HAWQ TRANSACTION
INTRODUCTION

Ming Li (2= BH)
Email: mli@pivotal.io
mli@apache.org

© Copyright 2017 Pivotal. All rights reserved.

mailto:mli@pivotal.io

Agenda

PostgreSQL transaction Introduction
HAWQ Transaction Design
Performance Tuning

Future work

About Us

Recovery consideration

Pivotal
© Copyright 2017 Pivotal. All rights reserved.

PostgreSQL TRANSACTION
INTRODUCTION

MVCC (Multiple Version Concurrency Control)

e Multiple Version representation:
m Version indication
m Relationship between tuple and transaction

e The relationship between old version and new version
e Data struct & functions

© Copyright 2017 Pivotal. All rights reserved.

Mvcc Behavior

g;f) L INSERT
g;":’) 23 DELETE
(E))r(e sg old (delete)

P UPDATE
CE:;% 8 new (insert)

Pivotal
© Copyright 2017 Pivotal. All rights reserved.

Snapshot — filter to see the specific version

MVCC snapshots control which tuples are visible for specific statement in a
transaction

© Copyright 2017 Pivotal. All rights reserved.

MvCC Snapshots Determine Row Visibility

Create-Only
g(?; 30 Visible Sequential Scan
g;‘; B visible Shapshot
The highest—-numbered
g(e 10 Invisible committed transaction: 100
p
Open Transactions: 25, 50, 75
Create & Expire
Cre 30 R For simplicity, assume _aII other
Exp 80 nvisiDie v transactions are committed.
Cre 30 o
Exp 75 Visible
Cre 30 o
Exp 110 Visible

Internally, the creation xid is stored in the system column 'xmin’, and expire in 'xmax’.

© Copyright 2017 Pivotal. All rights reserved.

MvccC Snapshot Timeline

transaction snapshot's
id (xid) current xid
. >
0 25 50 75 100 125
start stop
xid 110

Green is visible. Red is invisible.

Only transactions completed before transaction id 100 started
are visible.

© Copyright 2017 Pivotal. All rights reserved.

Data structure:

Transactionld t_xmin;

union

{ Commandld t_cmin;
TransactionId t xmax;

t_field2;

union

{ Commandld t_cmax; /* deleting command ID */

Transactionld t_xvac; /* VACUUM FULL xact ID*/
}t_field3;
ItemPointerData t ctid; /* current TID of this or newer tuplé/

/* inserting xact 1D */

/* inserting command ID */
/* deleting xact 1D */

int16 t_natts /* number of attributes®/
uint16 t_infomask; /* various flag bits */
uint8§ t_hoff; /* sizeof header incl bitmap, padding */

bits8 t bitd1]; /* bitmap of NULLs-- VARIABLE LENGTH */

HeapTupleHeaderData

#define HEAP HASNULL 0x0001 /* has null attribute(s) */

#define HEAP HASVARWIDTHOx0002 /* has variable-width attribute(s) */

#define HEAP HASEXTERNALOx0004 /* has external stored attributes) */

#define HEAP HASCOMPRESSED 0x0008 /* has compressad stored attribute(s) */
#define HEAP HASEXTENDED 0x000C /* the two above combined */

#define HEAP HASOID 0x0010 /* has an object-id field */

< bit 0x0020 is presently umsed */

#define HEAP XMAX IS XMIN 0x0040 /* created and deleted in the same transaction™/
#define HEAP XMAX UNLOGGED 0x0080 /* to lock tuple for update without logging */
#define HEAP XMIN COMMITTED 0x0100 /%t xmin committed */

#define HEAP XMIN INVALID0Ox0200 /*t xmin invalid/aborted */

#define HEAP XMAX COMMITTED 0x0400 /*t xmax committed */

#define HEAP XMAX INVALIDOx0800 /*t_xmax invalid/aborted */

#define HEAP MARKED FOR UPDATEO0x1000 /* marked for UPDATE*/

#define HEAP UPDATEDO0x2000 /* this is UPDATEAd version of row™/

#define HEAP MOVED OFF 0x4000 /* moved to another place by VACUUM FULL*
#define HEAP MOVED INOx8000 /* moved from another place by VACUUM FULL*/
#define HEAP MOVED (HEAP MOVED OFF|HEAP MOVED IN)

#define HEAP XACT MASK OxFFCO /* visibility-related bits */

© Copyright 2017 Pivotal. All rights reserved.

SnapshotData 4 {4

Transactionld xmin; /* XID < xmin are visible to me */
Transactionld xmax; /* XID >= xmax are invisible to me */

uint32 xcnt; /* # of xact ids in xip|[] */

Transactionld *xip; /* array of xact IDs in progress */
Commandld curcid; /* in my xact, CID < curcid are visible */
ItemPointerData tid; /* required for Dirty snapshot -:(*/

HEEEEER

m

—l

© Copyright 2017 Pivotal. All rights reserved.

Isolation Level Processing

e Snapshot is fetched:
oAt the start of each SQL statement in READ COMMITTED transaction isolation level

oAt transaction start in SERIALIZABLE transaction isolation level.
e Different processing when concurrently update/delete one tuple:

© Copyright 2017 Pivotal. All rights reserved.

© Copyright 2017 Pivotal. All rights reserved.

[FISELECT#
FEH HbRAT

7 1 A HAb g o s e
(% 2RI AL ?

B A NS
Yk 4 ol

AT A A S
A H AL ?

ST

oty — UL R 5 RS
T i%TCH# ?

pell el

B AT O TR IR TR 7 A
R, RIS A 0 R B C T B AT
T, R, ST

Pivotal

HAWQ TRANSACTION DESIGN

HAWQ Characteristics

¢SQL On HDFS
oHDFS doesn’t support UPDATE in place

eHAWQ Supported: Append Only (CREATE / INSERT/ TRUNCATE / SELECT/ NO UPDATE/ NO
DELETE)

eHAWQ now only support one active master for catalog management
eDispatch catalog info to segment if needed
¢2PC: no need

© Copyright 2017 Pivotal. All rights reserved.

HAWQ Transaction Basic

eCombine MVCC with Append Only

eMost scenario: INSERT in batch in one transaction.
eConcurrency control at seg file level instead of tuple level
eValid File Length maintained in MVCC catalog.

eHow INSERT works:

oHDFS with truncate: truncate invalid data appended by aborted transaction before next time
appending data.

oHDFS without truncate: This segfile cannot be appended any more because of invalid data at the
end of file. Use next sedfile instead.

© Copyright 2017 Pivotal. All rights reserved.

Demo

Valid file length of all seg files in one relation will maintained in one sys table:
m For AO tables in the systable: pg_aoseg.pg _aoseg_ $TID
= For PARQUET tables in systable: pg_aoseg.pg_paqgseg_$TID

© Copyright 2017 Pivotal. All rights reserved.

INSERT Optimization
e INSERT parallel processing:

O Lane model: one segfile only be handled by one executor process

O Each INSERT query processing one groups of seg files
e Speedup transaction ending:

O Dispatch the sedfile creating/deleting tasking to segments for parallel processing
e Speedup Table dropping and selecting:

O Change hdfs relation sedfile path: now for one relation, all segfile put at one directory, instead of put all
relations’ sedfiles in one directory.

e Pain Point at large number of partitions
e ToDo

O Only allocate one sedfile for one physical segment node, instead of each sedfile for one vseg.
O Multiple supplier one consumer mode write

© Copyright 2017 Pivotal. All rights reserved.

Performance Tuning

Performance Tuning

- Partition number too big lead to too many seg file (besides partition definition)
1. Hash distributed table: affected by the bucket number (the default value is set by guc
default_hash_table bucket_number) .
2. Randomly Distributed and External Tables: affected by virtual segment number (the guc
hawqg_rm_nvseg_perquery_perseg_limit manages the number of vsegs per host; the guc
hawqg_rm_nvseg_perquery_limit set the cluster wide number of vsegs per query).

Best practice: set small value when INSERT and set big value when SELECT.

- Manually Trigger Checkpoint if any transaction related to too many segfiles
committed.

« VACUUM FULL catalog if too many out-of-date tuples exists

© Copyright 2017 Pivotal. All rights reserved.

Future Work

© Copyright 2017 Pivotal. All rights reserved.

Catalog Bloating (Too many out-of-dated tuples)

* Example: gp_fastsequence up to 2G in customer’s env, The related index up to 9G (3.4G even after
reindex it), it will slow down 15 minutes for some query (eg. Analyze).

* Why not VACUUM FULL? There are more than 100 queries, 10 Applications running at the same time,
which always access gp_fastsequence, so the vacuum operation cannot get lock and proceed.

* HAWQ 2.0 removed gp_fastsequence because it is only used in the index of user data table.

* ToDo:

-- What: Other catalogs (heed more investigation)
-- How:

(1) Change MVCC to Update-in-place (like Persistent Tables)
(2) Split into many small catalog (like pg_aoseg.pg_aoseg_$TID)

© Copyright 2017 Pivotal. All rights reserved.

ToDo: UPDATE Supporting

» Update emulation in HAWQ
— LSMT (Log Structured Merge Tree) vs. Multiple Version
— Valid File length
— Relationship between NEW and OLD version tuple (pointer ? Bitmap?)
— Bloom filter usage for skipping single version tuple
— Sorted ItemPointer for delta tuples
— Binary search for each delta block (Random Read)
— Merge sorting for all delta blocks (Full Scan Read)

© Copyright 2017 Pivotal. All rights reserved.

About Us

© Copyright 2017 Pivotal. All rights reserved.

ABOUT ME

« 2001 CS Bachelor of HIT, 2004 CS Master of Tsinghua.

« 2004~2006 PostgreSQL dev @ Institute of Information System and
Engineering, School of Software, Tsinghua University.

- 2006~2010 DB2 Federation Server dev @ IBM China Software
Development Lab

- 2010~2014 AffinityDB dev @ VMware

« 2014~now HAWQ dev @ Pivotal

© Copyright 2017 Pivotal. All rights reserved.

About Pivotal

Concourse
Integrate Continuously

Spring ‘z ' .N Pivotal Cloud Foundry*
>] -
S\

Build Reliably : = H‘“‘*) Deploy and Manage
/'1 N

X
s
’ N\

givot_ali Tra:jc:er @ Pivotal Greenplum
rganize and Plan i 1 i
From an idea in the fEiet o R B s
[F15] i

7 morning, to production \
! the afternoon. \
LR L
= il o
= - e O'\‘I -

Pivotal is Hiring:
Join us: pivotalrnd_china_jobs@pivotal.io

© Copyright 2017 Pivotal. All rights reserved.

© Copyright 2017 Pivotal. All rights reserved.

RECOVERY CONSIDERATION

PostgreSQL Recovery

- Take an e.g. Transaction T1 inserts lot of data

- System crashes before T1 can commit

- System comes back up again, needs recovery

- REDO (Do the same actions again), UNDO (Revert the effect of an action)
- Postgres supports only REDO. No UNDO is supported.

- Infact, does Postgres need UNDO ?
- Not Really! WHY ?? (MVCC is the answer)

- What is the advantage and what is the downside ?
- Adv - Fast recovery (only REDO)
- Downside — Unnecessary space wastage

© Copyright 2017 Pivotal. All rights reserved.

Persistent Table Introduction: Derived from GPDB

* Intent — Clean the INCOMPLETE work

‘Persistent Tables (PT) are ‘Database Object Life Managers’
-Database objects are either relations, databases, table spaces or filespaces
*Manage life of the same object both on the master & standby side

*PT are heap tables but do NOT follow MVCC rules. They do NOT follow transaction snapshotting rules.
Newly added tuple becomes visible instantly.

‘Mapping: One ‘Persistent Table’ <=- Per database object type

gp_persistent_filespace_node gp_persistent_tablespace node gp_persistent_database node
gp_persistent_relation_node gp_persistent_relfile_node

© Copyright 2017 Pivotal. All rights reserved.

Persistent Table: Why Non-MVCC?

*Motivation - PT should act as a on-disk Hash Table that manages information about an object life

*Changes made to the Database (e.g. Relation File Creation) by an incomplete transaction should be
still visible, so that they can be revoked

If PT were MVCC compliant, for e.g. a transaction that created a table, inserted some data and never
committed due to system crash would lead to never cleaning the created table

*This consume disk space (resources)

© Copyright 2017 Pivotal. All rights reserved.

Persistent Table: Struct & Storage
Free Tuple in Persistent Tables —

Serial #

“m-- - Unique in PT, increasing order

- Called as FreeOrder # if tuple is free

2 0
- Next Serial #
1.2 2 0 0,0
e o
14 2 0 0,0 1.1 0
Previous Free TID 1.2 |2 1,2

- 0,0 if the current tuple used
First free tuple points to itself

0
- Points to previous freetuple ;4 5, g . 3 0,0
0

© Copyright 2017 Pivotal. All rights reserve

14 2 2 12

d.

Persistent Table: Status Transfer Diagram

© Copyright 2017 Pivotal. All rights reserved.

Persistent File-System Object States

Create

Pending'

(File-system object actually created)

CREATE Transaction Commits

(File-system object may or may not
have been created) ‘Created’

CREATE Transaction Aborts
Subsequent DROP Transaction Commits

'Aborting T R 'Drop
Create’ NTENTION NTENTION Pending'

(File-system object

(File-system object deleted. Redo operation
deleted, if it existed) tolerates the object already
| have been deleted.)
1 ¥
'Free’

Pivotal

HAWQ Recovery Stages:

- Pass 1
- Recover ONLY Persistent Tables & Check their integrity
- Integrity checks include FreeTID linked list correctness, FreeOrder
sequence correctness etc

- Pass 2
- Using the same redo xlog records as in Pass 1, create infrastructure to find
which Database objects need to cleaned and which need to remain etc

- E.g. Free a create pending state tuple and drop corresponding object

- Pass3
- Again, using the same redo xlog records recover only non-PT tables

- Pass4
- Some more integrity checks like gp_globalsequence correctness etc

© Copyright 2017 Pivotal. All rights reserved.

HAWQ Recovery Speedup

* Skip sedfile creating/deleting if the transaction is rollback finally.

* ToDo:
— Persistent Table for relation file creation/deletion tracing is too heavy.
— Can we just revert relation file creation/deletion operation for rollback transaction directly?

© Copyright 2017 Pivotal. All rights reserved.

