ApacheCon NA 2015

How to Avoid Common
Mistakes in OFBiz Development

Presented by Adrian Crum

1Tech, Ltd.
29 Harley Street, London, W1G 9QR, UK
www. 1tech.eu

Overview

< Common Getting Started Problems
< Common Design Problems
< Common Customization Problems

Common Getting Started Problems

% Use The Correct Java SDK Version
< How To Set Up Your IDE
% Learn The Architecture

Use The Correct Java SDK Version

% OFBiz Release 12 and later — use Java 1.7
% OFBiz Release 11 and earlier — use Java 1.6

If you have more than one Java SDK on your
computer, then modify the ant script to use
the correct one. You may also need to
modify your IDE settings to use the correct
Java SDK.

You can examine the macros.xml file to find out which Java SDK version
OFBiz requires.

How To Set Up Your IDE

You can use any Integrated Development
Environment (IDE) you prefer, but to get
started as quickly as possible, it is best 1o use
Eclipse. OFBiz includes the necessary settings
for Eclipse.

Some IDEs support importing Eclipse projects.

https://cwiki.apache.org/confluence/display/OF BlZ/Eclipse+Tips (note that
some links are broken)

https://cwiki.apache.org/confluence/display/OF BIZ/Running+and+Debugging+
OFBiz+in+Eclipse

How To Set Up Your IDE

If you are using Eclipse, then try using the XML
perspective

XML - OFBiz/hat-deploy/acme/servicedef/servicesxml - Eclipse
File Edit Source Nawvigate Search Project Run Window Help

= © ®vOvQ@-v ©F bl v § - Quick Access

& Navigator 4 entitymodelaml | X services i
“|[" 1 <7xml version="1.0"
4 & OFBiz *nlns:xsi="http://www. w3.org/2001/XMLSc]
sl 3 "http://ofbiz. apache
€ applications
& framework
4 hot-deploy ervice name="noSyntaxError" engine="interfac
iption>
Dumny service to prevent empty files and syntax error - Remove when the lst real ser

documents

atd

entitydef

entitymodelxmi
b

) senvicessml
& e
testdef
& webapp
vidget
8 buildami (
¥ oftiz-componentsl | Dasign | source
Wiitable Smart Insert

Eclipse will default to the Java perspective, but most OFBiz developers don't
find that useful.

Learn The Architecture

% OFBiz uses a Service Oriented Architecture

< Start at the service level, then work your way
down

< OFBiz has a persistence (data model) layer —
the Entity Engine

< OFBiz has a presentation layer — the
Rendering Engine (screen widgets)

< OFBiz uses a custom J2EE servlet
implementation (Conftrol Serviet)

Many new developers make the mistake of starting off by analyzing OFBiz
Java code. That is a bad idea - because application development should start
at a higher level on the technology stack.

Learn The Architecture

Services implement business logic and they
provide an abstraction that hides
implementation details from your
application

XML - OFBiz/applications/party/servicedef/servicesxml - Eclipse

The good news: service definitions can be created automatically based on an
entity definition. This example is a service based on the Person entity.

The bad news: service definitions can be created automatically based on an
entity definition. If the entity model changes, then the service definition
changes too. This could be good or bad. If your service is only invoked
internally, then this behavior will be fine. If external systems are invoking your
API, then automatic redefinitions can cause problems in those systems.

So, think carefully about how you define your services. There is no “right” or
“‘wrong” — it's more about what works best for your use case.

OFBiz will read these service definition files during startup, and build internal
Java data structures based on them. Those Java data structures (models) are
reused in other parts of the framework — like in the rendering engine. The
model of this service definition can be used to automatically generate the data
input fields in an HTML <form> element.

Learn The Architecture

The Entity Engine is based on data models that
are defined in XML files

Navigator &2 i entitymodel xmi 23
« & orgiz 488

4 & applications

servicedef
3

EX
& templates
testdef
& webapp
widget
£ buildaxmi

In this example, we have the entity definition for the Person entity that was
referenced in the previous service definition.

OFBiz will read these entity definition files during startup, and build internal
Java data structures based on them. Those Java data structures (models) are
reused in other parts of the framework — like in the service definition. The
model of this entity definition is used to automatically generate the IN and OUT
parameters of the createPerson service.

Learn The Architecture

The Rendering Engine is based on generalized
layout instructions that are defined in XML

OFBiz will read these screen definition files when requested, and build internal
Java data structures based on them. Those Java data structures (models) are
passed to output-format-specific renderers that generate the desired output
(HTML, PDF, CSV, etc).

A common mistake new developers make is assuming these XML screen
definitions will only output HTML — so they embed markup and JavaScript in
the XML. That should never be done! These XML files describe a generic
layout only.

10

Learn The Architecture

The Rendering Engine is aware of entity definition
models and service definition models — so screen
and form creation are a snap

- Navigator & & ¥ 7 O ||[X PartyScreensxml % PartyFormsxml &%
4 5 widget ~

4 & partymar <form name="EditPerson" type="single" target="updatelerson" de

= eperd

% CommonScreensxml N Z -
elds-service service-name="updatePerson" />

% CommunicationEventForms.xml TTtle="

% CommunicationEventScreens.xml e T

) EmailPartyScreensaxml </field>

% LookupFormsxml <field use-when='"personInfo==nulliamp; éamp partyId==null"

¥ LookupScreensxml 1 Ltent: f»

5 PartyClassificationFormssml gty . ! :

R PifCIasE CaGTSESMEsT <field use-when="personInfo==nullsamp damp partyld!=null
<display also-hidden="false" />

% PartyContactListFormsami SR

1] PartyContactListScreensxml <field name="firstName" title="${uiLabelMap.PartyFirstiamd

| ! PartyFormsxml <text size="40" maxlength="60" />

X PartylnvitationFormsml d>

¥l PartylnvitationScreensxml £ name="lastName" title="${uiLabelMap.PartylastName]'|
<text size="40" maxlength="60" />

</fisld>

<field name="gender">

2 <drop-down allow-empty="true"

¥ PaymentidethodFormsxml <option key="M" description="${uiLabelMap. Commonis

% PaymentivlethodScreensxmi <option key="F" description="$ {uiLabelMap. CommonFd

¥ ProfileScreensxml </drop-down>

3 VisitScreens xml </field>

PartyMenus.xmi
% PartyScreensxmi
PartyVisitForms xrml

In this example, the <auto-fields-service> element automatically generates an
input form based on the updatePerson service definition.

Learn The Architecture

The Conftrol Servlet provides a convenient way
to map requests to services and screen
definitions

- Navigator 2 E%| & ¥ % O||® controllerxml =
» £ templates

& testdef

4 (= webapp

<request-map uri="editperson's
ity https="true" auth="true" />
nse name="success" type="view" value="EditPerson" />
& partymgr 416 r map>
i 17 G uri="createPerson'">
= party 418 i ; https="true" auth="true" />
= security 19 "service™" path="" invoke="createPerson" />
nse name="success" type="reguest-redirect” value='"vie
onse name="error" type="view" value="EditPerson" />
map>
ap uri="updatePersons
F{Beactions ity hDttpesrppet authstrpet
[contrellerxmi type="service" path="" invoke="updatePerson" />
Xl webxml T= T TrETE— pE=tvrew 5
[indexjsp <response name="srror" types="view" value="EditPerson” />
</request-map>

= static
= visit
“ (= WEB-INF

= widget
&1 buildxml

O — <request-map uri="editpartygroup™-

<security https="true" auth="true" />
= product 432 <response name="snccess" type="view" value="EditpPartyGroup"
(= securityext 433 </request-map>

The Control Servlet is aware of service definition models. In this example,
the updatePerson URL is mapped to the updatePerson service. The
Control Servlet will use the service definition model fo map URL
parameters to service IN parameters.

12

Common Design Problems

< Follow Best Practices
< Follow Common Design Patterns

13

Follow Best Practices

IZ beSsT Fraciices i

Best Practi

can be found on et Pretes

Space tools Best Practices Guide

the OFBiz Wiki site

HTML and CSS Best Practices Table of Contents

(be aware that some V

Methodology Recommendations + General Concepts

information might be e
outdated)

fviz OFEZ Prolect Adminisiaton
= Worksp:

% User Interface Layout Bes! Practi

User Interface Layout Best Practices

In order to present the user with a consistent user Interface (Uj
(manager) applications. Layout for public-facing screens (sucf

https://cwiki.apache.org/confluence/display/OF BADMIN/Best+Practices+Guide

https://cwiki.apache.org/confluence/display/OF BADMIN/User+Interface+Layou
t+Best+Practices

Follow Best Practices

OFBiz Project Adminisration
Workspace

Sometimes best
practices are not
followed in the
project. Be careful
when copying
artifacts or following
tutorials...

The Best Practice to follow is:

“‘When a screen is split up into multiple templates or screens the data
preparation action should be associated only with the individual small screen
that it prepares data for. This makes it easier to move templates and content
pieces around and reuse them in many places. “

In other words, the data preparation logic should be contained within the
screen widget that renders it — including forms, menus, and trees.

But the tutorial found on the Wiki:

https://cwiki.apache.org/confluence/display/OF BIZ/OFBiz+Tutorial+-
+A+Beginners+Development+Guide

does not follow this best practice — the data preparation is done in the screen
and not in the form that displays the data. Consequently, that form is not
reusable — it will be empty (not contain any data) if it is used in any other
screen.

15

Follow Common Design Patterns

< Use SOA! Implement your business logic as
services — so they can be reused and
exported

< Understand and emulate the data modeling
patterns in The Data Model Resource book

< Understand and emulate the design
patterns in the Design Patterns: Elements of
Reusable Object-Oriented Software book

Even though OFBiz uses a Service Oriented Architecture (SOA), there are
many examples in the project where that design pattern is not followed —
resulting in duplicate code and business logic that is scattered everywhere.

One really bad example of this is the OFBiz shopping cart — which is
implemented as a bunch of Java classes that are referenced by a shopping
cart object stored in the HTTP session. A better approach would be to
implement the shopping cart as a set of services — so they can be reused in
other places.

The Data Model Resource Book does more than describe a reusable data
model, it introduces modeling patterns that can be reused. Patterns like
abstract types and subtypes, date ranges, etc.

Both books are essential for anyone wanting to do development work in
OFBiz. Not only will they help you with your design work, they will also help
you understand how/why things are done in the project itself.

16

Common Customization Problems

< Create A Hot-Deploy Component
< REUSE REUSE REUSE

< Extending Arfifacts

< Overriding Artifacts

< Do This, Don't Do That

17

Create A Hot-Deploy Component

Use the ant

create—-component

target to create a Bt tari1e, C\Devetoporoseubnd o

new Componen’r, "“FT;ZETTEZEE;W .
and then put all of

your development

work in there

elop\ofbiz/hot-deploy/acme

[echo]
[input] Confirm: (Y, [N], y, n)

Avoid putting your custom development work in existing OFBiz folders — doing
so makes upgrading OFBiz difficult. By keeping all of your development work
in a custom component, upgrading OFBiz is easy.

An OFBiz component can support multiple web applications, so there is no
need to create a separate component for each web application.

18

REUSE REUSE REUSE

< 800+ entities, 2000+ services — most likely
what you need is already there

< Copy Ul artifacts to your custom component
< Extend or Override everything else

The biggest mistake new OFBiz developers make is reinventing the wheel.
Most projects based on OFBiz should be little more than customizing the Ul
and making minor changes to workflows.

Your custom component can reference (point to) existing Ul artifacts, or you
can copy existing Ul artifacts to your custom component. | recommend
copying Ul artifacts, because the Ul is a very subjective thing that sees a lot of
debate within the community — consequently its appearance changes
regularly.

Conversely, business processes are fairly standard things that don’t see much
debate and remain mostly constant — so those processes can be reused safely
as-is. A particular project might need to change those processes slightly, so
OFBiz provides two mechanisms for that: extension and override.

19

Extending Artifacts

You can extend entifies to add fields, relatfions,
and indexes

<extend-entity entity-name="orderIitem-
<field name="fororderId" type="id" />
<field name="fororderItemSeqId"” type="id" />
<relation type="one-nofk" rel-entity-name="OrderItem™>
<key-map field-name="fororderId" rel-field-name="orderIid" /=
<key-map field-name="fororderItemSeqld" rel-field-name="orderItemSeqIld" /=
</relation:>
</extend-entity>

In this example, we are adding two fields and a relationship to the Orderltem
entity. These can be found in The Data Model Resource Book, but they are
missing from the OFBiz data model.

The Orderltem entity is defined in the order component, and we could just add
the fields and relation there — but that would make OFBiz updates/upgrades
difficult. Instead, we extend the entity in our custom component and leave the
original OFBiz code untouched.

View entities can be extended in the same way.

20

Overriding Arfifacts

You can redefine entities o change fields,
relations, and indexes

<l-- Redefine the OFBiz FacilityParty entity to change the PartyRole fk.
This will allow us to assign parties to Facilities in various roles
without requiring a matching Pagtwko ==
<entity entity-name="FacilityParty"
cka

e"></field>
</field>
1d-ne"></field>
omDate" type="date-time"-</field>
rubate" type="date-time"></field>
<prin- key field="facilityId" />
<prin-key field="partyId" />

<relation type="one" fk-name="FACILITY RLE_FACI" rel-entity-name="Facility">
<key-map field-name="facilityrd" />

</relat10n>

<relation type="one" "FACILITY RLE PRT" rel-entity-name="party"-
<key-nap field-name="partyId" />

</relation>

<relation type="one" fk-name="FACILITY RLE ROL" rel-entity-name="RoleType">
<key-nap field "roleTypeId" />
lat

relation "o; " rel-entity-name="PartyRole">
= i ‘partyId"/>
<key-map field-name="roleTypeId"/>

</relation>
</ =TT

In this example, we are redefining the FacilityParty entity so we can change a
relationship.

One annoying thing about the OFBiz data model is the repetitious relations to
PartyRole — which forces you to create a PartyRole entity value every time you
want to associate a party with something. Overrides/redefinitions like this one
can fix that and make the data model a lot more flexible and easy to use.

To redefine an entity, just copy-and-paste the existing entity definition to your
custom component, and then make your changes. OFBiz will replace the
existing entity definition with your custom one.

Be sure to set the redefinition attribute to “true” - so OFBiz does not log
warnings about duplicate definitions. If you do not set the attribute to “true”
your redefinition will still work.

| like to change the entity package name to make it obvious to others that |
have redefined an existing OFBiz entity, but that change is not required to
make the redefinition work.

21

Overriding Arfifacts

You can override a web application

4 = hot-deploy B <l-- place the config directory on the classpath to ag
a (= acme 3 o <classpath type="dir" locatlon:”conﬁig"/z
= build 1 <classpath type="dir" location="dtd"/>
(= config
(= data
(= documents
= dtd
= entitydef 16 <!-— entity resources: model (s}, eca(s), group, and da
& lib 17 <entity-resource type="model™ reader-name='"main" loade

<!-- load single or multiple external libraries --»
<cla: ath type="jar" location="build/lib/*"/=>
<classpath type="jar" location="1ib/*"/>

(= patches
= script
= senvicedef

<test-suite loader="main" location="testdef/AcmeTests.

\—— web applications: will be mounted when using the
) <webapp name="order"
(= testdef 35 title="order"
(= webapp 36 server="'default-server"
(= widget 37 location="webapp/acme'
1 buil daml 38 base-permission="OFBTOOLS, ORDERMGR"
3 mount-point="/ordermgr"/>
10 </cTDIE-ComMPOTETT,

(=1 (d

¥ ofbiz-componentxml
|5 README txt.
& runtime

In this example, we will use our acme custom component to override the
OFBiz Order Manager web application.

Modify the <webapp> element in ofbiz-component.xml so that it duplicates the
existing Order Manager web application element, but leave the location
attribute as-is.

22

Overriding Arfifacts

You can override a web application

4 & hot-deploy = <site-conf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
¥s1:nolNamespaceSchenalocation="http://ofbiz. apache.org/dtds/site-conf. xsd">
<l-- The controller elements that are common to all OFBiz components
can be found in the following zml file. A component can override the
elements found in the common-controller.xml file. —->
data include location="component://common/uebcommon /HER=TNF/common-controlley snl '/ >
documents | [cinclude location="component://order webapp/ordermgr /WEB-INF/controlier zml'/>]
> dtd E
& entitydlef L <description>Acme Component Site Configuration File</description>
& lib
patches

+ i acme
= build
= config

<l-— Events to run on every request before security (chains exempt) ——»
P
& script 14 <PLeprocessor>
= servicedef 13 </preprocessors

src L6 -

o teeiiiat 17 <l-- Events to run on every request after all other processing (chains exempt) -
s
<postprocessors>

<event name="test" type="java" path="org.ofbiz.webapp.event.TestEvent" invoke

</poStRrocessors
-—>

webapp
& acme
& ermor
4 (= WEB-INF
= actions
B controllerxmi] <l-— Request Mappings —->

webxml
Bl indexjsp
widget
F buildxml

<l-- View Mappings -->

28 </site-conf>

Next, we import the Order Manager request maps and view maps into our
acme custom component. Simply add an <include> element in the acme
controller.xml file, and then remove all existing <request-map> elements and
<view-map> elements.

Overriding Arfifacts

You can override a web application

4 (= hot-deploy
4 = acme T <l-- context-param>
& build 8 <param-name>webs iteId</param-name>
& config 9 <paran-value>acmesite</paramn-value>
& data 10 <descriptionsA unique ID used to look up the WebSite entity. Only for component u
</context-param-->
<context-param>
am-name>localDispatcherName</paran-namer<param-value>acme</paran-value>

+ = documents
= drd
& entitycef
& lib
£ patches
& script 7 <param-name>entityDelegatorName</param-name><param-value>default</param-value>

18 <description>The Mame of the Entity Delegator to use, defined in entityengine._xml.
context-parang

stc
ek 2c <context-param>
> @i 1estde 21 <paran-name>mainDecoratorLocation</paran-nane>
€

= servicedef

4 (= webapp <param-value>component://corder/widget/orderngr/Commonscreens . xml</paramn-value>
4 (= acme <des ption=The location of the main-decorator screen to use for this webapp:
& error </context-param>
4 £ WEB-INF T
£context-param>
<param-name>widgetVerbose</param-name>
<param-valuesfalse</param-values
29 <descriptionsEnable widget boundary comments. See org.ofbiz.widget.model.ModelWidy
[2 indexjsp ar </context-param>
& widget 31 —

= actions
% controllerxml
[webxml|

One more change and our web application override is done. All of the Order
manager screens reference its screen decorator, and the location of that
decorator is contained in a web application context parameter. So, we need to
update that parameter in our acme web application so it will use the Order
Manager screen decorator. Simply change the value of the
mainDecoratorLocation context parameter in the acme web.xml file.

At this point, we have completely overridden the Order Manager web
application and put it under the control of our custom acme application.

24

Overriding Arfifacts

You can override a web application

4 & hot-deploy RS T : ATLP: g 20 Hella~1115 L ANCe
ttp://ofbiz. apache.org/dtds
e commos OFBiz co

& acme
build
& config
& data 7 wtroller /
documents 8 ion="component : //ordex /webapp/or: —INF/controller.aml"/>
& dtd
entitydef 1 «description>Acme Component Site Configuration File</

&lib
patches
& script
& servicedef
& s
& testdef 17 <i-- Events to run on every t after all other processing
webapp
g te " path="org.ofbiz.webapp.event.TestEvent” invoke="
aror
WEB-INF
& actions
2 controllermi
2 webxml
5 indexjsp
& vidget
4 buildal

ders" type="screen" page="component ://acme/widget/Acmeor derScreens. xml#or de:

Now we can replace screens in Order Manager with our own custom versions.
In this example, we replace the Find Orders screen with our own version.

Extending Artifacts

You can extend form widgets and menu
widgets

XML - OFBiz/applications/product/widget/catalog/ProductFormsxml - Eclipse
File Edit Source Navigate Search Project Run Window Help
- b v #vO-vQ~ ¢
& Navigator ¢ = = 0 || ProductFormsxml
webapp 21 <field nam 0" title="To Email Address">
<display-ent n nane="ContactMech" key-field-name="contactMechId" desd

4 & widget

4 (= catalog
- ! 1d name="content"> ></field>
ataloghenus.xml 4 <field map-name="subject: me="subject"><display/></field>
% CatalogScreensxmi > P ——
% CategoryFormsxml
% CategoryScreensxmi 2 <form name="EditCommEvent" e "EditCommEvent "
% CommonScreensxml 212 extends-resource="component : //party/widget /partymgr/Communi cat ionEventForms . aul"
2 <field name="productId" name="paremeters"><hidden/></field>

% ConfigFormsaxml
</form>

¥ ConfigScreensxml
X FeatureFormsxml <form name="UpdateProductRole" type="list" target='updatePartyToProduct" title="" lis
B FeatureScreensml odd-row-style="alternate-row" default-table-style="basic-table"s

FieldLookupFormsxml 1 o-fiel . updatepartyToProduct ™

¥ FindScreens xml field

In this example, a form from the party component is being extended to add a
product ID field. This will enable the product component to associate a
communication event to a product.

Do This, Don't Do That

The following slides are some common
mistakes | have encountered while working
on OFBiz projects

27

Do This, Don't Do That

Make screen widgets reusable

<scresn name="EditFPerson'
<section>

<actionsx>
<zet field="titleProperty" value="PageTitleEditPersonallnformation™ />
<set field="tabButfonItem" value="viewprofile” />
<set field='"headerItem" value="find" />
<set field="labelTitleProperty" value="PageTitleEditPersonalinformation" />
<set field="donePage" fron-field="parameters.DONE PAGE" default-value='viewprofile™ />
<set field="partyId" from-fisld="paramsters.partyId" />

1 centity-one entity-name="PartyandPerson” value-field="personInfo” />

</actions>

<widgets>

2, <decorator-screen name='"CommonPartyDecorator” location="§{parameters.mainDecoratorLocation]} "

<decorator-section name="body'>
<screenlet title="${uiLabelMap.PageTitleEditPersonalInformation} ™
<include-form name="FditPerson" location="component://party/widget/partymgr/PartyForms.xmi" />
</screenlet>
</decorator-section>

</decorator-screen>

</widgets>

</section>
</screen>

Don’t Do This:

1. Data used in the included form is gathered in the screen widget instead of
in the EditPerson form widget. Therefore, the EditPerson form widget can
not be reused.

2. The CommonPartyDecorator “sub-decorator” is located in a different file
and its location is specified using the mainDecoratorLocation context
variable. Therefore, the EditPerson screen widget can not be reused.

28

Do This, Don't Do That

Make screen widgets reusable

<form name="EditPerson" type="single" target="updatePerson" default-map-name="personInfo"
<actions»
<entity-one entity-name="PartyindPerson" value-field="personInfo" />

</actions>

<alt-target use-when="personInfo==null" target="createPerson™ />

<auto-fields-service service-name="updatePerson" />

<field use-when="personinfo!=null" name="partyid" title="§{uilabelMap. PartyPartyId}" t
<display />

</field>

<field use-when="personinfo==nulléamp;éamp partyId==null" name="partyid" title="5{uil4
<text />

</field>

=field use-when="personinfo==nulléamp;Lamp; partyId!=null" name="partyIid" title="s5{uiL4
<display also-hidden="false" />

</field>

Do This:

1. Data used in the included form is gathered in the form widget. Now this
form can be included in other screens.

Do This, Don't Do That

Make screen widgets reusable

<screen names="CommonPartyDecorator's
<section>
<l-- Decorator code removed for conciseness -->
</section>
</screen>

<screen name="EditPerson’>
<section>

<actions>
<set field="titleProperty" walue="PageTitleEditPersonalinformation” />
<set field="tabButtonItem" wvalue='"viewprofile" />
<set field="headerItem" value="find" />
<set fileld="labelTitleProperty" value="PageTitleEditPersonalinformation" />
<set field="donePage" from-field="parameters.DONE PAGE" default-value="viewprofile" />
<set field="partyId" from-field="parameters.partyId" />

</actions>

<wldgets>

2. <decorator-screen name="CommonPartyDecorator"” location="${parameters.partyDecoratorlocation)™

<decorator-section name="body'">
<screenlet title="g{niLabelMap. PageTitleEditPersonalinformation} ™
<include-form name="EditPerson" location="component://party/widget /partymgr/FartyFol
</scresnlet>
</decorator-section>

</decorator-screen>

</widgets>

</section>
</screen>

Do This:

2. The CommonPartyDecorator “sub-decorator” is located in the same file and
its location is specified using the partyDecoratorLocation context variable.
Now this screen widget can be reused.

30

Do This, Don't Do That

Storing configuration settings in static final variables
] UtilFermatQutjava &2

FIXME
statie DecimalFormat priceDecimalFormat = new DecimalFormat {
UtilProperties.getFropertyValue ("general .properties”,
"currency.decimal . format™, "#,4##0.007)) ;

/%% Formats a Double representing a price into a stringl]
public statie String formatPrice (Double price) |
if (price == null)
return "";

Don’t Do This!

31

Do This, Don't Do That

Storing configuration settings in static final variables

U UtilFormatOutjava &

private static DecimalFormat getDecimalFormat () |
return new DecimalFormat |
UtilProperties . getFropertyValue("general .properties”,
"eurrency.decimal format™, "#,##0.00"))
t

f**% Formats a Double representing a price into a string[]
public static String formatPrice (Double price) |
if (price == null)
return "";

Do This!

32

Do This, Don't Do That

Bad exception handling

NextSeqId ("Par

ception) (
rror (UtilProperties.getMessage (resourceError,
on_failure”, locale)):

Don’t Do This:

1. Methods that throw undeclared exceptions. In this example, the service is
doing the right thing — catching a thrown exception and returning an error.
But the Delegator is doing the WRONG thing — it is throwing an undeclared
(and unchecked) exception. There is no way a developer can know that the
getNextSeqld method throws lllegalArgumentException unless you look
through the Delegator implementation code.

2. Ignore thrown exceptions. The EntityQuery.use method will throw an
exception if something goes wrong during the method call, but that
exception is ignored in this service.

3. Multiple try-catch blocks that don’t add or do anything meaningful. In this
service there are other try-catch blocks that return an error, and the only
difference is the error message being returned. At first glance, this appears
to be meaningful, but the caught exceptions have one thing in common —
they indicate something serious went wrong (like a dropped database
connection). So, the returned error messages actually HIDE the real
problem.

4. Only declared exceptions are caught. Every line in this service has the
potential to throw an exception — OutOfMemoryException,

NillPAaintarFverantinn atr _ vat thnea ara nat raininht Tha canrira annina

Do This, Don't Do That

Bad exception handling

* Creates a Person.[]
public static Map<String, Object> createPerson(DispatchContext ctx, Map<String, ? extends Object> context) {
Locale locale = (Locale} context.get({"locale");
try {
Delegator delegator = ctx.getDelegator();

return ServiceUtil.returnsuccess();
} cateh (Ezception &) |

string errorMsg = UtilProperties.getMessage(resource, "CreatePersonExceptionThrown”, locale):
Debug. logWarning (e, errorbsg, modale) :
return ServiceUtil.returnError(errorksg +) ;
)
)

Do This!

All try-catch blocks have been removed and they are replaced with a single
one. Now all exceptions are caught and a meaningful error message is
returned.

If your service throws an exception that is recoverable, then add a try-catch
block for that exception (inside the main try-catch block) and implement
your recovery code in its catch block.

34

Do This, Don't Do That

Bad event handlers

<request-map uri="addlitemToShoppingList™
<security htt "true™ auth="true" />
<event type="service" path="" invoke="createshoppingListItem" />
<response name="success" types="view" value="editShoppingList" /x
<response name="error" type="view" value="editShoppingList™ />
</request-map>
<request-map uri="addBnlkToShoppingList ™
2 i hifpe=tfrue" auth="trus" />
ath:”org.ofbiz.order.shoppingllst.ShopplnqustEvents” invoke="addBulkFromCart™ />
<Lespolse name="success" type="view" value="editShoppingList" />
<response name="error" type="view" value="editShoppingList™ />
</request-map>
<request-map uri="addListTocart'-
= i Dtips="true™ auth="true" />
path:”Drg.ofbiz.order.shoppingllst.ShopplnngstEvents" invoke="addListToCart" />
<Fesponse name=nsaccess" type="view" value="editShoppingList™ />
<response name="error" type="view" value="editShoppingList™ />
</request-map>

Don’t Do This!

Business logic is contained in a request event of type “java” — this is bad
because the specified method will be invoked WITHOUT a transaction in
place. The Delegator implementation will wrap each method call in a
transaction, but the event as a whole will not be wrapped in a transaction —
opening the door to partial updates and data corruption.

35

Do This, Don't Do That

Bad event handlers

<request-map uri="addItemToShoppingList™s
<security https="true" auth="true" />
<event type="service" path="" invoke="createShoppingListItem" />
<response name="auccess" type="view" valuse="editShoppingLizt" />
<responss name="error" type="view" value="editShoppingList" />
</request-nap>
<request-map uri="addBulkToShoppingList™s
= i =" " auth="true" />
<event type="service"|path="" inwvoke="addBulkFromZart™ />
<response name='success" type="view" value="editShoppingList™ />
<response name="error" type="view" value="editShoppingList" />
</request-nap>
<request-map uri="addListToCart™s

<gecurity https="true" auth="true" />
<event type="service"|path="" inwvoke="addLiztTolart" />

<response name=success” type="view" value="editshoppingList™ />
<response name="error" type="view" value="editShoppingList" />
</request-nap>

Do This!

Implement business logic as a service. The service engine will wrap the
service call in a transaction, so the entire process is atomic — either all of it
succeeds, or all of it fails.

Use the “java” event type only for parameter validation. In other words, use it
to check invariants and return an error message if the user entered invalid
data, but NEVER use it to implement business logic that updates data.

36

How to Avoid Common
Mistakes in OFBiz
Development

Thank you for participating!

37

