
9 Glossary 10
10 Appendix 11
 10.1 Piper Files 11
 10.2 Collection Readers 12
 10.3 Analysis Engines 12
 10.4 Cas Consumers 13
 10.5 Dictionary Specification13
 10.6 State of the Art 14
 10.7 Current Efforts 15
11 Participation 15
 11.1 Get Involved 15
 11.2 The Authors 16
12 References 17

3

“Words matter.” - John Kenney

 Installation 4

4.1 Binary Release
The Binary release is a pre-built image of a cTAKES installation. It includes cTAKES and third party libraries,

as well as a small number of sample notes. The current version is 3.2.2.

1. Visit https://ctakes.apache.org

2. Click Download.

3. Ensure you meet Prerequisites: All Users.

4. Click User Installation for your system.

5. Unzip the downloaded file.

4.2 Dictionary Releases
There are two primary downloadable bundles of Unified Medical Language System (UMLS) dictionaries

usable by cTAKES. The first contains several very large databases, and is compressed to a single 650MB file.

It is required if you wish to use the original Dictionary Lookup module (see Section 6). The second bundle

contains a 15MB compressed file with a database that is only usable by the newer Fast Dictionary Lookup

module. We strongly recommend using the Fast Dictionary Lookup module which is much faster at no loss

of recall/precision. The smaller bundle does contain everything that is traditionally used in the standard

cTAKES clinical pipeline, it has been streamlined with excess

unused data removed.

1. Ensure you meet Prerequisites: Dictionary Users.

2. Click UMLS Dictionary for your desired version.

3. Unzip in your binary installation
resources/org/apache/ctakes/dictionary/lookup

4. For the Fast Version, unzip in subdirectory
fast/ctakessnorx/

“I wouldn’t want them to operate a plane I was on with software that
happened to be the latest greatest release.” - Nathan Myhrvold

Prerequisites titles link
to web pages.

For the latest dictionary downloads, visit
https://sourceforge.net/projects/ctakesresources/files/

4

“Prosperity is always just around the corner.” - Herbert Hoover

“There is no intelligence where there is no need of change.” - H.G. Wells

 4.3 Code Repository
A great number of fixes and new features have been added to the working code online Subversion
repository (SVN repo).

Check out the latest and greatest.
1. Ensure you meet Prerequisites: Developers.

2. Execute

4.4 cTAKES-the-API
The binary installation of cTAKES and the code repository involve a large amount of cTAKES and third party

code and resources. Avoid the large disk footprint and update times by including only the modules that you

need in your NLP project. Include cTAKES-the-API as a dependency in your project and uncomment needed

cTAKES modules within its pom.xml.

1. Ensure you meet Prerequisites: Developers.

2. Execute

cTAKES Installation Types
 Binary Installation Code Repository cTAKES-the-API

Intended User Non-developer Developer Developer

File Types Compiled libraries Java code Compiled libraries

Versatility Resources Editable Code Selectable Modules

Features Released Only Latest, Greatest Latest, Greatest

Bugs Bugs documented Documented bugs fixed Documented bugs fixed

Disk Footprint 630 MB 3,850 MB 40 MB

svn co https://svn.apache.org/repos/asf/ctakes/trunk

svn co https://svn.apache.org/repos/asf/ctakes/sandbox/ctakes-the-api

cTAKES 3.2.3 now requires
 Java 1.8 or higher

 pom.xml

5

 Pipelines 5

5.1 Default Pipeline
The default clinical pipeline performs Entity Recognition and identifies Entity Properties.
The default pipeline is a great first step
for beginners, and advanced capabilities
of cTAKES can be added after experience.

Run the default pipeline via command line.
1. Execute

Browse annotations and properties with the CVD.
1. Execute

2. Select File > Read Type System File.

3. Select TypeSystem.xml in
resources/org/apache/ctakes/typesystem/types/

4. Select File > Read XMI CAS File.

5. Select any .xmi file in your outputDirectory.

5.2 Custom Pipelines
Create custom pipelines to extract more information than is available through the Default Clinical Pipeline.
Special Analysis Engines are in various cTAKES
modules. Analysis Engines can be removed or
added to pipelines to obtain desired results.
There are four methods available to create
custom pipelines.

1. XML descriptor files are the original method used to create
pipelines in UIMA. They are verbose and editing is error prone.

2. UimaFit enables creation of pipelines through Java code.
This greatly simplifies unit testing and experimentation.

bin/runClinicalPipeline –i inputDirectory

–-xmiOut outputDirectory

--user umlsUsername

--pass umlsPassword

bin/runctakesCVD

“Without strategy, execution is aimless.
 Without execution, strategy is useless.” - Morris Chang

JCas jcas = JCasFactory.createJCas();

CollectionReader reader = CollectionReaderFactory.createReader(

FilesInDirectoryCollectionReader.class,

 FilesInDirectoryCollectionReader.PARAM_INPUTDIR,

"my/input/dir");

AggregateBuilder builder = new AggregateBuilder();

builder.add(ClinicalPipelineFactory.getTokenProcessingPipeline());

builder.add(ExampleHelloWorldAnnotator.createAnnotatorDescription());

SimplePipeline.runPipeline(jcas,

 reader,

 builder.createAggregateDescription);

 HelloWorld.xml

“You shape your own destiny.” – Chet Atkins

6

3. PipelineBuilder is a facade for UimaFit factories and objects.

4. Piper files are a modern equivalent of the descriptor XML files.
Piper files list basic commands
and parameters.

Piper files can be run programmatically.

Piper files can be run from the command-line.

Pipeline Customization Options

 Best Use Edit User

XML Descriptor Run Existing Xml File Non-developer

UimaFit Builder Create New Code Developer

PipelineBuilder Create New Code Developer

Piper File Run / Create Text File Non-developer

PipelineBuilder builder = new PipelineBuilder();

builder.readfiles("my/input/dir")

 .add(ClinicalPipelineFactory.getTokenProcessingPipeline())

 .add(ExampleHelloWorldAnnotator.class)

 .run();

PiperFileReader piperReader = new PiperFileReader("HelloWorld.piper");

PipelineBuilder builder = piperReader.getBuilder();

builder.run();

readFiles my/input/dir

load DefaultTokenizerPipeline.piper

add ExampleHelloWorldAnnotator
 HelloWorld.piper

bin/runPiperFile –p HelloWorld.piper

7

 Dictionaries 6

There are two dictionary lookup modules in cTAKES. The original dictionary lookup module (Old) has a large
disk footprint and is very slow. A newer dictionary lookup module (Fast) has improved speed, decreased
disk footprint, and the same or better accuracy. It also is more customizable.
The Fast dictionary can run strict or overlap
span matching.
It can also run with subsumption of smaller
into larger semantically-alike spans.

Configuration can be further defined, but that is outside the scope of this document.

Strict span matching is performed by the default annotator. Use OverlapJCasTermAnnotator to enable
overlap matching. Subsumption is not performed by the DefaultTermConsumer. Use
PrecisionTermConsumer to enable semantically-alike subsumption.

6.1 Dictionary Creator GUI
The Fast Dictionary Lookup module can use custom
dictionaries created by the cTAKES Dictionary Creator.
This requires a local copy of UMLS .rrf files.

1. Execute

2. Compile the code.

3. Execute class
org.apache.ctakes.dictionary.creator.gui.CreatorGui

4. Select a cTAKES Installation directory.

5. Select a UMLS Installation directory.

6. Select Source and Target Vocabularies.

7. Select Semantic Type TUIs.

8. Type a Dictionary Name. Use all lower case.

9. Click Build Dictionary.

10. Set fast dictionary parameter DictionaryDescriptor to
resources/org/apache/ctakes/dictionary/lookup/fast/DictionaryName/DictionaryName.xml

Seconds per Note
 Share Sharp

Old 10.843 6.515

Fast 0.019 0.012

Disk Size
 MB

Old 602

Fast 53

svn co https://svn.apache.org/repos/asf/ctakes/sandbox/dictionary-gui

Precision, Recall, F1-score of dictionary lookup configurations on Share and Sharp corpora.

“The faster you go, the shorter you are.” – Albert Einstein

“A User Interface is like a joke. If you have to explain it, it’s not that good.”

8

6.2 BSV Dictionaries
Create small custom dictionaries with simple text files. A bar-separated-value (pipe-delimited) file with two,
three, or four columns can be used.

The tui must be specified as its integer value or that value with the prefix T. The code can be represented by
anything that ends with an integer. 1, C001 and Appendage1 are all valid codes.

Add a BSV dictionary with the dictionary specification .xml file.

7 Analysis Engines

Analysis Engines are the pieces of functionality that make up a pipeline. Create them using UimaFit.
1. Extend org.apache.uima.fit.component.JCasAnnotator_ImplBase.
2. Implement process(JCas jcas).
3. Use ConfigurationParameter annotations if parameters are required.
4. Implement initialize(UimaContext context) if engine setup is required.

8 Models

Previously, almost all modules were wrappers for Apache OpenNLP components, and used OpenNLP tools to

train the models. Many of our modules still work this way, but we have introduced new ways to train

machine learning models that offer more choice to developers.

Many of the newest components use ClearTK APIs to interface with machine learning libraries. ClearTK

provides a uniform API for things like features, training instances, and learning algorithms while linking to

many common machine learning libraries like LibSVM, LibLinear, Mallet, etc.

The ClearTK paradigm is to write analysis engines that inherit from CleartkAnnotator, which inherit a

Boolean method isTraining(). The analysis engine then extracts features, and if it is training time, uses

// code|text

1|arm

2|left arm

3|right arm

// code|tui|text

5|21|foot

6|21|left foot

7|21|right foot

// code|tui|text|preferred text

8|21|end of forearm|hand

9|21|digit|finger

3|21|volar|palm

“Simplicity is the ultimate sophistication.” – Leonardo Da Vinci

class MyAE extends JCasAnnotator_ImplBase {

 @ConfigurationParameter(name="word", description="Word to look for")

 private String word;

 public void process(JCas jcas) throws AnalysisEngineProcessException {

 if (jcas.getDocumentText().contains(word)) {

 log("Found " + word);

 }

 }

}

“Train yourself to let go of everything you fear to lose.” – Yoda

“Analysis does not transform consciousness.” – Jiddu Krishnamurti

9

an inherited DataWriter to write the instance features and its label. If it is not training time, it uses an

inherited Classifier to classify the instance features. The returned object from the classification is then

converted into a UIMA typesystem object and added to the CAS in the usual way.

ClearTK features typically just map from UIMA types in the CAS to a Feature object. For example, to

classify the current token’s part of speech, we could query the CAS for the previous BaseToken and create a

feature with new Feature("PrevToken", prevToken.getCoveredText()); Both the relevant

DataWriter and Classifier methods take a List of Features. It is common to create separate feature

extractor classes and call something like features.addAll(extractor.extract()). Again, ClearTK

provides feature extractors for many common feature types. The sentence detector demo contains some of

the simplest possible feature extractions. See a class like

org.apache.ctakes.temporal.ae.TimeAnnotator for an example of a more sophisticated feature

extraction.

Creating a new classifier requires creating a pipeline that reads gold standard data and instantiates the

annotator in training model. There are several ways of storing and reading annotations -- xml formats

(Anafora, Knowtator), offset formats (Conll), and ad hoc formats. cTAKES has readers for several formats and

pipelines for re-training many of its modules. The code for building and evaluating models can also make use

of ClearTK workflows – an Evaluation_ImplBase class that defines methods one must override for

building training and testing pipelines. For building these pipelines, we most commonly use UimaFIT as it

allows for programmatically creating pipelines, allowing for internal logic, e.g., when evaluating with

different feature sets.

Modules with Trainable Components
Module name Components Readers/Writers API

Assertion
Negation, uncertainty, historyOf,

generic, conditional, subject
I2B2 Challenge, MiPACQ, Negex ClearTK

Chunker Shallow parser (chunker) OpenNLP Chunker model OpenNLP

Constituency Parser Deep syntactic parser OpenNLP Parser model OpenNLP

Core Sentence segmenter SHARP reader OpenNLP

Coreference Entity linking (coreference resolution) CoNLL Writer ClearTK

Dependency Syntactic dependency parser ClearNLP models ClearNLP

POS Part of speech tagger OpenNLP POS tag model OpenNLP

Relation Extractor
LocationOf, Severity relation

extractors
SHARP reader ClearTK

Temporal
Events, Time expressions, Container

relations

THYME readers (Anafora,
Knowtator, Treebank)

TempEval writer
ClearTK

10

 Glossary 9

Term Definition

UIMA
Unstructured Information Management Architecture. The software
framework used by cTAKES. See uima.apache.org

Cas, JCas
Contains all of the information gleaned from the document. In the
beginning it is empty. At the end of the pipeline it is full of
informative goodness.

Collection Reader (CR) Inputs text for a pipeline.

Analysis Engine (AE) Performs one or more actions within a pipeline.

Cas Consumer (CC) Outputs information from a pipeline.

11

 Appendix 10

10.1 Piper Commands

Piper Commands

Command Parameter 1 Parameters 2-n Description

load Piper file path - Load external piper file

set name=value <name=value …> Add global parameters

Cli name=char <name=char…>
Add a global parameter based upon
command line character option value

addPackage Package specification - Add to known packages

add AE or CC class name <name=value …> Add AE/CC to pipeline

addDescription AE or CC class name <value …>
Add AE/CC with .createDescription()
method to pipeline

addLogged AE or CC class name <name=value …>
Add AE/CC to pipeline with Start/Finish
logging

addLast AE or CC class name <name=value…>
Add AE/CC to end of pipeline. Useful if
the pipeline is meant to be extended

reader CR class name <name=value …> Specify collection reader for input data

readFiles <input directory> - Use Files in Directory collection reader

writeXmis <output directory> - Write XMI files to output directory

// or # Comment Text - Line comment

12

10.2 Collection Readers

Collection Readers

Name Description Parameters

FilesinDirectoryReader Reads text files in a directory

FileTreeReader Reads text files in a directory tree

JdbcCollectionReader Reads text in a database

10.3 Analysis Engines

Analysis Engines

SimpleSegmentAnnotator
Creates a segment enclosing the entire
document

RegexSectionizer
Uses Regex lines in BSV file to create
segments

ParagraphAnnotator
Uses Regex or multiple \n to create
paragraphs

ListAnnotator Uses Regex to create Lists

10.4 Cas Consumers

CAS Consumers

XmiFileWriter XMI files usable by the CVD.

PrettyTextWriter Decorated note ASCII text.

PrettyHtmlWriter Decorated note html.

PropertyTextWriter Property list text.

“The secret of being boring is to say everything.” – Voltaire

13

10.5 Dictionary Specification

<lookupSpecification>

 <dictionaries>

 <dictionary>

 <name>MyCustomWords</name>

 <implementationName>org.apache.ctakes.dictionary.lookup2.dictionary.BsvRareWordDictionary</implementationName>

 <properties>

 <property key=”bsvPath” value=”mycustomfile.bsv”/>

 </properties>

 </dictionary>

 </dictionaries>

 <conceptFactories>

 <conceptFactory>

 <name>MyCustomCodes</name>

 <implementationName>org.apache.ctakes.dictionary.lookup2.concept.BsvConceptFactory</implementationName>

 <properties>

 <property key=”bsvPath” value=”mycustomfile.bsv”/>

 </properties>

 </conceptFactory>

 </conceptFactories>

 <dictionaryConceptPairs>

 <dictionaryConceptPair>

 <name>MyCustomPair</name>

 <dictionaryName>MyCustomWords</dictionaryName>

 <conceptFactoryName>MyCustomCodes</conceptFactoryName>

 </dictionaryConceptPair>

 </dictionaryConceptPairs>

 <rareWordConsumer>

 <name>TermConsumer</name>

 <implementationName>org.apache.ctakes.dictionary.lookup2.consumer.DefaultTermConsumer</implementationName>

 <properties>

 <property key=”codingScheme” value=”custom”/>

 </properties>

 </rareWordConsumer>

</lookupSpecification>

 Dictionary Specification File

14

10.6 State of the Art
cTAKES implements a full stack of critical components. These powerful components perform duties as

simple as locating sentence breaks and as complex as the extremely important task of identifying temporal

events, dates and times – resulting in the absolute and relative placement of events in a patient timeline.

cTAKES is also unique in that components are trained on gold standards from the biomedical as well as

general domain. This affords usability across different types of clinical narrative (e.g. radiology reports,

clinical notes, discharge summaries) in various institution formats as well as other types of health-related

narrative (e.g. Twitter feeds), using multiple data standards (e.g. Health Level 7 (HL7), Clinical Document

Architecture (CDA), Fast Healthcare Interoperability Resources (FHIR), SNOMED-CT, RxNORM). For cTAKES

integration with popular tools/formats, see Figure 1. For details on some of the projects where cTAKES is

being extended see www.thyme.healthnlp.org , www.cancer.healthnlp.org , www.share.healthnlp.org .

cTAKES Component or Function Score Score Type

Sentence boundary (1) 0.949 Accuracy

Context sensitive tokenizer (1) 0.949 Accuracy

Part-of-speech tagging (1) (2) 0.936 – 0.943 Accuracy

Shallow parser (1) 0.952 ; 0.924 Accuracy ; F1

Entity recognition (1) 0.715 / 0.824 F1
1

Concept mapping (SNOMED CT and RxNORM) (1) 0.957 / 0.580 Accuracy
1

Negation NegEx (3) (1) 0.943 / 0.939 Accuracy
1

Uncertainty, modified NegEx (3) (1) 0.859 / 0.839 Accuracy
1

Constituency parsing (4) 0.810 F1

Dependency parsing (2) 0.854 / 0.833 F1
2

Semantic role labeling (2) 0.881 / 0.799 F1
3

Coreference resolution, within-document (4) 0.352 ; 0.690 ; 0.486 ; 0.596 MUC ; B^3 ; CEAF ; BLANC

Relation discovery (5) 0.740-0.908 / 0.905-0.929 F1
4

Events (publication in preparation) 0.850 F1

Temporal expression identification (6) 0.750 F1

Temporal relations: event to note creation time (7) 0.834 F1

Temporal relations: on i2b2 challenge data (7) 0.695 F1

Table 1: Evaluation of cTAKES components by established standard metrics.
1
 Exact/Overlap span;

2
 Unlabeled/labeled attachment;

3
 Argument/with classification;

4
 locationOf/degreeOf

http://www.thyme.healthnlp.org/
http://www.cancer.healthnlp.org/
http://www.share.healthnlp.org/

15

10.7 Current Efforts
 Deep phenotyping.

– see deepphe.healthnlp.org

 Cross-document coreference.

 Cross-document timeline creation.

– see thyme.healthnlp.org

 Adverse Event detection.

 Question-Answering.

 Social media integration.

 Asynchronous scale-out.

 i2b2 database reader, writer.

 Deep Learning libraries (e.g. keras).

 Performance improvement with Deep Learning.

 Ontology web language (OWL) dictionaries.

 Word-sense disambiguation.

 Computable phenotypes.

 Docker Containerization.

 GPU utilization.

 Participation 11

11.1 Get Involved
cTAKES is open source software, and developer contribution is welcome. cTAKES is also software
built with purpose, and user contribution is encouraged. Contributions can be improvement suggestions,
bug reports, documentation, and questions as they provide developers information and direction.

1. Visit https://ctakes.apache.org

2. Select Resources > Get Involved.

cTAKES has active mailing lists used to post
questions and answers.

1. Visit https://ctakes.apache.org

2. Select Resources > Mailing Lists.

“Go vote!” - President Barack Obama

16

11.2 The Authors
Contact us at FirstName.LastName@childrens.harvard.edu -- Sean Finan, Timothy Miller, Guergana Savova.

Sean Finan is a lead software developer at Computational Health Informatics Program (CHIP) located in

Boston Children's Hospital with over twenty years of experience architecting software for academic research

and professional use. He has participated in a number of large scale software projects and developed several

software tools – some under the Apache cTAKES umbrella and others outside it. He has created advanced

topic tutorials for large software companies, trained professional developers and is a member of numerous

local and international groups on Java, several focusing on esoteric topics such as high performance,

concurrency and thread safety. He has received expert level training in and used many techniques and tools

for agile development; is an early signatory of the manifesto for agile software development, as well as a

member of user groups devoted to agile development and principles.

Dr. Timothy Miller is faculty at Computational Health Informatics Program (CHIP) located in Boston

Children's Hospital. He works in natural language processing (NLP) of clinical text, extracting information

from medical records to facilitate clinical research and make the healthcare system more efficient. Dr. Miller

is trained as a computer scientist. In the general domain, natural language processing (NLP) is usually

applied to standard corpora including financial newswire text and a few other canonical sources, to the

extent that the whole field is probably overtrained on these few data sources. Dr. Miller is interested in

doing clinical NLP research to broaden the usage and development of NLP models to new domains, and the

domain of clinical research is especially exciting because of the direct impact it can have on people's lives.

Dr. Miller is interested in applying statistical models of human language to data in the electronic health

record. Specifically, he is currently interested in tree kernels for support vector machines, constituency

parsing and features derived therefrom, clinical domain adaptation, generative (Bayesian) models of text

generation, and coreference resolution.

Mr. Chen Lin is a trained computer scientist with machine learning expertise. He is an informatician at

Computational Health Informatics Program at Boston Children’s Hospital. Mr. Chen has been investigating

cutting edge machine learning methods and applying them to complex NLP tasks such as temporal relation

extraction. He has generously contributed the best methods to cTAKES temporality module. Recently Mr.

Chen has been fascinated by the resurgence of neural networks (a.k.a. deep learning) and has been

researching varied architectures for higher level tasks – a topic to which neural networks have not been

explored so far. He is also interested in using the NLP output to tasks of interest to the clinical investigators

such as automatic discovery of disease activity from the electronic medical record, automatic discovery of

medication adverse events from the electronic medical record, quality metrics mining.

Dr. Guergana Savova is Associate Professor at Harvard Medical School and Computational Health

Informatics Program at Boston Children’s Hospital. She is the Principal Investigator of the Natural Language

Processing Lab. Before joining Boston Children’s Hospital and Harvard Medical School in 2010, Dr. Savova

was faculty at the Biomedical Statistics and Informatics Department, Mayo Clinic (2002-2010). Her research

interests are in natural language processing (NLP) and information extraction especially as applied to the

text generated by physicians (the clinical narrative). Dr. Savova has been creating gold standard annotated

resources based on computable definitions and developing methods for computable solutions. The focus of

mailto:FirstName.LastName@childrens.harvard.edu

17

Dr. Savova's research is higher level semantic and discourse processing of the clinical narrative which

includes tasks such as named entity recognition, event recognition, relation detection and classification

including coreference and temporal relations (thyme.healthnlp.org; share.healthnlp.org;

cancer.healthnlp.org). The methods are mostly machine learning spanning supervised, lightly supervised

and completely unsupervised. The result of Dr. Savova's research with her collaborators has led to the

creation of the clinical Text Analysis and Knowledge Extraction System (cTAKES; ctakes.apache.org). Dr.

Savova has been the principal of cTAKES since its inception.

 References 12

1. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text
Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and
applications. J Am Med Inform Assoc JAMIA. 2010 Oct;17(5):507–13.

2. Albright D, Lanfranchi A, Fredriksen A, Styler WF, Warner C, Hwang JD, et al. Towards
comprehensive syntactic and semantic annotations of the clinical narrative. J Am Med Inform Assoc
JAMIA. 2013 Oct;20(5):922–30.

3. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for
identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001
Oct;34(5):301–10.

4. Zheng J, Chapman WW, Miller TA, Lin C, Crowley RS, Savova GK. A system for coreference
resolution for the clinical narrative. J Am Med Inform Assoc JAMIA. 2012 Aug;19(4):660–7.

5. Dligach D, Bethard S, Becker L, Miller T, Savova GK. Discovering body site and severity modifiers in
clinical texts. J Am Med Inform Assoc JAMIA. 2014 Jun;21(3):448–54.

6. Miller T, Dligach D, Bethard S, Pradhan S, Lin C, Savova G. Discovering Time Expressions in Clinical
Text. In: Annual symposium of the American Medical Informatics Assocation [Internet].
Washington, DC, USA; 2013 [cited 2015 Mar 27]. Available from: http://knowledge.amia.org/amia-
55142-a2013e-1.580047/t-03-1.584514/f-003-1.584515/a-342-1.584603/a-355-1.584598?qr=1

7. Chen L, Dligach D, Miller T, Bethard S, Savova G. Layered temporal modeling for the clinical
domain. J Am Med Inf Assoc JAMIA. 2015;

http://thyme.healthnlp.org/
http://share.healthnlp.org/
http://cancer.healthnlp.org/
http://ctakes.apache.org/

