
1

ApacheConApacheCon NA 2015NA 2015

How to Avoid Common How to Avoid Common 

Mistakes in Mistakes in OFBizOFBiz DevelopmentDevelopment
Presented by Adrian CrumPresented by Adrian Crum

1Tech, Ltd.

29 Harley Street, London, W1G 9QR, UK 

www.1tech.eu



2

OverviewOverview

��Common Getting Started ProblemsCommon Getting Started Problems

��Common Design ProblemsCommon Design Problems

��Common Customization ProblemsCommon Customization Problems



3

Common Getting Started ProblemsCommon Getting Started Problems

�� Use The Correct Java SDK VersionUse The Correct Java SDK Version

��How To Set Up Your IDEHow To Set Up Your IDE

�� Learn The ArchitectureLearn The Architecture



4

Use The Correct Java SDK VersionUse The Correct Java SDK Version

��OFBizOFBiz Release 12 and later Release 12 and later –– use Java 1.7use Java 1.7

��OFBizOFBiz Release 11 and earlier Release 11 and earlier –– use Java 1.6use Java 1.6

If you have more than one Java SDK on your If you have more than one Java SDK on your 

computer, then modify the ant script to use computer, then modify the ant script to use 

the correct one. You may also need to the correct one. You may also need to 

modify your IDE settings to use the correct modify your IDE settings to use the correct 

Java SDK.Java SDK.

You can examine the macros.xml file to find out which Java SDK version 

OFBiz requires.



5

How To Set Up Your IDEHow To Set Up Your IDE

You can use any Integrated Development You can use any Integrated Development 

Environment (IDE) you prefer, but to get Environment (IDE) you prefer, but to get 

started as quickly as possible, it is best to use started as quickly as possible, it is best to use 

Eclipse. Eclipse. OFBizOFBiz includes the necessary settings includes the necessary settings 

for Eclipse.for Eclipse.

Some Some IDEsIDEs support importing Eclipse projects.support importing Eclipse projects.

https://cwiki.apache.org/confluence/display/OFBIZ/Eclipse+Tips (note that 

some links are broken)

https://cwiki.apache.org/confluence/display/OFBIZ/Running+and+Debugging+

OFBiz+in+Eclipse



6

How To Set Up Your IDEHow To Set Up Your IDE

If you are using Eclipse, then try using the XML If you are using Eclipse, then try using the XML 

perspectiveperspective

Eclipse will default to the Java perspective, but most OFBiz developers don’t 

find that useful.



7

Learn The ArchitectureLearn The Architecture

��OFBizOFBiz uses a Service Oriented Architectureuses a Service Oriented Architecture

�� Start at the service level, then work your way Start at the service level, then work your way 

downdown

��OFBizOFBiz has a persistence (data model) layer has a persistence (data model) layer ––

the Entity Enginethe Entity Engine

��OFBizOFBiz has a presentation layer has a presentation layer –– the the 

Rendering Engine (screen widgets)Rendering Engine (screen widgets)

��OFBizOFBiz uses a custom J2EE uses a custom J2EE servletservlet

implementation (Control implementation (Control ServletServlet))

Many new developers make the mistake of starting off by analyzing OFBiz

Java code. That is a bad idea - because application development should start 

at a higher level on the technology stack.



8

Learn The ArchitectureLearn The Architecture

Services implement business logic and they Services implement business logic and they 

provide an abstraction that hides provide an abstraction that hides 

implementation details from your implementation details from your 

applicationapplication

The good news: service definitions can be created automatically based on an 

entity definition. This example is a service based on the Person entity.

The bad news: service definitions can be created automatically based on an 

entity definition. If the entity model changes, then the service definition 

changes too. This could be good or bad. If your service is only invoked 

internally, then this behavior will be fine. If external systems are invoking your 

API, then automatic redefinitions can cause problems in those systems.

So, think carefully about how you define your services. There is no “right” or 

“wrong” – it’s more about what works best for your use case.

OFBiz will read these service definition files during startup, and build internal 

Java data structures based on them. Those Java data structures (models) are 

reused in other parts of the framework – like in the rendering engine. The 

model of this service definition can be used to automatically generate the data 

input fields in an HTML <form> element.



9

Learn The Learn The ArchitectureArchitecture

The Entity Engine is based on data models that The Entity Engine is based on data models that 

are defined in XML filesare defined in XML files

In this example, we have the entity definition for the Person entity that was 

referenced in the previous service definition.

OFBiz will read these entity definition files during startup, and build internal 

Java data structures based on them. Those Java data structures (models) are 

reused in other parts of the framework – like in the service definition. The 

model of this entity definition is used to automatically generate the IN and OUT 

parameters of the createPerson service.



10

Learn The ArchitectureLearn The Architecture

The Rendering Engine is based on generalized The Rendering Engine is based on generalized 
layout instructions that are defined in XML layout instructions that are defined in XML 
filesfiles

OFBiz will read these screen definition files when requested, and build internal 

Java data structures based on them. Those Java data structures (models) are 

passed to output-format-specific renderers that generate the desired output 

(HTML, PDF, CSV, etc).

A common mistake new developers make is assuming these XML screen 

definitions will only output HTML – so they embed markup and JavaScript in 

the XML. That should never be done! These XML files describe a generic 

layout only.



11

Learn The ArchitectureLearn The Architecture

The Rendering Engine is aware of entity definition The Rendering Engine is aware of entity definition 

models and service definition models models and service definition models –– so screen so screen 

and form creation are a snapand form creation are a snap

In this example, the <auto-fields-service> element automatically generates an 

input form based on the updatePerson service definition.



12

Learn The ArchitectureLearn The Architecture

The Control The Control ServletServlet provides a convenient way provides a convenient way 
to map requests to services and screen to map requests to services and screen 
definitionsdefinitions

The Control Servlet is aware of service definition models. In this example, 

the updatePerson URL is mapped to the updatePerson service. The 

Control Servlet will use the service definition model to map URL 

parameters to service IN parameters.



13

Common Design ProblemsCommon Design Problems

�� Follow Best PracticesFollow Best Practices

�� Follow Common Design PatternsFollow Common Design Patterns



14

Follow Best PracticesFollow Best Practices

OFBizOFBiz Best Practices Best Practices 

can be found on can be found on 

the the OFBizOFBiz Wiki siteWiki site
(be aware that some (be aware that some 

information might be information might be 

outdated)outdated)

https://cwiki.apache.org/confluence/display/OFBADMIN/Best+Practices+Guide

https://cwiki.apache.org/confluence/display/OFBADMIN/User+Interface+Layou

t+Best+Practices



15

Follow Best PracticesFollow Best Practices

Sometimes best Sometimes best 

practices are not practices are not 

followed in the followed in the 

project. Be careful project. Be careful 

when copying when copying 

artifacts or following artifacts or following 

tutorialstutorials……

The Best Practice to follow is:

“When a screen is split up into multiple templates or screens the data 

preparation action should be associated only with the individual small screen 

that it prepares data for. This makes it easier to move templates and content 

pieces around and reuse them in many places. “

In other words, the data preparation logic should be contained within the 

screen widget that renders it – including forms, menus, and trees.

But the tutorial found on the Wiki:

https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Tutorial+-

+A+Beginners+Development+Guide

does not follow this best practice – the data preparation is done in the screen 

and not in the form that displays the data. Consequently, that form is not 

reusable – it will be empty (not contain any data) if it is used in any other 

screen.



16

Follow Common Design PatternsFollow Common Design Patterns

�� Use SOA! Implement your business logic as Use SOA! Implement your business logic as 

services services –– so they can be reused and so they can be reused and 

exportedexported

�� Understand and emulate the data modeling Understand and emulate the data modeling 

patterns in The Data Model Resource bookpatterns in The Data Model Resource book

�� Understand and emulate the design Understand and emulate the design 

patterns in the Design Patterns: Elements of patterns in the Design Patterns: Elements of 

Reusable ObjectReusable Object--Oriented Software bookOriented Software book

Even though OFBiz uses a Service Oriented Architecture (SOA), there are 

many examples in the project where that design pattern is not followed –

resulting in duplicate code and business logic that is scattered everywhere.

One really bad example of this is the OFBiz shopping cart – which is 

implemented as a bunch of Java classes that are referenced by a shopping 

cart object stored in the HTTP session. A better approach would be to 

implement the shopping cart as a set of services – so they can be reused in 

other places.

The Data Model Resource Book does more than describe a reusable data 

model, it introduces modeling patterns that can be reused. Patterns like 

abstract types and subtypes, date ranges, etc.

Both books are essential for anyone wanting to do development work in 

OFBiz. Not only will they help you with your design work, they will also help 

you understand how/why things are done in the project itself.



17

Common Customization ProblemsCommon Customization Problems

��Create A HotCreate A Hot--Deploy ComponentDeploy Component

�� REUSE REUSE REUSEREUSE REUSEREUSE

�� Extending ArtifactsExtending Artifacts

��Overriding ArtifactsOverriding Artifacts

��Do This, DonDo This, Don’’t Do Thatt Do That



18

Create A HotCreate A Hot--Deploy ComponentDeploy Component

Use the antUse the ant

createcreate--componentcomponent

target to create a target to create a 

new component, new component, 

and then put all of and then put all of 

your development your development 
work in therework in there

Avoid putting your custom development work in existing OFBiz folders – doing 

so makes upgrading OFBiz difficult. By keeping all of your development work 

in a custom component, upgrading OFBiz is easy.

An OFBiz component can support multiple web applications, so there is no

need to create a separate component for each web application.



19

REUSE REUSE REUSEREUSE REUSEREUSE

�� 800+ entities, 2000+ services 800+ entities, 2000+ services –– most likely most likely 

what you need is already therewhat you need is already there

��Copy UI artifacts to your custom componentCopy UI artifacts to your custom component

�� Extend or Override everything elseExtend or Override everything else

The biggest mistake new OFBiz developers make is reinventing the wheel. 

Most projects based on OFBiz should be little more than customizing the UI 

and making minor changes to workflows.

Your custom component can reference (point to) existing UI artifacts, or you 

can copy existing UI artifacts to your custom component. I recommend 

copying UI artifacts, because the UI is a very subjective thing that sees a lot of 

debate within the community – consequently its appearance changes 

regularly.

Conversely, business processes are fairly standard things that don’t see much 

debate and remain mostly constant – so those processes can be reused safely 

as-is. A particular project might need to change those processes slightly, so 

OFBiz provides two mechanisms for that: extension and override.



20

Extending ArtifactsExtending Artifacts

You can extend entities to add fields, relations, You can extend entities to add fields, relations, 

and indexesand indexes

In this example, we are adding two fields and a relationship to the OrderItem

entity. These can be found in The Data Model Resource Book, but they are 

missing from the OFBiz data model.

The OrderItem entity is defined in the order component, and we could just add

the fields and relation there – but that would make OFBiz updates/upgrades 

difficult. Instead, we extend the entity in our custom component and leave the 

original OFBiz code untouched.

View entities can be extended in the same way.



21

Overriding ArtifactsOverriding Artifacts

You can redefine entities to change fields, You can redefine entities to change fields, 

relations, and indexesrelations, and indexes

In this example, we are redefining the FacilityParty entity so we can change a 

relationship.

One annoying thing about the OFBiz data model is the repetitious relations to 

PartyRole – which forces you to create a PartyRole entity value every time you 

want to associate a party with something. Overrides/redefinitions like this one 

can fix that and make the data model a lot more flexible and easy to use.

To redefine an entity, just copy-and-paste the existing entity definition to your 

custom component, and then make your changes. OFBiz will replace the 

existing entity definition with your custom one.

Be sure to set the redefinition attribute to “true” - so OFBiz does not log 

warnings about duplicate definitions. If you do not set the attribute to “true”

your redefinition will still work.

I like to change the entity package name to make it obvious to others that I 

have redefined an existing OFBiz entity, but that change is not required to 

make the redefinition work.



22

Overriding ArtifactsOverriding Artifacts

You can override a web applicationYou can override a web application

In this example, we will use our acme custom component to override the 

OFBiz Order Manager web application.

Modify the <webapp> element in ofbiz-component.xml so that it duplicates the 

existing Order Manager web application element, but leave the location 

attribute as-is.



23

Overriding ArtifactsOverriding Artifacts

You can override a web applicationYou can override a web application

Next, we import the Order Manager request maps and view maps into our 

acme custom component. Simply add an <include> element in the acme 

controller.xml file, and then remove all existing <request-map> elements and 

<view-map> elements.



24

Overriding ArtifactsOverriding Artifacts

You can override a web applicationYou can override a web application

One more change and our web application override is done. All of the Order 

manager screens reference its screen decorator, and the location of that 

decorator is contained in a web application context parameter. So, we need to 

update that parameter in our acme web application so it will use the Order 

Manager screen decorator. Simply change the value of the 

mainDecoratorLocation context parameter in the acme web.xml file.

At this point, we have completely overridden the Order Manager web 

application and put it under the control of our custom acme application.



25

Overriding ArtifactsOverriding Artifacts

You can override a web applicationYou can override a web application

Now we can replace screens in Order Manager with our own custom versions. 

In this example, we replace the Find Orders screen with our own version.



26

Extending ArtifactsExtending Artifacts

You can extend form widgets and menu You can extend form widgets and menu 

widgetswidgets

In this example, a form from the party component is being extended to add a 

product ID field. This will enable the product component to associate a 

communication event to a product.



27

Do This, DonDo This, Don’’t Do Thatt Do That

The following slides are some common The following slides are some common 

mistakes I have encountered while working mistakes I have encountered while working 

on on OFBizOFBiz projectsprojects



28

Do This, DonDo This, Don’’t Do Thatt Do That

Make screen widgets reusableMake screen widgets reusable

Don’t Do This:

1. Data used in the included form is gathered in the screen widget instead of 

in the EditPerson form widget. Therefore, the EditPerson form widget can 

not be reused.

2. The CommonPartyDecorator “sub-decorator” is located in a different file 

and its location is specified using the mainDecoratorLocation context 

variable. Therefore, the EditPerson screen widget can not be reused.



29

Do This, DonDo This, Don’’t Do Thatt Do That

Make screen widgets reusableMake screen widgets reusable

Do This:

1. Data used in the included form is gathered in the form widget. Now this 

form can be included in other screens.



30

Do This, DonDo This, Don’’t Do Thatt Do That

Make screen widgets reusableMake screen widgets reusable

Do This:

2. The CommonPartyDecorator “sub-decorator” is located in the same file and 

its location is specified using the partyDecoratorLocation context variable. 

Now this screen widget can be reused.



31

Do This, DonDo This, Don’’t Do Thatt Do That

Storing configuration settings in static final variablesStoring configuration settings in static final variables

Don’t Do This!



32

Do This, DonDo This, Don’’t Do Thatt Do That

Storing configuration settings in static final variablesStoring configuration settings in static final variables

Do This!



33

Do This, DonDo This, Don’’t Do Thatt Do That

Bad exception handlingBad exception handling

Don’t Do This:

1. Methods that throw undeclared exceptions. In this example, the service is 

doing the right thing – catching a thrown exception and returning an error. 

But the Delegator is doing the WRONG thing – it is throwing an undeclared 

(and unchecked) exception. There is no way a developer can know that the 

getNextSeqId method throws IllegalArgumentException unless you look 

through the Delegator implementation code.

2. Ignore thrown exceptions. The EntityQuery.use method will throw an 

exception if something goes wrong during the method call, but that 

exception is ignored in this service.

3. Multiple try-catch blocks that don’t add or do anything meaningful. In this 

service there are other try-catch blocks that return an error, and the only 

difference is the error message being returned. At first glance, this appears 

to be meaningful, but the caught exceptions have one thing in common –

they indicate something serious went wrong (like a dropped database 

connection). So, the returned error messages actually HIDE the real 

problem.

4. Only declared exceptions are caught. Every line in this service has the 

potential to throw an exception – OutOfMemoryException, 

NullPointerException, etc - yet those are not caught. The service engine 



34

Do This, DonDo This, Don’’t Do Thatt Do That

Bad exception handlingBad exception handling

Do This!

All try-catch blocks have been removed and they are replaced with a single 

one. Now all exceptions are caught and a meaningful error message is 

returned.

If your service throws an exception that is recoverable, then add a try-catch 

block for that exception (inside the main try-catch block) and implement 

your recovery code in its catch block.



35

Do This, DonDo This, Don’’t Do Thatt Do That

Bad event handlersBad event handlers

Don’t Do This!

Business logic is contained in a request event of type “java” – this is bad 

because the specified method will be invoked WITHOUT a transaction in 

place. The Delegator implementation will wrap each method call in a 

transaction, but the event as a whole will not be wrapped in a transaction –

opening the door to partial updates and data corruption.



36

Do This, DonDo This, Don’’t Do Thatt Do That

Bad event handlersBad event handlers

Do This!

Implement business logic as a service. The service engine will wrap the 

service call in a transaction, so the entire process is atomic – either all of it 

succeeds, or all of it fails.

Use the “java” event type only for parameter validation. In other words, use it 

to check invariants and return an error message if the user entered invalid 

data, but NEVER use it to implement business logic that updates data.



37

How to Avoid Common How to Avoid Common 

Mistakes in Mistakes in OFBizOFBiz

DevelopmentDevelopment

Thank you for participating!Thank you for participating!


