
Processing over a trillion events a day

CASE STUDIES IN SCALING STREAM PROCESSING AT LINKEDIN

Processing over a trillion events a day

CASE STUDIES IN SCALING STREAM PROCESSING AT LINKEDIN

​ Jagadish Venkatraman

​ Sr. Software Engineer, LinkedIn

​ Apache Samza committer

​ jagadish@apache.org

Today’s
Agenda

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

1 Stream processing scenarios

2 Hard problems in stream processing

3 Case Study 1: LinkedIn’s communications platform

4 Case Study 2: Activity tracking in the News feed

Data processing latencies

Response latency

Synchronous Later. Possibly much later.

0 millis

Data processing latencies

Response latency

Milliseconds to minutes

Synchronous Later. Possibly much later.

0 millis

Some stream processing scenarios at LinkedIn

Real-time DDoS
protection for

members

Security

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Real-time DDoS
protection for

members

Security

Notifications to
members

Notifications

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Real-time DDoS
protection for

members

Security

Notifications to
members

Notifications

Real-time topic
tagging of articles

News
classification

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Real-time DDoS
protection for

members

Security

Notifications to
members

Notifications

Real-time topic
tagging of articles

News
classification

Real-time site-speed
profiling by facets

Performance
monitoring

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Real-time DDoS
protection for

members

Security

Analysis of service
calls

Call-graph
computation

Notifications to
members

Notifications

Real-time topic
tagging of articles

News
classification

Real-time site-speed
profiling by facets

Performance
monitoring

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Tracking ads that
were clicked

Ad relevance

For more icons, go/deckicons

Tracking ads that
were clicked

Ad relevance

Aggregated, real-
time counts by

dimensions

Aggregates

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Tracking ads that
were clicked

Ad relevance

Aggregated, real-
time counts by

dimensions

Aggregates

Tracking session
duration

View-port
tracking

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

Tracking ads that
were clicked

Ad relevance

Aggregated, real-
time counts by

dimensions

Aggregates

Tracking session
duration

View-port
tracking

Standardizing titles,
gender, education

Profile
standardization

For more icons, go/deckicons

Some stream processing scenarios at LinkedIn

….

A N D M A N Y M O R E S C E N A R I O S I N P R O D U C T I O N…

Try to keep text to two lines maximum

200+
Applications

A N D M A N Y M O R E S C E N A R I O S I N P R O D U C T I O N…

Try to keep text to two lines maximum

200+
Applications

Powered By

Samza
overview

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

•  A distributed stream processing framework

•  2012: Development at LinkedIn
•  Used at Netflix, Uber, Tripadvisor and several large
 companies.

•  2013: Apache incubator
•  2015 (Jan): Apache Top Level Project

Today’s
agenda

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

1 Stream processing scenarios

2 Hard problems in stream processing

3 Case Study 1: LinkedIn’s communications platform

4 Case Study 2: Activity tracking in the news feed

Hard problems in stream processing

•  Partitioned streams

•  Distribute processing
among all workers

Scaling processing

•  Hardware failures are
inevitable

•  Efficient check-pointing

•  Instant recovery

State management

•  Need primitives for
supporting remote I/O

High performance
remote I/O

•  Running on a multi-tenant
cluster

•  Running as an embedded
library

•  Unified API for batch and
real-time data

Heterogeneous
deployment models

For more icons, go/deckicons

Partitioned processing model

DB change
capture

Kafka

Hadoop

Kafka

Hadoop

Serving stores

Elastic
Search

Samza application

Partitioned processing model

DB change
capture

Hadoop

Task-1

Task-2

Task-3

Container-1

Container-2

Kafka

Heartbeat

Samza master

•  Each task processes one or more
partitions

•  The Samza master assigns partitions
to tasks and monitors container
liveness

•  Scaling by increasing # of containers

Samza application

Hard problems in stream processing

•  Partitioned streams

•  Distribute processing
among all workers

Partitioned
processing

•  Hardware failures are
inevitable

•  Instant recovery

•  Efficient Check-pointing

State Management

•  Provides primitives for
supporting efficient
remote I/O.

Efficient remote data
access

•  Samza supports running
on a multi-tenant cluster

•  Samza can also run as a
light-weight embedded
library

•  Unified API for batch and
streaming

Heterogeneous
deployment models

For more icons, go/deckicons

•  Stateless versus Stateful operations

Use cases of Local state

•  Temporary data storage

•  Adjunct data lookups

Advantages

•  Richer access patterns, faster than remote state

For more icons, go/deckicons

Why local state matters?

•  Querying the remote DB from your
app versus local embedded DB access

•  Samza provides an embedded fault-
tolerant, persistent database.

For more icons, go/deckicons

Samza
 Samza

 Architecture for Temporary data

VERSUS

•  Querying the remote DB from your
app versus change capture from
database.

•  Turn remote I/O to local I/O

•  Bootstrap streams

For more icons, go/deckicons

Samza

Samza

 Architecture for Adjunct lookups

VERSUS

•  Querying the remote DB from your
app versus change capture from
database.

•  Bootstrap and partition the remote
DB from the stream

For more icons, go/deckicons

Samza

Samza

 Architecture for Adjunct lookups

VERSUS

100X

Faster

1.1M

TPS

Task-1

Container-1

Container-2

Task-2

•  Changelog

1.  Fault tolerant, replicated into Kafka.

2.  Ability to catch up from arbitrary
point in the log.

3.  State restore from Kafka during host
failures

 Key optimizations for scaling local state

Speed thrills but can also KILL.

Task-1

Container-1

Container-2

Heartbeat

Samza master

Task-2

 Durable task– host mapping

•  Incremental state check-pointing

1.  Re-use on-disk state snapshot (host
affinity)

2.  Write on-disk file on host at
checkpoint

3.  Catch-up on only delta from the Kafka
change-log

 Key optimizations for scaling local state

Task-1

Container-1

Container-2

Heartbeat

Samza master

Task-2

 Durable task– host mapping

•  Incremental state check-pointing

1.  Re-use on-disk state snapshot (host
affinity)

2.  Write on-disk file on host at
checkpoint

3.  Catch-up on only delta from the Kafka
change-log

 Key optimizations for scaling local state

60X

Faster

0

Downtime

than full checkpointing
 during restarts and recovery

1.2TB

State

Task-1

Container-1

Container-2

Heartbeat

Samza master

Task-2

 Durable task– host mapping

 Key optimizations for scaling local state

Drawbacks of local state

1.  Size is bounded

2.  Some data is not partitionable

3.  Repartitioning the stream messes up
local state

4.  Not useful for serving results

Hard problems in stream processing

•  Partitioned streams

•  Distribute processing
among all workers

Scaling processing

•  Hardware failures are
inevitable

•  Efficient check-pointing

•  Instant recovery

State management

•  Need primitives for
supporting remote I/O

High performance
remote I/O

•  Running on a multi-tenant
cluster

•  Running as an embedded
library

•  Unified API for batch and
real-time data

Heterogeneous
deployment models

For more icons, go/deckicons

For more icons, go/deckicons

Why remote I/O matters?

1.  Writing to a remote data store (eg: CouchDB) for serving

2.  Some data is available only in the remote store or through REST

3.  Invoking down-stream services from your processor

For more icons, go/deckicons

Scaling remote I/O

1.  Parallelism need not be tied to
number of partitions

2.  Complexity of programming model

3.  Application has to worry about
synchronization and check-pointing

Hard problems

Samza

For more icons, go/deckicons

Scaling remote I/O

1.  Parallelism need not be tied to
number of partitions

2.  Complexity of programming model

3.  Application has to worry about
synchronization and check-pointing

1.  Support out-of-order processing
within a partition

2.  Simple callback-based async API.
Built-in support for both multi-
threading and async processing

3.  Samza handles checkpointing
internally

Hard problems

How we solved them?

Samza

For more icons, go/deckicons

Samza

Performance results

•  PageViewEvent topic - 10 partitions

•  For each event, remote lookup of the
member’s inbox information (latency: 1ms to
200ms)

•  Single node Yarn cluster, 1 container (1 CPU
core), 1GB memory.

Experiment setup

For more icons, go/deckicons

Samza

Performance results

10X

Faster

With In-order processing

40X

Faster

Out-of-order processing

•  PageViewEvent topic - 10 partitions

•  For each event, remote lookup of the
member’s inbox information (latency: 1ms to
200ms)

•  Single node Yarn cluster, 1 container (1 CPU
core), 1GB memory.

At our scale

this is HUGE!

Experiment setup

Hard problems in stream processing

•  Partitioned streams

•  Distribute processing
among all workers

Scaling processing

•  Hardware failures are
inevitable

•  Efficient checkpointing

•  Instant recovery

State management

•  Need primitives for
supporting remote I/O

High performance
remote I/O

•  Running on a multi-tenant
cluster

•  Running as an embedded
library

•  Unified API for batch and
real-time data

Heterogeneous
deployment models

For more icons, go/deckicons

For more icons, go/deckicons

Samza - Write once, Run anywhere

public interface StreamTask {

 void process(IncomingMessageEnvelope envelope,

 MessageCollector collector,

 TaskCoordinator coordinator) {

 // process message

 }

}

public class MyApp implements StreamApplication {

 void init(StreamGraph streamGraph,

 Config config) {

 MessageStream<PageView> pageViews = ..;

 pageViews.filter(myKeyFn)

 .map(pageView -> new ProjectedPageView())

 .window(Windows.keyedTumblingWindow(keyFn,

Duration.ofSeconds(30))

 .sink(outputTopic);

 }

}

NEW

Heterogeneity – Different deployment models

•  Uses Yarn for coordination, liveness monitoring

•  Better resource sharing

•  Scale by increasing the number of containers

Samza on multi-tenant clusters Samza as a light-weight library

•  Purely embedded library: No Yarn dependency

•  Use zoo-keeper for coordination, liveness and
partition distribution

•  Seamless auto-scale by increasing the number
of instances

EXACT SAME

CODE

StreamApplication app = new MyApp();

ApplicationRunner localRunner =

ApplicationRunner.getLocalRunner(config);

localRunner.runApplication(app);

Heterogeneity – Support streaming and batch jobs

•  Supports re-processing and experimentation

•  Process data on hadoop instead of copying over
to Kafka ($$)

•  Job automatically shuts-down when end-of-
stream is reached

Samza on Hadoop Samza on streaming

•  World-class support for streaming inputs

EXACT SAME

CODE

Today’s
agenda

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

1 Stream processing scenarios

2 Hard problems in stream processing

3 Case Study 1: LinkedIn’s communications platform

4 Case Study 2: Activity tracking in the news feed

5 Conclusion

Craft a clear, consistent conversation between our
members and their professional world

AT C G O A L :

Features

Channel selection

•  “Don’t blast me on all channels”

•  Route through Inmail, email or
notification in app

Features

Channel selection
 Aggregation / Capping

•  “Don’t blast me on all channels”

•  Route through Inmail, email or
notification in app

•  “Don’t flood me, Consolidate
if you have too much to say!”

•  “Here’s a weekly summary of
who invited you to connect”

Features

Channel selection
 Aggregation / Capping

Delivery time optimization

•  “Don’t blast me on all channels”

•  Route through Inmail, email or
notification in app

•  “Don’t flood me, Consolidate
if you have too much to say!”

•  “Here’s a weekly summary of
who invited you to connect”

•  “Send me when I will engage and
don’t buzz me at 2AM”

Features

Channel selection
 Aggregation / Capping

Delivery time optimization

•  “Don’t blast me on all channels”

•  Route through Inmail, email or
notification in app

•  “Don’t flood me, Consolidate
if you have too much to say!”

•  “Here’s a weekly summary of
who invited you to connect”

•  “Send me when I will engage and
don’t buzz me at 2AM”

Filter

•  “Filter out spam, duplicates, stuff I
have seen or know about”

Why Apache Samza?

1.  Highly Scalable and distributed

2.  Multiple sources of email

3.  Fault tolerant state (notifications
to be scheduled later)

4.  Efficient remote calls to several
services

1.  Samza partitions streams and provides
fault-tolerant processing

2.  Pluggable connector API (Kafka, Hadoop,
change capture)

3.  Instant recovery and incremental
checkpointing

4.  Async I/O support

Requirements

How Samza fits in?

Why Apache Samza?

1.  Highly Scalable and distributed

2.  Multiple stream joins

3.  Fault tolerant state (notifications
to be scheduled later)

4.  Efficient remote calls to several
services

Requirements

ATC Architecture

The repeated blue in the color palette is
intentionally designed to limit the use of
colors outside the LinkedIn brand.

DB change capture of
User Profiles

Task-1

Task-2

Task-3

Container-1

Container-2

ATC

Relevance Scores
from Offline
processing

User events / Feed
Activity/ Network
Activity

Notifications
Service

Email Service

Social graph

 Inside each ATC Task

Scheduler

Channel
selector

Aggregator

Delivery
time
optimizer

Filter

Today’s
agenda

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

1 Stream Processing Scenarios

2 Hard Problems in Stream Processing

3 Case Study 1: LinkedIn’s communications platform

4 Case Study 2: Activity tracking in the news feed

Activity tracking in News feed
HOW WE USE SAMZA TO IMPROVE YOUR NEWS FEED..

Precise screen change for iPhone:
Select screen and go to inspector. Under
the Arrange tab, note Size (14.07” x
7.91”) and note Position (3.42”, .39” —
from top left corner)
Make sure your new screen matches
those numbers.

Power relevant, fresh content for the LinkedIn Feed

A C T I V I T Y T R A C K I N G : G O A L

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Server-side tracking event

Feed Server

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Server-side tracking event

Feed Server

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Server-side tracking event

Feed Server

{

 “paginationId”:

 “feedUpdates”: [{

 “updateUrn”: “update1”

 “trackingId”:

 “position”:

 “creationTime”:

 “numLikes”:

 “numComments”:

 “comments”: [

 {“commentId”: }

]

 }, {

 “updateUrn”:“update2”

 “trackingId”:

 ..

}

Rich payload

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Client-side tracking event

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Client-side tracking event

•  Track user activity in the app

•  Fire timer during a scroll or a view-

port change

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Client-side tracking event

“feedImpression”: {

 “urn”:

 “trackingId”:

 “duration”:

 “height”:

}, {

 “urn”:

 “trackingId”:

} ,]

•  Light pay load
•  Bandwidth friendly
•  Battery friendly

Join client-side event with server-side event

“FEED_IMPRESSION”: {

 “trackingId”: “abc”

 “duration”: “100”

 “height”: “50”

}, {

 “trackingId”:

} ,]

“FEED_SERVED”: {

 “paginationId”:

 “feedUpdates”: [{

 “updateUrn”: “update1”

 “trackingId”: “abc”

 “position”:

 “creationTime”:

 “numLikes”:

 “numComments”:

 “comments”: [

 {“commentId”: }

]

 }, {

 “updateUrn”:“update2”

 “trackingId”: “def”

 “creationTime”:

“FEED_IMPRESSION”: {

 “trackingId”: “abc”

 “duration”: “100”

 “height”: “50”

}, {

 “trackingId”:

} ,]

“FEED_SERVED”: {

 “paginationId”:

 “feedUpdates”: [{

 “updateUrn”: “update1”

 “trackingId”: “abc”

 “position”:

 “creationTime”:

 “numLikes”:

 “numComments”:

 “comments”: [

 {“commentId”: }

]

 }, {

 “updateUrn”:“update2”

 “trackingId”: “def”

 “creationTime”:

“JOINED_EVENT”:{

 “paginationId”:

 “feedUpdates”: [{

 “updateUrn”: “update1”

 “trackingId”: “abc”

 “duration”: “100”

 “height”: “50”

 “position”:

 “creationTime”:

 “numLikes”:

 “numComments”:

 “comments”: [

 {“commentId”: }

]

 }

}

Samza Joins client-side event with server-side event

Precise screen change for laptop:
Select screen and go to inspector. Under
the Arrange tab, note Size (10.81 x
16.03) and note Position (-0.6 , 2.23 – top
left corner)
Make sure your new screen matches
those numbers.

Architecture

The repeated blue in the color palette is
intentionally designed to limit the use of
colors outside the LinkedIn brand.

Task-2

Container-2

CLIENT EVENT

Feed Server

SERVER EVENT

FEED JOINER

Task-1

Container-1

To Downstream

Ranking Systems

1.2

Billion

Processed per-day

90

Containers

Distributed, Partitioned

Recap

To edit the table….

•  Right click your mouse, select “Insert”

or ”Delete” on drop down menu

1 Stream processing scenarios

2 Hard problems in stream processing

3 Case Study 1: LinkedIn’s communications platform

4 Case Study 2: Activity tracking in the news feed

Recap
SUMMARY OF WHAT WE LEARNT IN THIS TALK

For more icons, go/deckicons

 Key differentiators for Apache Samza

For more icons, go/deckicons

 Key differentiators for Apache Samza

•  Stream Processing both as a multi-tenant service and a light-weight

embedded library

•  No micro batching (first class streaming)

•  Unified processing of batch and streaming data

•  Efficient remote calls I/O using built-in async mode

•  World-class support for scalable local state

•  Incremental check-pointing

•  Instant restore with zero down-time

•  Low level API and Stream based high level API (DSL)

For more icons, go/deckicons

Coming soon

•  Event time, and out of order arrival handling

•  Beam API integration

•  SQL on streams

For more icons, go/deckicons

 Powered by

S T A B L E , M A T U R E
S T R E A M P R O C E S S I N G

F R A M E W O R K

200+

Applications at

LinkedIn

+

Q & A

http://samza.apache.org

