
 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

HAWQ TRANSACTION
INTRODUCTION

Ming Li （李 明）
Email: mli@pivotal.io

 mli@apache.org

mailto:mli@pivotal.io

 © Copyright 2017 Pivotal. All rights reserved.

• PostgreSQL transaction Introduction
• HAWQ Transaction Design
• Performance Tuning
• Future work
• About Us
• Recovery consideration

Agenda

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

PostgreSQL TRANSACTION
INTRODUCTION

 © Copyright 2017 Pivotal. All rights reserved.

● Multiple Version representation:
■ Version indication
■ Relationship between tuple and transaction

● The relationship between old version and new version
● Data struct & functions

MVCC (Multiple Version Concurrency Control)

 © Copyright 2017 Pivotal. All rights reserved.

 © Copyright 2017 Pivotal. All rights reserved.

MVCC snapshots control which tuples are visible for specific statement in a
transaction

Snapshot – filter to see the specific version

 © Copyright 2017 Pivotal. All rights reserved.

 © Copyright 2017 Pivotal. All rights reserved.

 © Copyright 2017 Pivotal. All rights reserved.

Data structure: HeapTupleHeaderData

 © Copyright 2017 Pivotal. All rights reserved.

 © Copyright 2017 Pivotal. All rights reserved.

● Snapshot is fetched:
○At the start of each SQL statement in READ COMMITTED transaction isolation level
○At transaction start in SERIALIZABLE transaction isolation level.

● Different processing when concurrently update/delete one tuple:

Isolation Level Processing

 © Copyright 2017 Pivotal. All rights reserved.

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

HAWQ TRANSACTION DESIGN

 © Copyright 2017 Pivotal. All rights reserved.

HAWQ Characteristics

●SQL On HDFS
●HDFS doesn’t support UPDATE in place
●HAWQ Supported: Append Only (CREATE / INSERT/ TRUNCATE / SELECT/ NO UPDATE/ NO
DELETE)
●HAWQ now only support one active master for catalog management
●Dispatch catalog info to segment if needed
●2PC: no need

 © Copyright 2017 Pivotal. All rights reserved.

HAWQ Transaction Basic

●Combine MVCC with Append Only
●Most scenario: INSERT in batch in one transaction.
●Concurrency control at seg file level instead of tuple level
●Valid File Length maintained in MVCC catalog.
●How INSERT works:

○HDFS with truncate: truncate invalid data appended by aborted transaction before next time
appending data.
○HDFS without truncate: This segfile cannot be appended any more because of invalid data at the
end of file. Use next segfile instead.

 © Copyright 2017 Pivotal. All rights reserved.

Demo

Valid file length of all seg files in one relation will maintained in one sys table:
■ For AO tables in the systable: pg_aoseg.pg_aoseg_$TID
■ For PARQUET tables in systable: pg_aoseg.pg_paqseg_$TID

 © Copyright 2017 Pivotal. All rights reserved.

● INSERT parallel processing:
○ Lane model: one segfile only be handled by one executor process
○ Each INSERT query processing one groups of seg files

● Speedup transaction ending:
○ Dispatch the segfile creating/deleting tasking to segments for parallel processing

● Speedup Table dropping and selecting:
○ Change hdfs relation segfile path: now for one relation, all segfile put at one directory, instead of put all

relations’ segfiles in one directory.

● Pain Point at large number of partitions
● ToDo
○ Only allocate one segfile for one physical segment node, instead of each segfile for one vseg.
○ Multiple supplier one consumer mode write

INSERT Optimization

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

Performance Tuning

 © Copyright 2017 Pivotal. All rights reserved.

• Partition number too big lead to too many seg file (besides partition definition)
1. Hash distributed table: affected by the bucket number (the default value is set by guc

default_hash_table_bucket_number) .
2. Randomly Distributed and External Tables: affected by virtual segment number (the guc

hawq_rm_nvseg_perquery_perseg_limit manages the number of vsegs per host; the guc
hawq_rm_nvseg_perquery_limit set the cluster wide number of vsegs per query).

Best practice: set small value when INSERT and set big value when SELECT.

• Manually Trigger Checkpoint if any transaction related to too many segfiles
committed.

• VACUUM FULL catalog if too many out-of-date tuples exists

Performance Tuning

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

Future Work

 © Copyright 2017 Pivotal. All rights reserved.

• Example: gp_fastsequence up to 2G in customer’s env, The related index up to 9G (3.4G even after
reindex it), it will slow down 15 minutes for some query (eg. Analyze).

• Why not VACUUM FULL? There are more than 100 queries, 10 Applications running at the same time,
which always access gp_fastsequence, so the vacuum operation cannot get lock and proceed.

• HAWQ 2.0 removed gp_fastsequence because it is only used in the index of user data table.

• ToDo:
-- What: Other catalogs (need more investigation)
-- How:
(1) Change MVCC to Update-in-place (like Persistent Tables)
(2) Split into many small catalog (like pg_aoseg.pg_aoseg_$TID)

Catalog Bloating (Too many out-of-dated tuples)

 © Copyright 2017 Pivotal. All rights reserved.

• Update emulation in HAWQ
– LSMT (Log Structured Merge Tree) vs. Multiple Version
– Valid File length
– Relationship between NEW and OLD version tuple (pointer ? Bitmap?)
– Bloom filter usage for skipping single version tuple
– Sorted ItemPointer for delta tuples
– Binary search for each delta block (Random Read)
– Merge sorting for all delta blocks (Full Scan Read)

ToDo: UPDATE Supporting

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

About Us

 © Copyright 2017 Pivotal. All rights reserved.

ABOUT ME

• 2001 CS Bachelor of HIT, 2004 CS Master of Tsinghua.
• 2004~2006 PostgreSQL dev @ Institute of Information System and

Engineering, School of Software, Tsinghua University.
• 2006~2010 DB2 Federation Server dev @ IBM China Software

Development Lab
• 2010~2014 AffinityDB dev @ VMware
• 2014~now HAWQ dev @ Pivotal

 © Copyright 2017 Pivotal. All rights reserved.

Pivotal is Hiring:
Join us: pivotalrnd_china_jobs@pivotal.io

About Pivotal

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

Q & A

 © Copyright 2017 Pivotal. All rights reserved. © Copyright 2017 Pivotal. All rights reserved.

RECOVERY CONSIDERATION

 © Copyright 2017 Pivotal. All rights reserved.

PostgreSQL Recovery

- Take an e.g. Transaction T1 inserts lot of data

- System crashes before T1 can commit

- System comes back up again, needs recovery

- REDO (Do the same actions again), UNDO (Revert the effect of an action)

- Postgres supports only REDO. No UNDO is supported.

- In fact, does Postgres need UNDO ?
- Not Really! WHY ?? (MVCC is the answer)

- What is the advantage and what is the downside ?
- Adv – Fast recovery (only REDO)
- Downside – Unnecessary space wastage

 © Copyright 2017 Pivotal. All rights reserved.

• Intent – Clean the INCOMPLETE work

•Persistent Tables (PT) are ‘Database Object Life Managers’

•Database objects are either relations, databases, table spaces or filespaces

•Manage life of the same object both on the master & standby side

•PT are heap tables but do NOT follow MVCC rules. They do NOT follow transaction snapshotting rules.
Newly added tuple becomes visible instantly.

•Mapping: One ‘Persistent Table’ ⬄ Per database object type
gp_persistent_filespace_node gp_persistent_tablespace_node gp_persistent_database_node
gp_persistent_relation_node gp_persistent_relfile_node

Persistent Table Introduction: Derived from GPDB

 © Copyright 2017 Pivotal. All rights reserved.

•Motivation - PT should act as a on-disk Hash Table that manages information about an object life

•Changes made to the Database (e.g. Relation File Creation) by an incomplete transaction should be
still visible, so that they can be revoked

•If PT were MVCC compliant, for e.g. a transaction that created a table, inserted some data and never
committed due to system crash would lead to never cleaning the created table

•This consume disk space (resources)

Persistent Table: Why Non-MVCC?

 © Copyright 2017 Pivotal. All rights reserved.

Persistent Table: Struct & Storage

 © Copyright 2017 Pivotal. All rights reserved.

Persistent Table: Status Transfer Diagram

 © Copyright 2017 Pivotal. All rights reserved.

- Pass 1
- Recover ONLY Persistent Tables & Check their integrity
- Integrity checks include FreeTID linked list correctness, FreeOrder

sequence correctness etc

- Pass 2
- Using the same redo xlog records as in Pass 1, create infrastructure to find

which Database objects need to cleaned and which need to remain etc
- E.g. Free a create pending state tuple and drop corresponding object

- Pass 3
- Again, using the same redo xlog records recover only non-PT tables

- Pass 4
- Some more integrity checks like gp_globalsequence correctness etc

-

HAWQ Recovery Stages:

 © Copyright 2017 Pivotal. All rights reserved.

• Skip segfile creating/deleting if the transaction is rollback finally.

• ToDo:
– Persistent Table for relation file creation/deletion tracing is too heavy.
– Can we just revert relation file creation/deletion operation for rollback transaction directly?

HAWQ Recovery Speedup

