
background image: 960x540 pixels - send to back of slide and set to 80% transparency

HDB/HAWQ Integration with
Hadoop
Lili Ma lma@pivotal.io

Agenda

2

● HDB/HAWQ Overview
● Storage Integration
● Resource Management Integration
● User Authorization Integration
● Future Work

3

HDB/HAWQ Overview

Architecture

4

Node
Manager

DataNode

Container

Segment

Container

QE

QE

QE

QE

QE

QE

Node
Manager

DataNode

Container

Segment

Container

QE

QE

QE

QE

QE

QE

Node
Manager

DataNode

Container

Segment

Container

QE

QE

QE

QE

QE

QE

YARN
Resource Manager

HAWQ
Master

HAWQ
Master

Catalog service

HAWQ
MasterNameNode

Components Interactive with Hadoop

5

● Storage
‒ HDFS Catalog Cache vs. Libhdfs3
‒ Parquet
‒ PXF
‒ InputFormat/OutputFormat
‒ Hawq extract/register

● Resource Management
‒ Standalone Resource Management vs Yarn Managed RM
‒ LibYarn

● User Authorization
‒ Ranger

6

Storage

Data Access Layer

7

HDFS Catalog -- Cache
● HDB Metadata:

‒ Catalog Table -> schema & hdfs file name
‒ HDFS NameNode -> Block information for

each hdfs file

● HAWQ master connects to HDFS
Namenode to fetch block information of
HDFS files

● The block information may be huge for large
table -> performance downgrade if fetching
every time

● HDFS Catalog Cache → Store previous
block information & LRU Replacement
Policy

HDFS Data -- Libhdfs3
● How to access data in HAWQ(C) from HDFS

(Java)?

● Libhdfs

‒ JNI based C language library

‒ Users must deploy HDFS jars on

every machine to use it

● Libhdfs3

‒ native Hadoop RPC protocol and

HDFS data transfer protocol

‒ lightweight, small memory footprints

‒ Easy to use and deploy

cover this square with an image (540 x 480 pixels)

● HAWQ Design for Parquet
‒ Do not change anything in open

source Parquet format
‒ Append to a file and add a new

footer to file at the end of load/insert
‒ Design point for Parquet is for large

writes

● DDL
‒ create table a(a int, b

int)with(appendonly=true,
orientation=parquet, compresstype=snappy);

Parquet Storage

PXF Framework

9

Apache
Tomcat

PXF Webapp

REST API

Java API

libhdfs3 (written in C) segments

External Tables

Native Tables

HTTP, port: 51200

Java API

Java/Thrift

Architecture - Read Data Flow

HAWQ
Master Node NN

pxf

DN1

pxf

HAWQ
seg1

select * from ext_table0

getFragments() API

pxf://<location>:<port>/<pa
th>

1

Fragments (JSON)2

7

3

Assign
Fragments
to Segments

DN1

pxf

HAWQ
seg1

DN1

pxf

HAWQ
seg1Query dispatched to Segment 1,2,3… (Interconnect)

5

Read() REST

6 records

8

query result

Records (stream)

Fragmenter

Resolver

Accessor

4

HAWQInputFormat/HAWQParquetOutputFormat

11

● Purpose
‒ HAWQ can work align with other products in Hadoop eco-system

● HAWQInputFormat
‒ Easy for others to read data generated in HAWQ
‒ Get key as Void type, value as HAWQRecord type -> get each hawq record in

HAWQRecord struct -> record.getInt(index)
‒ Supports both AO table and Parquet table

● HAWQParquetOutputFormat
‒ Extension to ParquetOutputFormat, specifying type to be HAWQRecord
‒ Provides an interface setHAWQSchema for others to specify HAWQ schema
‒ Other system can generate HAWQRecord, and thus can write the data

HAWQ Extract/HAWQ Register

12

● HAWQ Extract
‒ Extract out metadata & HDFS file location for the table to yaml configuration file

‒ Yaml configuration can be used by HAWQInputFormat

‒ Usage hawq extract [-h hostname] [-p port] [-U username] [-d database] [-o output_file] [-W]
<tablename>

● HAWQ Register
‒ Register existing files on HDFS directly to HAWQ internal table
‒ Scenario

‒ Register other systems generated data
‒ HAWQ cluster migration

‒ Usage
‒ hawq register [-h <hostname>] [-p <port>] [-U <username>] -d <databasename> -f <hdfspath>

<tablename>
‒ hawq register [-h <hostname>] [-p <port>] [-U <username>] -d <databasename> -c <configFile>

<tablename>

13

Resource Management

HAWQ Resource Manager Highlights

14

● Hierarchical resource queues(DDL)
● Automatic Resource Allocation
● Resource Allocation policy at queue and statement level
● Global optimized resource allocation: HAWQ makes global optimized

resource allocations across the cluster
● Pluggable global resource manager(two modes: None/YARN)
● Dynamic resource expansion/shrink and segment profiling
● High volume concurrent query execution & low resource allocation latency

15

YARN NameNode

Resource Broker

libYARN

Resource
Manager

Fault Tolerance
Service

Optimizer

Parser/ Analyzer

Dispatcher Catalog Service

HDFS Catalog
Cache

Client

Client

Client

YARN
Node Manager

HDFS DataNode

Segment

Virtual
Segment
Virtual

Segment
Virtual

Segment
Virtual

Segment

YARN
Node Manager

HDFS DataNode

Segment

Virtual
Segment
Virtual

Segment
Virtual

Segment
Virtual

Segment

YARN
Node Manager

HDFS DataNode

Segment

Virtual
Segment
Virtual

Segment
Virtual

Segment
Virtual

Segment

External System

HAWQ Resource
Manager

(Application Master)

16

YARN Resource
Manager

Yarn Node
Manager

LibYarn

register/unregister
allocate/release resource
get cluster/container reports
get queue information

resource track and schedule

active

Interaction with Yarn

17

User Authorization

Background

18

● Ranger: A Global User Authorization Tool in Hadoop eco-system
‒ Can support multiple systems such as HDFS, Hive, HBase, Knox, etc.
‒ Provides a central UI for user to defining policies for different systems
‒ Provide a base Java Plugin thus feasible for other products to define its own

plugin to be controlled by Ranger

● HAWQ Current ACL
‒ Implement through Grant/Revoke SQL Command
‒ Current ACL is controlled by catalog table, which is stored in HAWQ master

● HAWQ needs to keep align with hadoop eco-systems, so we need
integrate with Ranger ACL

‒ Provide a GUC specifying whether enable ranger as ACL check
‒ Once ranger is configured, move all the ACL check to Ranger side
‒ Define all the policies in Ranger

HAWQ

19

LDAP Server

Ranger Admin
Serveractive

HAWQ Ranger Integration

Ranger REST
Service

HAWQ Ranger Plugin

Ranger Policy DB

Create user in LDAP Server

User synced to HAWQ

Policy sync
Send ACL
Check request

User synced to Ranger

HAWQ

20

LDAP Server Ranger Admin Server

Workflow
Ranger REST Service Ranger Policy DB

1. create user
2. sync user information

3. sync user info

4.define policy 5.store policy

6. fresh policy

7. send query

8. send ACL check

9. return result
10. return

Components

21

● HAWQ Ranger Plugin
‒ An extension to Ranger plugin, providing functions including

‒ Register itself into Ranger Server
‒ Sync Ranger defined policies to plugin itself
‒ Lookup Service from Ranger Server to HAWQ

● Ranger Plugin Service
‒ A RESTful Service which includes HAWQ Ranger Plugin

‒ Provide API of checkPrivilege for HAWQ ACL

● HAWQ ACL
‒ Encapsulate ACL check to a JSON Request, and send to RPS

‒ Merge the ACL check inside one query as a single JSON Request
‒ Request includes three parts information: requestor; resource; privileges

22

Future Work

TDE(Transparent Data Encryption) Support

23

● TDE: HDFS implements transparent, end-to-end encryption
‒ Data is transparently encrypted and decrypted without requiring changes to

user application code
‒ Data can only be encrypted and decrypted by the client
‒ HDFS never stores or has access to unencrypted data or unencrypted data

encryption keys
● HAWQ Enhancement

‒ Modify libhdfs3 to add support for TDE

Parquet 2.0 Support

24

● Parquet 2.0 Enhancement
‒ Add more Converted Type: Enum, Decimal, Date, Timstamp
‒ Add more statistics in DataPageHeader: including max/min/null count, distinct

count
‒ Add Dictionary Page
‒ Add sorting column information in Rowgroup meta
‒ …

● HAWQ Upgrade to Parquet 2.0 support
‒ Bring performance improvement by leveraging statistics information
‒ Become more compatible with other systems which have supported Parquet

2.0

background image: 960x540 pixels - send to back of slide and set to 80% transparency

Thanks

