
Apache	Ranger:	Tag	based	policies	

Page	1	of	9	
	

1 Introduction	
Apache	Ranger	provides	centralized	security	 for	Enterprise	Hadoop	ecosystem,	 including	 fine-
grained	access	control	and	centralized	auditing.	As	of	0.5	version,	Apache	Ranger	policies	enable	
authorization	 for	 specific	 set	 of	 resources	 –	 like	 HDFS	 files/directories,	 Hive	
databases/tables/columns,	HBase	tables/column-families/columns,	etc.	Features	like	centralized	
policy	 management	 for	 many	 Hadoop	 components,	 ability	 to	 specify	 resource	 sets	 using	
wildcards	 and	 delegated	 administration	model,	 make	 the	 security	 administration	 of	 Hadoop	
resources	much	simpler	to	manage.	
	
Ability	to	authorize	access	based	on	tags	associated	with	the	resources,	instead	of	the	resources	
themselves,	 offers	 many	 advantages.	 One	 of	 the	 important	 advantage	 is	 the	 separation	 of	
resource-classification	 from	access-authorization.	For	example,	 resources	 (HDFS	 file/directory,	
Hive	database/table/column	etc.)	 containing	 sensitive	data	 like	 social-security-number/credit-
card-number/sensitive-health-care-data	can	be	tagged	with	PII/PCI/PHI	–	either	as	the	resource	
enters	the	Hadoop	ecosystem	or	any	time	later.	Once	a	resource	is	tagged,	the	authorization	for	
the	tag	would	automatically	be	enforced,	thus	eliminating	the	need	to	create	or	update	of	policies	
for	the	resource.	Also,	a	single	authorization	policy	for	a	tag	can	be	used	to	authorize	access	to	
resources	across	various	Hadoop	components	–	which	eliminates	the	need	to	create	separate	
policies	in	each	component.	
	
The	goal	of	 this	document	 is	 to	provide	an	overview	of	 tag-based	policies	 implementation	 in	
Apache	Ranger.	

2 Tag-based	policy	
Apache	Ranger	introduces	a	new	service-type	called	‘tag’	to	work	with	tag-based	policies.	The	
new	service-type	‘tag’	is	similar	to	other	existing	service-types	–	HDFS,	Hive,	HBase,	YARN,	Strom,	
etc.	With	this	approach,	the	users	can	use	existing/familiar	resource-based	policy	UI	for	tag-based	
policies	as	well.	In	addition,	this	also	enables	reuse	of	existing	infrastructure	that	deal	with	Ranger	
Policies	–	like	REST	APIs,	persistence,	custom	conditions,	policy	engine,	etc.	
	
2.1 Ranger	Admin	UI	
Apache	Ranger	 provides	 a	 new	UI	 page,	 named	 ‘Tag	Based	 Policies’,	 to	work	with	 tag	 based	
policies.	The	workflow	to	create/update	tag-based	policies	is	essentially	same	as	with	the	existing	
‘Resource	Based	Policies’.	Start	by	adding	a	tag	service	instance,	in	which	tag-based	policies	can	
be	 created.	Multiple	 tag	 service	 instances	 can	be	 created	–	 like	 tag-dev/tag-test/tag-prod,	 to	
group	tag-based	policies	for	different	clusters.	
	
Policy	UI	for	tag-based	policy	looks	very	similar	to	existing	resource-based	policies.	The	name	of	
the	tag	should	be	specified	at	the	top	half	of	the	page;	the	bottom	half	of	the	page	provides	the	
UI	 to	 specify	permissions	 for	users	 and	groups.	 Following	are	 few	differences	 from	 resource-
based	policies	UI:	

Apache	Ranger:	Tag	based	policies	

Page	2	of	9	
	

• Permissions	UI	lists	the	permissions	available	in	all	the	service-types.	This	allows	policy	
authors	to	restrict	type	of	accesses	users/groups	can	perform	on	tagged	resources		

• Wildcards	are	not	allowed	in	tag	names.	Also	only	one	tag	can	be	entered	per	policy	
• Delegated	Admin	is	not	available	for	tag-based	policies.	Currently	only	an	administrator	

can	work	with	tag-based	policies	
	
2.2 Update	component	services	for	tag-based	policies	
Apache	Ranger	plugins	enforce	the	authorization	policies	defined	in	the	component	service	–	like	
hive-dev/hive-test/hive-prod.	For	the	plugins	to	also	enforce	tag-based	policies,	the	component	
service	must	 be	updated	 to	 refer	 to	 a	 specific	 tag	 service	 instance	 (like	 tag-dev/tag-test/tag-
prod).	Follow	the	steps	below:	

• go	to	‘Resource	Based	Policies’	page	
• click	on	the	Edit	button	of	the	component	service	that	needs	to	be	updated	
• select	appropriate	tag	service	name	from	the	list	of	services	shown	in	‘Select	Tag	Service’	

3 Tag	Store	
Details	of	tags	associated	with	resources	are	stored	in	a	tag	store.	Apache	Ranger	plugins	retrieve	
the	tag	details	from	the	tag	store	for	use	during	policy	evaluation.	To	minimize	the	performance	
impact	during	policy	evaluation	(in	finding	tags	for	resources),	Apache	Ranger	plugins	cache	the	
tags	and	periodically	poll	the	tag	store	for	any	changes.	On	detecting	change,	the	plugins	update	
the	cache.	In	addition,	the	plugins	store	the	tag	details	in	a	local	cache	file	–	just	as	the	policies	
are	stored	in	a	local	cache	file.	On	component	restart,	the	plugins	will	use	the	tag	data	from	the	
local	cache	file	if	the	tag	store	is	not	reachable.	
	
In	the	current	release,	Apache	Ranger	plugins	download	the	tag	details	from	the	store	managed	
by	Ranger	Admin.	Ranger	Admin	persists	the	tag	details	in	its	policy	store	and	provides	a	REST	
interface	for	the	plugins	to	download	the	tag	details.	

4 Tag	Sync	
Apache	Ranger	introduces	a	new	module,	ranger-tagsync,	to	populate	the	tag	store	from	the	tag	
details	available	in	an	external	system	like	Apache	Atlas.		Tag	sync	is	a	daemon	process	similar	to	
ranger-usersync	process.	
	
In	the	current	release,	ranger-tagsync	supports	receiving	tag	details	from	Apache	Atlas	via	change	
notifications.	As	tags	are	added/updated/deleted	to	resources	in	Apache	Atlas,	ranger-tagsync	
would	receive	notifications	and	update	the	tag	store.	

5 Tags	
Tags	in	Apache	Ranger	can	have	attributes.	Tag	attribute	values	can	be	used	in	Ranger	tag-based-
policies	to	influence	the	authorization	decision.	
	
For	example,	to	deny	access	to	a	resource	after	a	specific	date:	

• add	EXPIRES_ON	tag	to	the	resource		

Apache	Ranger:	Tag	based	policies	

Page	3	of	9	
	

• add	a	tag	attribute,	named	expiry_date,	with	its	value	set	to	the	expiry	date	
• create	a	Ranger	policy	for	EXPIRES_ON	tag	
• add	a	condition	in	this	policy	to	deny	the	access	when	the	date	specified	in	expiry_date	

tag	attribute	is	later	than	the	current	date	
	
In	fact,	the	above	detailed	EXPIRES_ON	tag	policy	is	created	as	the	default	policy	in	tag	service	
instances.	

6 Tags	in	policy	evaluation	
While	authorizing	an	access	request,	Apache	Ranger	plugin	evaluates	applicable	Ranger	policies	
for	the	resource	being	accessed.	This	section	provides	details	of	how	the	tags	are	found	and	used	
during	policy	evaluation.	
	
6.1 Finding	tags	
Apache	Ranger	 stack	model,	 introduced	 in	 Ranger	 0.5,	 supports	 a	 service	 to	 register	 context	
enrichers,	which	are	used	to	update	context	data	to	the	access	request.	
	
Tag	service,	which	 is	 introduced	 in	 tag-based	policies	 feature,	adds	a	context	enricher	named	
RangerTagEnricher.	 This	 context	 enricher	 is	 responsible	 for	 finding	 tags	 for	 the	 requested	
resource	and	adding	the	tag	details	to	the	request	context.	This	context	enricher	keeps	a	cache	
of	 the	 available	 tags;	while	 processing	 an	 access	 request,	 it	 finds	 the	 tags	 applicable	 for	 the	
requested	resource	and	adds	the	tags	to	the	request	context.	The	context	enricher	keeps	the	
cache	updated	by	periodically	polling	Ranger	Admin	for	changes.	
6.2 Evaluating	tag-based-policies	
Once	 the	 list	of	 tags	 for	 the	 requested	 resource	are	 found,	Apache	Ranger	policy	engine	will	
evaluate	the	tag-based-policies	applicable	for	the	tags.	If	a	policy	for	one	of	these	tag	results	in	
deny,	the	access	will	be	denied.	If	none	of	the	tags	are	denied	and	if	a	policy	allows	for	one	of	the	
tags,	the	access	will	be	allowed.	If	there	is	no	result	for	any	tag	or	if	there	are	no	tags	for	the	
resource,	the	policy	engine	will	evaluate	the	resource-based	policies	to	make	the	authorization	
decision.	
6.3 Using	tags	in	conditions	
Apache	Ranger	 stack	model	allows	use	of	 custom	conditions	while	evaluating	 the	policies	 for	
authorization.	Apache	Ranger	policy	engine	makes	various	 request	details	 -	 like	user,	 groups,	
resource	and	context,	available	to	the	conditions.	Tags	in	the	request	context,	which	are	added	
by	the	enricher,	are	available	to	the	conditions	and	can	be	used	to	influence	the	authorization	
decision.	
	
The	default	policy	in	tag	service	instances,	for	EXPIRES_ON	tag,	uses	such	condition	to	check	if	
the	request	date	is	later	than	the	value	specified	in	tag	attribute	expiry_date.	

Apache	Ranger:	Tag	based	policies	

Page	4	of	9	
	

7 Setting	up	
7.1 Apache	Atlas	
Ensure	that	Apache	Atlas	 is	 setup	 in	 the	environment	and	configured	to	send	entity	and	trait	
notifications	 to	 Apache	 Atlas	 clients	 via	 Kafka.	 Please	 refer	 to	 appropriate	 Apache	 Atlas	
documentation	for	more	details.	
	
7.2 Build	Apache	Ranger	
Apache	Ranger	with	support	for	tag-based	policies	is	available	in	Apache	branch	named	tag-policy	
(https://github.com/apache/incubator-ranger/tree/tag-policy).	 	 Instructions	 to	 build	 Apache	
Ranger	 from	 this	 branch	 using	 a	 Linux/Unix	 shell	 are	 given	 below.	 Please	 remember	 to	 set	
JAVA_HOME	environment	variable	to	appropriate	value	before	executing	these	commands:	
	

$ git clone git://git.apache.org/incubator-ranger.git
$ cd incubator-ranger
$ git checkout tag-policy
$ git pull
$ mvn clean compile package install assembly:assembly

	
Once	the	build	completes,	archive	files	containing	the	binaries	should	be	available	under	target	
directory,	as	shown	below:	
	
 $ ls –l target/*.tar.gz

target/ranger-0.5.0-admin.tar.gz
target/ranger-0.5.0-hive-plugin.tar.gz
target/ranger-0.5.0-tagsync.tar.gz
target/ranger-0.5.0-usersync.tar.gz

	
7.3 Install	Apache	Ranger	
Install	 Ranger	 components	 (Admin,	 Usersync	 and	 plugins)	 using	 the	 instructions	 available	 at	
Apache	Ranger	wiki	page.	Then	following	the	instructions	below	to	install	and	configure	TagSync:	
	

$ cd /usr/local
$ sudo tar xvfz ranger-0.5.0.tagsync.tar.gz
$ sudo ln –s ranger-0.5.0.tagsync ranger-tagsync
$ cd /usr/local/ranger-tagsync

Review	install.properties	and	update	as	necessary;	especially	review	the	following:	
TAGADMIN_ENDPOINT = http://localhost:6080
TAGSYNC_ATLAS_KAFKA_ENDPOINTS = localhost:6667
TAGSYNC_ATLAS_ZOOKEEPER_ENDPOINT = localhost:2181
TAGSYNC_ATLAS_CONSUMER_GROUP = entityConsumer

Once	install.properties	is	updated,	run	the	setup	script	with	the	following	command:	
		

Apache	Ranger:	Tag	based	policies	

Page	5	of	9	
	

$./setup.sh

7.4 Start	Apache	Ranger	
After	completing	the	installation,	start	Apache	Ranger	components	with	the	following	
commands:	
	

$ service ranger-admin start
$ service ranger-usersync start
$ service ranger-tagsync start

	
In	addition,	restart	the	components	where	Ranger	plugin	was	installed.		

8 Examples	
In	this	section,	we	will	go	through	use	of	tag-based	policies	to	implement	the	following	two	
usecases:	

• Access	to	objects	tagged	with	PII	should	only	be	allowed	to	users	in	audit	group	
• Access	to	objects	tagged	with	EXPIRES_ON	should	not	be	allowed	after	the	date	

specified	in	tag	attribute	expiry_date	
8.1 Hive	Schema	
We	will	use	the	Hive	schema	given	below	to	implement	the	usecases:	
	

Database	 Table	 Columns	
finance tax_2010 ssn, fed_tax, state_tax, local_tax
hr employee id, name, ssn, join_date, locatiion

	
Following	Hive	SQL	statements	can	be	used	to	create	this	schema	using	beeline	command	line:	
	

create database finance;
use finance;
create table tax_2010(ssn STRING, fed_tax INT,
 state_tax INT, local_tax INT);

create database hr;
use hr;
create table employee(id INT, name STRING, ssn STRING,
 join_date DATE, location STRING);

8.2 Tags	
Usecases	require	Hive	objects	to	be	tagged	as	shown	below.	Please	ensure	to	add	these	tags	in	
Apache	Atlas:	
	

Objects	 TAG	 Tag	attributes	
Column:	finance.tax_2010.ssn	
Column:	hr.employee.ssn	

PII	 	

Apache	Ranger:	Tag	based	policies	

Page	6	of	9	
	

Table:	finance.tax_2010	 EXPIRES_ON	
	

expiry_date=’2015/08/31’	

	
8.3 Tag	service	
As	mentioned	earlier	in	this	document,	tag-based	policies	will	be	created	in	a	tag	service-
instance.	Follow	the	steps	given	below	to	create	a	tag	service-instance	named	tagdev:	

1. Login	to	Ranger	Admin	
2. Select	menu:	Access	Manager	è	Tag	Based	Policies	
3. Click	the	+	icon	next	to	TAG	
4. In	‘Service	Name’	field,	enter	tagdev	and	click	‘Add’	

	

	
	
	
Component	service	instances,	like	hivedev,	must	be	updated	to	enforce	the	tag-based	policies	
available	in	a	tag	service	instance.	Follow	the	steps	given	below	to	update	Hive	service	instance	
in	your	environment:	

1. Login	to	Ranger	Admin	
2. Select	menu:	Access	Manager	è	Resource	Based	Policies	
3. Click	on	the	edit	icon	next	to	your	hive	service	instance,	like	hivedev,	
4. In	‘Select	Tag	Service’	field,	select	tagdev	and	click	‘Save’	

	

Apache	Ranger:	Tag	based	policies	

Page	7	of	9	
	

	
	
	
8.4 Tag-based	policy:	PII	
Follow	the	steps	give	below	to	create	a	tag-based	policy,	which	allows	only	audit	group	users	to	
access	objects	tagged	with	PII.	This	policy	will	deny	access	to	all	other	users.	

1. Login	to	Ranger	Admin	
2. Select	menu:	Access	Manager	è	Tag	Based	Policies	
3. Select	service	instance	tagdev	
4. Click	‘Add	New	Policy’	
5. In	‘Policy	Name’	field,	enter	PII	
6. In	‘TAG’	field,	enter	PII	
7. In	Allow	conditions:	

a. In	‘Select	Group’,	pick	audit	
b. In	‘Component	Permissions’,	enter	hive	as	component	name	and	pick	‘All’		

Apache	Ranger:	Tag	based	policies	

Page	8	of	9	
	

8. In	Deny	conditions:	
a. In	‘Select	Group’,	pick	public	
b. In	‘Component	Permissions’,	enter	hive	as	component	name	and	pick	‘All’		

9. In	Deny	Exceptions:	
a. In	‘Select	Group’,	pick	audit	
b. In	‘Component	Permissions’,	enter	hive	as	component	name	and	pick	‘All’		

10. Click	‘Add’	
	
Here	is	the	screenshot	of	the	tag-based	policy	for	PII	tag:		
	

	

Apache	Ranger:	Tag	based	policies	

Page	9	of	9	
	

8.5 Tag-based	policy:	EXPIRES_ON	
A	policy	for	EXPIRES_ON	tag	is	created	automatically	when	a	tag	service	instance,	like	tagdev,	is	
created.	This	default	policy	denies	access	to	objects	tagged	with	EXPIRES_ON	after	the	expiry	
date	specified	tag	attribute.	Please	review	the	default	policy	with	the	following	steps:	

1. Login	to	Ranger	Admin	
2. Select	menu:	Access	Manager	è	Tag	Based	Policies	
3. Select	service	instance	tagdev	
4. Select	policy	‘tagdev-EXPIRES_ON’	

	
Here	is	the	screenshot	of	the	tag-based	policy	for	EXPIRES-ON	tag:		
	

	
	
	

