
 1

The	 Apache	 Airavata	 Application	 Programming	 Interface:	 Overview	 and	
Evaluation	 with	 the	 UltraScan	 Science	 Gateway	

Marlon Pierce
Indiana University
Bloomington, IN
marpierc@iu.edu

Suresh Marru
Indiana University
Bloomington, IN
smarru@iu.edu

Borries
Demeler

University of
Texas Health

Science Center
San Antonio, TX

demeler@biochem
.uthscsa.edu

Raminderjeet
Singh

Indiana University
Bloomington, IN
ramifnu@iu.edu

Gary Gorbet
University of
Texas Health

Science Center
San Antonio, TX

gegorbet@gmail.c
om

ABSTRACT

We present an overview of the Apache Airavata Application
Programming Interface (API), describe the design choices and
implementation details, and describe how API methods map to the
UltraScan Science Gateway use case. The Airavata API is
designed to standardize access to Airavata services that provide
gateways with scientific application metadata and execution
management. The API also represents an important milestone in
the development of Science Gateway Platform as a Service
(SciGaP), a hosted, multi-tenanted gateway service based on open
source Airavata software. The UltraScan gateway is a production
XSEDE gateway that has been using Airavata services for over
three years through customized interrfaces and represents a
stringent test of the API design and implementation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, polymorphism.

General Terms

Design, Reliability, Human Factors, Standardization

Keywords
Science gateways, application programming interface design,
cyberinfrastructure, cloud computing

1. INTRODUCTION
Science gateways are coming of age, with many successful
gateways serving hundreds to hundreds of thousands of users.
 General background on gateways is available from [1]. More
recent developments are surveyed in [2] [3] [4]. In general,
science gateways provide user-, science-, or application-centric
views of cyberinfrastructure that adapt and build upon the
resource centric views of cyberinfrastructure and access layers

such as UNICORE, Globus, and gLite.

Although some gateways have proven extremely successful, there
is room for improvement in the success rate and the types of
communities served. We believe important elements to increasing
the success rate and sustainability of gateways lie in providing
transparently operated services based on open source software that
allow gateways to outsource their general requirements for
metadata, application and workflow execution management [5].
 This permits gateway developers and operators to concentrate
resources on serving their target communities.
In developing these general-purpose gateway services, it is
essential to define a workable application programming interface
(API). The API defines the contract between the gateway and the
platform services, delimiting what the service does and how the
gateway will need to interact with the service. This is essential if
gateway services are to obtain the benefits of scaling. A properly
designed API is easily used by the gateway to accomplish its main
tasks. Properly used APIs also eliminate custom, per-gateway
integration efforts. The latter result in integration or bridging code
that is outside the code base and testing framework of the gateway
software. Related work on cyberinfrastructure APIs for
applications and science gateways is available in [6][7][8].
UltraScan Science Gateway: The Ultrascan Science Gateway [9]
provides access to data analysis tools that help users interpret
results from analytical ultracentrifugation (AUC) experiments.
 Analytical ultracentrifugation is a technique that can be used to
determine properties such as size, mass, density and anisotropy
distributions of macromolecules and nanostructures in solution
[10]. As discussed in [11][12], supercomputing and cluster
resources are needed to provide the computing power for full data
analysis of experiments. Furthermore, new versions of AUC
detectors are capable of acquiring data at multiple wavelengths,
increasing the data density by several orders of magnitude, and
thereby creating a data-parallel computing problem that greatly
amplifies the computing requirements of AUC data analysis.
The UltraScan Science Gateway seeks to simplify access to high
end resources for the AUC community, who typically are “wet
lab” scientists, unfamiliar with high performance computing and
related facilities. The current version of UltraScan serves 72
different AUC installations and their associated user communities
[http://www.uslims3.uthscsa.edu]. Each of the 72 installations is
associated with a separate, dedicated Laboratory Information
Management System (LIMS) that manages the data for that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GCE’14 November 2014, New Orleans, LA, USA.
Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00.

 2

instrument. UltraScan users interact with the LIMS systems
through a desktop user interface (used for initial data exploration,
pre-processing, visualization and meta-data analysis), and through
a Web-enabled front end to collaborate among multiple
investigators, access comprehensive analysis reports, and to stage
high resolution data analysis jobs that require submission to
supercomputers or clusters. During 2013, UltraScan enabled 127
users to submit over 88,000 analysis jobs on XSEDE and local
campus resources, utilizing over one million XSEDE service
units. UltraScan has used Apache Airavata and its predecessor
software from the Open Gateway computing environments project
since 2010 [13][14].
UltraScan’s growing international community presents design and
operations challenges for the gateway, as data locality becomes
more important. The current LIMS system is hosted at the
University of Texas Health Science Center, San Antonio. While
the manageability provided by this centralization works well for
US-based users performing analysis on US computing resources
such as XSEDE, it introduces latency and usability issues for
international users using international resources. This is an
important problem that UltraScan must solve as it expands its
collaborations with institutions in Europe, India and other
countries.
Apache Airavata and Science Gateway Platform as a Service:
Apache Airavata [15] is open source, open community software
for managing the metadata and execution of single applications
and workflows on clusters, supercomputers, and computational
clouds. A summary description of Airavata’s internal components
and their capabilities is given in [16]; in brief, Airavata provides
separate components for managing metadata (the Registry), for
scheduling and job management (the Orchestrator), for workflow
execution (the Workflow Interpreter), for interacting with remote
resources to execute specific operations (GFAC), a for managing
security credentials (the Credential Store [17]), and for messaging
(the Messenger). As open community software, a goal for
Airavata is for these major system components to be pluggable,
facilitating distributed computing research and rapid prototyping,
such as new algorithms for scheduling and alternative approaches
for data management, by a wide range of stakeholders.
Besides facilitating distributed computing research, we use
Airavata to power many science gateway and workflow
collaborations. We thus need to think carefully about the
operational requirements needed to sustainably and scalably
support these collaborations. Simultaneously, we need to reduce
barriers to the adoption of the gateway services by providing
easily adapted code prototypes that permit rapid integration into
workflows. These considerations are motivations behind the
Science Gateways Platform as a Service (SciGaP) project, which
has the goal of making a multi-tenanted hosted gateway service
that can serve multiple gateways simultaneously that is based on
Apache Airavata and selected third party services. This
consolidation of services will enable us to scale our support for
multiple gateways (every gateway uses the same service).
 Defining an API for Airavata is an important part of this overall
strategy, as it explicitly defines the interactions between gateways
and Airavata, removing the temptation for providing ad-hoc
integrations. The latter must be avoided since they lead to services
that are difficult to maintain and only fully understood by the
persons responsible for the integration.

2. AIRAVATA API OVERVIEW
The Apache Airavata API has been designed to address the
problems described in the previous section. In general, our goals

for the API are that a) it should be general enough to support both
workflows and single job submissions, b) that it should be easily
integrated with gateways developed using a number of different
programming languages, and c) it should expose all of Airavata’s
capabilities through a single entry point.
A full discussion of the API is beyond the scope of this extended
abstract, but we provide a summary of the elements and
implementation. Although REST-based APIs are popular, we had
reservations about using them in Airavata. Airavata is built upon
earlier projects that made extensive use of XML and Web
Services, providing us with rich data models for describing
applications and computing resources within the Airavata
Registry. Although we are not retaining these implementations,
we do want to make it easy to keep the depth and strong typing of
our data models in the API. For this reason, we have chosen
Apache Thrift [18] as the interface definition language. Thrift
has the additional advantages of providing numerous language
bindings and explicitly defined error methods for fine-grained
client-side exception handling. A bonus is that well crafted
thoughtfully designed Thrift based API’s can facilitate backward
and forward compatibility. Thrift is network transport- and
language-neutral, and its vital open source community has been
very responsive to our questions. Further, it is used in production
by very high-profile clients, including Facebook and Evernote.
The Airavata API is described as Thrift data structures and service
methods and language specific software development kits bind
these definitions to client stubs and server side skeletons, for
handling network transport, and for marshalling and
unmarshalling objects. We visually summarize the API’s major
components in Figure 1. A complete definition of the API is
available from the Airavata source code [19]; [20] provides
navigable HTML documentation.

The application catalog API facilitates gateway administrators
and advanced users to register and manage computational
resources, describe the application and workflow descriptions and
register application deployments on various computational
resources. This information is used by Airavata during application
and workflow task executions. The experiment catalog API
enables users to browse, query for previously executed
experiments. These include the input data and configurations,
generated data sets, execution logs. The experiment catalog also
facilities users to organize executions into projects. In the future
we plan to enable user and group level sharing and publishing of
results to allow read access to all users. The execution
management API facilitates the creation and launch of
experiments. An experiment is conceptualized by a gateway
action typically associated with execution of an application or a
workflow. This grouping also allows managing of executing
experiments like interacting (resume, pause, cancel, clone)
experiments. The user management API proxies to gateway user
store (when available like the Ultrascan usecase) or provides an
implementation using third party identity store like the WSO2
Identity Server.
The API methods summarized above interact with rich data
models, also defined with Thrift. Application catalog data models
(appCatalogModels.thrift) include computeResourceModel,
applicationInterfaceModel, applicationDeploymentModel, and
gatewayResourceProfileModel. These are used, respectively, to
describe computing resources that will be used by the gateway,
applications that the gateway will run, details about how the
application is deployed on a specific resource, and gateway-
specific metadata about gateway preferences (such as preferred

 3

allocations and workspace directories on a specific machine).
 These data models are directly implemented in the Airavata
Registry component; the API Server provides the interface for
gateways to access and modify the data. Write, update, and delete
operations associated with these data models in the API are
associated with gateway operators rather than regular gateway
users.

Figure 1: Apache Airavata API functional grouping

Airavata’s workspace data model is the second major category
and includes per-user information. We divide information into
projects, which in turn contain experiments. The experiment
(Figure 2) is the most complicated data model and describes
everything associated with a specific job or workflow execution.
 API methods associated with these data models include Registry
database accessing and searching methods as well as methods for
launching and monitoring experiments, which interact with
Airavata’s Orchestrator and GFAC components.

3. IMPLEMENTATION AND
EVALUATION WITH ULTRASCAN
UltraScan’s Web components are developing in PHP, so we
implement UltraScan clients to Airavata using Thrift’s PHP client
library bindings; we use Java library bindings on the server side to
implement Airavata’s API Server. Communications between
client and server go over TCP/IP connections. We extend Thrift’s
generic service skeleton so that the various calls in the API
implement appropriate calls to different parts of Airavata,
typically the Registry and Orchestrator. This API Server is a first
class component of Airavata. This allows us to change the wiring

of various Airavata internal components without exposing these
changes directly to the remote client. More details on this are in
[16].

Figure 2: Airavata’s Experiment data model
Mapping the API to UltraScan requirements is straightforward but
still requires some thought. On the one hand, UltraScan in its
current form only has one application, so Airavata’s extensive
data models for describing applications are not fully exploited
here. Also, UltraScan does not have the notion of “projects” for
individual users, only “experiments” in terms of the Airavata data
model. On the other hand, UltraScan can be considered a multi-
tenanted umbrella gateway, with each of the 72 installations
acting as a tenant. Furthermore, UltraScan is in the process of
setting up branch locations to better serve the data locality and
resource usage requirements of collaborators at Juelich
Supercomputing Center, with additional collaborations with the
Indian Institute of Science (Bangalore) being initiated. In our
current implementation, we are mapping each of the individual
LIMS instances to separate Airavata projects, with experiments
run by users of each instrument associated with their LIMS
project. Our plan for the UltraScan branch locations, when they
become available, is to treat these as separate gateways from the
API point of view, since they will correspond to different
instances of UltraScan services and data management systems.
Actual experiment creation and job submission for an individual
submission is straightforward using the PHP client bindings. First,
we create an Experiment instance associated with the appropriate
Project in Airavata through an API call. The Experiment object is
populated in the PHP client with selections provided by the
gateway: target host, number of processors, processors per node,
wall time, and data sets to be used. The gateway submits the
experiment with a separate call through the airavataClient object,
specifying the experiment’s ID. Airavata does initial validation of
the launchExperiment() request to make sure it is complete and
has correct entries, and then returns. Sample code is shown in
Figure 3. $experiment is a local binding to the Thrift-defined data
model described in the previous section, and $airavataclient is an
autogenerated stub that provides access to the API methods. The
airavataToken is a security token used to map the gateway to the
appropriate credential in Airavata’s credential store. Airavata
provides multiple views of state as well, which are illustrated with

 4

the final two lines of Figure 3. Experiment status refers to the
whole experiment, including output staging and possible custom
output checking. Job status refers specifically to the status of the
submitted job on the queueing system.
$experiment = new Experiment();
//Omitted code: populate $experiment
$expId = $airavataclient -> createExperiment($experiment);
$airavataclient->launchExperiment($expId, 'airavataToken');
$experimentStatus = $experiment->experimentStatus;
$jobStatus = $airavataclient->getJobStatuses($expId);

Figure 3: Code sample summary for creating and launching
an experiment.

Actual submission is performed asynchronously by Airavata’s
Orchestrator, which passes the experiment to an available instance
of GFAC. During this process, experiments pass from “created”
to “launched” to “executing” states within the Experiment’s state
model. We have made the design choice to return immediately
rather than blocking and waiting for full submission to the
selected resource since this can take several seconds or even
significantly longer if large file uploads must be staged.
As indicated by the comment in Figure 3, the main work in
integrating the API with a gateway to handle a user’s job
submission reequest is to create the appropriate experiment object.
This information is specific to a given execution and is provided
directly or indirectly by user choices, but these choices are guided
by the entries in the gateway’s Application Catalog. Figure 4
provides code samples. The comments that precede the line show
simplified versions of the inputs. The application module
information is used to specify a specific version of the application.
 The application interface methods specify the expected input and
output types and required modules. The application deployment
descriptor provides specific information about running UltraScan
on Stampede. Compute registration allows the gateway operator
to describe how to interact with a specific resource (Stampede, in
this case). Finally, the gateway profile includes UltraScan
preferences, such as preferred allocations and working directories
to use on a given resource.
//Simplified arguments: "ultrascan", "1.0", "ultrascan
application"
ultrascanModuleId = airavataClient.registerApplicationModule();

//Simplified arguments: "ultrascan", "ultrascan application",
// appModules, applicationInputs, applicationOutputs
ultrascanAppId=airavataClient.registerApplicationInterface();

//Simplified arguments: ultrascanModuleId, stampedeResourceId,
// "$WORK/us_mpi_analysis",
//ApplicationParallelismType.MPI, "ultrascan application"
ultascanStamplede=airavataClient.registerApplicationDeployment
();

//Simplified arguments: "stampede.tacc.xsede.org",
//"TACC Stampede Cluster", ResourceJobManagerType.SLURM,
// //"push", "/usr/bin", SecurityProtocol.GSI, 2222,
"/usr/local/bin/ibrun"
computeResourceId = airavataClient.registerComputeResource()

Figure 4: Code sample summary for registering the UltraScan

application and computing resources.

4. CONCLUSIONS AND FUTURE WORK
Several security aspects of the API are still under development.
 First, access to API methods needs to be restricted; not everyone,
for example, should have write access to an application
description. Currently, access restrictions must be implemented
and enforced by the gateway. On public Airavata-based SciGaP
deployments, we use firewall rules to restrict access to the API
Server to known gateways, and we also run the Application
Catalog services on a separate port from the Workspace services.
Our future approach, which was prototyped in a Google Summer
of Code project [21], is to adopt a role-based mechanism. The
second security consideration is directly related to UltraScan’s
potential future directions for using its desktop GUI rather than its
Web front end is the primary user interface. It is possible to
directly incorporate job submission into the desktop, but this will
require the distribution of Airavata client libraries that can be
directly used and modified by any user, not just the trusted
gateway administrator. We are currently in consultation with the
Center for Trustworthy Scientific Cyberinfrastructure on the
design of this capability.
Airavata has long employed the WS Messenger component for
messaging needs. Recently the community has been exploring
alternative third party messaging solutions including Apache
Kafka and RabbitMQ. A proof of concept implemented exists in a
non-release branch. As part of a stable 1.0 release, we plan to
provide a messaging API to address the call-back functionality
and enable fine-grained monitoring from gateway user interfaces
including mobile devices.

5. ACKNOWLEDGMENTS
This was work supported by the National Science Foundation
awards OCI-1032742, ACI-1339774, and ACI-1339649.

6. REFERENCES
1. Wilkins‐Diehr, Nancy. "Special issue: science gateways—

common community interfaces to grid resources."
Concurrency and Computation: Practice and Experience 19,
no. 6 (2007): 743-749.

2. Wilkins‐Diehr, Nancy, and Amit Majumdar. "XSEDE13
Special Issue Conference Publications." Concurrency and
Computation: Practice and Experience (2014).

3. Marru, Suresh, Rion Dooley, Nancy Wilkins-Diehr, Marlon
Pierce, Mark Miller, Sudhakar Pamidighantam, and Julie
Wernert. "Authoring a Science Gateway Cookbook." In
Cluster Computing (CLUSTER), 2013 IEEE International
Conference on, pp. 1-3. IEEE, 2013.

4. 6th International Workshop on Science Gateways, IWSG
2014, June 3-5 2014, Dublin, IE; Proceedings in preparation.
https://sites.google.com/a/my.westminster.ac.uk/iwsg2014/

5. Pierce, Marlon; Marru, Suresh; Demeler, Borries; Majumdar,
Amitava; Miller, Mark (2013): Science Gateway Operational
Sustainability: Adopting a Platform-as-a-Service Approach.
figshare.
http://dx.doi.org/10.6084/m9.figshare.790760Retrieved
01:29, Aug 28, 2014 (GMT).

6. Goodale, Tom, Shantenu Jha, Hartmut Kaiser, Thilo
Kielmann, Pascal Kleijer, Gregor Von Laszewski, Craig Lee,
Andre Merzky, Hrabri Rajic, and John Shalf. "SAGA: A
Simple API for Grid Applications. High-level application
programming on the Grid." Computational Methods in
Science and Technology 12, no. 1 (2006): 7-20.

 5

7. Dooley, Rion, and Joe Stubbs. "Dynamically Provisioning
Portable Gateway Infrastructure Using Docker and Agave."
In Proceedings of the 2014 Annual Conference on Extreme
Science and Engineering Discovery Environment, p. 55.
ACM, 2014.

8. Kacsuk, Peter, Zoltan Farkas, Miklos Kozlovszky, Gabor
Hermann, Akos Balasko, Krisztian Karoczkai, and Istvan
Marton. "WS-PGRADE/gUSE generic DCI gateway
framework for a large variety of user communities." Journal
of Grid Computing 10, no. 4 (2012): 601-630.

9. Demeler, B. (2009) High-Resolution Modeling of
Hydrodynamic Experiments with UltraScan.
https://www.xsede.org/gateways-
listing?p_p_id=sciencegateways_WAR_sciencegatewaysport
let&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&
p_p_col_id=column-
2&p_p_col_count=1&_sciencegateways_WAR_sciencegate
waysportlet_actionMethod=LIST&_sciencegateways_WAR_
sciencegatewaysportlet_id=15

10. Demeler, Borries, Tich Lam Nguyen, Gary E. Gorbet, Virgil
Schirf, Emre H. Brookes, Paul Mulvaney, Ala’A. O. El-
Ballouli et al. "Characterization of Size, Anisotropy, and
Density Heterogeneity of Nanoparticles by Sedimentation
Velocity." Analytical chemistry (2014).

11. Demeler, Borries, Emre Brookes, and Luitgard Nagel-Steger.
"Analysis of heterogeneity in molecular weight and shape by
analytical ultracentrifugation using parallel distributed
computing." Methods in enzymology 454 (2009): 87-113.

12. Brookes, Emre, and Borries Demeler. "Parallel
computational techniques for the analysis of sedimentation
velocity experiments in UltraScan." Colloid and Polymer
Science 286, no. 2 (2008): 139-148.

13. Pierce, Marlon, Suresh Marru, Raminder Singh, Archit
Kulshrestha, and Karthik Muthuraman. "Open grid
computing environments: advanced gateway support
activities." In Proceedings of the 2010 TeraGrid Conference,
p. 16. ACM, 2010.

14. Demeler, Borries, Raminderjeet Singh, Marlon Pierce, Emre
H. Brookes, Suresh Marru, and Bruce Dubbs. "UltraScan
gateway enhancements: in collaboration with TeraGrid
advanced user support." In Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery, p. 34. ACM, 2011.

15. Marru, Suresh, Lahiru Gunathilake, Chathura Herath,
Patanachai Tangchaisin, Marlon Pierce, Chris Mattmann,
Raminder Singh et al. "Apache airavata: a framework for
distributed applications and computational workflows."
InProceedings of the 2011 ACM workshop on Gateway
computing environments, pp. 21-28. ACM, 2011.

16. Pierce, M, Suresh Marru, Lahiru Gunathilake, Raminderjeet
Singh, Don Kushan Wijeratne, Chathuri Wimalasena and
Chathura HerathApache Airavata: Design and Directions of a
Science Gateway Framework” in Proceedings of the
International Workshop on Science Gateways, Dublin, IE,
June 3-5, 2014.

17. Kanewala, Thejaka Amila, Suresh Marru, Jim Basney, and
Marlon Pierce. "A Credential Store for Multi-Tenant Science
Gateways." In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, pp. 445-
454. IEEE, 2014.

18. Slee, Mark, Aditya Agarwal, and Marc Kwiatkowski.
"Thrift: Scalable cross-language services implementation."
Facebook White Paper 5 (2007).

19. Apache Airavata Thrift API definitions:
https://github.com/apache/airavata/tree/master/airavata-
api/thrift-interface-descriptions

20. Apache Airavata API Documentation:
http://airavata.apache.org/documentation/api-docs/

21. Supun Chathuranga Nakandala, “Add Security capabilities to
Airavata Thrift services and clients”, Google Summer of
Code Project, 2014, http://www.google-
melange.com/gsoc/proposal/public/google/gsoc2014/scnakan
dala/5727390428823552

