
Enabling Universal Authorization Models
using Apache Sentry

Hao Hao - hao.hao@cloudera.com
Anne Yu - anneyu@cloudera.com

Vancouver BC, Canada, May 9 - 12 2016



About us

● Software engineers at Cloudera
● Apache Sentry PMC and Committer
● Hao, used to work at Search Backend, eBay Inc. 
● Anne, used to work at Search Backend, A9, an Amazon subsidiary.



Presentation Agenda

● Sentry Overview
● Introduction
● Architecture

● Sentry Generic Authorization Model
● Motivation: easy integration with Apache data engines, even third-party 

data applications
● Successfully integrated with Apache Solr, Kafka and Sqoop2
● Integration examples

● Sentry Other Features and Future Work



Sentry Overview

● Authorization Service
● Sentry provides the ability to enforce role-based access control (RBAC) to 

data and/or metadata for authenticated users in a fine-grained manner. 
● Enterprise grade big data security.
● Provides unified policy management.
● Pluggable and highly modular.

● Work out of the box with Apache Hive, Hive metastore/HCataglog, 
Apache Solr, Apache Kafka, Apache Sqoop and Apache Impala.



Sentry Architecture
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● Server Client Model

● Thrift client APIs
● Get privileges;
● Grant/Revoke role;
● Grant/Revoke 

privileges; 
● List roles

Thrift APIs
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Authorization Model for SQL Engines
● Provides out of box integration with Apache SQL engines

● Apache Hive, Impala (incubating)

● Grant permissions to allow DDLs and DMLs on these objects

● A fixed metadata model designed to  policies and objects suitable for 
SQL data

● databases, tables, views and columns

● Specific Client plugin for SQL engines
● DB policy engine

● If support other data applications, will need extensive development



Generic Authorization Model

● Motivation
● Supports various data applications out of box
● Easy integration with any new components

● Very few implementation

● A more flexible design
● Generic authorization data model for defining sensitive resources
● Generic policy engine that includes: access actions and privileges 

abstraction could be interpreted by various engines 
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Server Client Model 

● Thrift client APIs
● Get privilege; Grant/Revoke role; Grant/Revoke privilege; List roles

● Provide SentryCLI to manage policies and metadata
● sentryShell --grant_role_privilege --role analyst --privilege 

server=server1->db=db2->table=tab1->action=select --conf 
sentry-site.xml

● RESTful client APIs (Ongoing)
● Use HTTP requests to manage roles and privileges
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Authorization Data Model
● Authorization data model defines the objects to be subject to authorization 

rules, the granularity of actions to be allowed and privilege rules that allow 

access to objects.

● In generic model, different data application objects are represented as 

resources. Actions and privileges can be transformed into read, write or 

all operations based on data application definition.

● For example, SQL authorization data model: objects are databases, 

tables, views, uris or functions; privileges are create database, insert into 

table, create function using ‘func.jar’ and so on.



Authorization Data Model (cont…)

● Solr authorization data model: objects are indexes, collections, or documents; 

actions and privileges can be search through collections or documents, 

create index, list status of cores and so on.

● Sqoop authorization data model: objects are resources, servers, connectors, 

links or jobs; actions and privileges can be interpreted as connect to server, 

execute job.

● Kafka authorization data model: objects are clusters, topics or consumer 

groups; actions and privileges could be write on topic for producer, create on 

cluster for auto topic etc.



Integrating with Universal Authorization Model

● Define Authorization data: 
● Define authorizables as resources. For example, Solr:///collection=c1/field=f1; 

Hive:///database=db/table=tbl/column=cl.

● Define actions and privilege rules. For example, Solr read on collection means  

user can search through collection. Hive read on database means user can show 

databases.

● Extend generic Plugin Engine: 
● Query Sentry to retrieve privileges, do the transformation, return rules which can 

be used to authorize access actions.

● Policy enforcement on data application side: 
● Implement hook and binding to enforce authorization by using Plugin Engine.



Integration Use Cases

● Authorizing Hive

● Authorizing Solr

● Authorizing Sqoop2



Authorizing Hive

● Define authorization data model: 
● Authorization objects: server, database, table, view, column and so on
● Access actions: create, insert, select etc.
● Privileges: create database, insert into table, select column

● Extend binding and hook to retrieve privileges from Sentry
● HS2 integrate hook into build stage
● HMS integrate hook into a pre metadata change event

● Extend metadata in the backend Db: privilege (including resources 
and actions).   Resource could be defined as: 
database=db1->table=tbl1->column=c1

● Extend HS2 or HMS clients to manage Sentry metadata such as roles 
and privileges



Authorizing Solr

● Extend authorization data model:
● Authorization objects: collections, documents, indexes or admin 

operations.
● Privileges: query on collection, list status of cores, create index

● Extend hook and binding to retrieve privileges from Sentry:
● Implement hooks to override request handler implementation
● Hooks enforce collection or document level authorization

● Extend metadata in the backend Db: privilege (including resources 
and actions). Resource could be defined as collection=c1->field=f1

● SolrCli wraps around SentryCLI to manage metadata



Authorizing Sqoop2

● Extend authorization data model:
● Authorize objects: server, connector, link and job
● Access actions: show, read, write etc.
● Privileges: connection read, link write, job read 

● Extend  binding and hook to retrieve privileges from Sentry
● Client -> JobRequestHandler -> Authorize through Sentry -> JDBC Repo 

● Extend metadata: privileges (including resources and actions). 
Resource could be defined as: server=server1->connector=conn

● Sqoop Cli is extended to manage Sentry metadata such as roles and 
privileges



Sentry Releases

● Successfully graduated from the Incubator in March of 2016 and now 
is a Top-Level Apache project

● Sentry 1.6.0 released on Feb 24, 2016
● Add capability to export/import to dump or load Sentry metadata
● Integrate Sqoop with Sentry by using generic authorization model

● About to release 1.7.0
● Integrate Hive v2 into Sentry
● Integrate Kafka with Sentry by using generic authorization model
● Integrate Solr with Sentry by using generic authorization model



Future Work

● New design of Sentry HA 
● Compatible with HMS HA and HDFS ACLs Sync Up

● RESTful client APIs to define authorization data model
● Continue work for generic authorization model

● Attribute Based Access Control



Reference

● Apache Sentry: https://cwiki.apache.org/confluence/display/SENTRY/Home

● Integrating with Sentry New Universal Authorization Model: 
https://cwiki.apache.org/confluence/display/SENTRY/Integrating+with+Sentry
+New+Universal+Authorization+Model



Questions?


