
Enabling Universal Authorization Models
using Apache Sentry

Hao Hao - hao.hao@cloudera.com
Anne Yu - anneyu@cloudera.com

Vancouver BC, Canada, May 9 - 12 2016

About us

● Software engineers at Cloudera
● Apache Sentry PMC and Committer
● Hao, used to work at Search Backend, eBay Inc.
● Anne, used to work at Search Backend, A9, an Amazon subsidiary.

Presentation Agenda

● Sentry Overview
● Introduction
● Architecture

● Sentry Generic Authorization Model
● Motivation: easy integration with Apache data engines, even third-party

data applications
● Successfully integrated with Apache Solr, Kafka and Sqoop2
● Integration examples

● Sentry Other Features and Future Work

Sentry Overview

● Authorization Service
● Sentry provides the ability to enforce role-based access control (RBAC) to

data and/or metadata for authenticated users in a fine-grained manner.
● Enterprise grade big data security.
● Provides unified policy management.
● Pluggable and highly modular.

● Work out of the box with Apache Hive, Hive metastore/HCataglog,
Apache Solr, Apache Kafka, Apache Sqoop and Apache Impala.

Sentry Architecture
Hive Solr Sqoop

Hook HookHook

Sentry Client Plugin

Sentry Server
(Policy Metadata Store)

● Server Client Model

● Thrift client APIs
● Get privileges;
● Grant/Revoke role;
● Grant/Revoke

privileges;
● List roles

Thrift APIs

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Binding Layer: takes the
authorization requests in the
native format of requestors and
converts that into a authz
request based on the
authorization data model that
can be handled by Sentry
authorization provider.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Authorization provider: an
abstraction for making the
authorization decision for the
authz request from binding
layer. Currently, supplies a
RBAC authorization model
implementation.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Policy Engine: gets the
requested privileges from the
binding layer and the
required privileges from the
provider layer. It looks at the
requested and required
privileges and makes the
decision whether the action
should be allowed.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Policy Backend: making the
authorization metadata
available for the policy engine.
It allows the metadata to be
pulled out of the underlying
repository independent of the
way that metadata is stored.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Sentry Architecture
Hive Solr Sqoop

Provider Backend

DB Policy
Engine

Access Binding Layer

Solr Policy
Engine

Sqoop
Policy
Engine

Authorization Provider

● Sentry policy store and Sentry
Service: persist the role to
privilege and group to role
mappings in an RDBMS and
provide programmatic APIs to
create, query, update and
delete it. This enables various
Sentry clients to retrieve and
modify the privileges
concurrently and securely.

Local
File/HDFS

Sentry
Database

Policy Metadata Store

Authorization Model for SQL Engines
● Provides out of box integration with Apache SQL engines

● Apache Hive, Impala (incubating)

● Grant permissions to allow DDLs and DMLs on these objects

● A fixed metadata model designed to policies and objects suitable for
SQL data

● databases, tables, views and columns

● Specific Client plugin for SQL engines
● DB policy engine

● If support other data applications, will need extensive development

Generic Authorization Model

● Motivation
● Supports various data applications out of box
● Easy integration with any new components

● Very few implementation

● A more flexible design
● Generic authorization data model for defining sensitive resources
● Generic policy engine that includes: access actions and privileges

abstraction could be interpreted by various engines

Generic Authorization Model
Hive Solr Kafka

Local
File/HDFS

Sentry
Database

Provider Backend

Policy Engine

Authorization Provider

Access Binding Layer

Policy Metadata Store

Server Client Model

● Thrift client APIs
● Get privilege; Grant/Revoke role; Grant/Revoke privilege; List roles

● Provide SentryCLI to manage policies and metadata
● sentryShell --grant_role_privilege --role analyst --privilege

server=server1->db=db2->table=tab1->action=select --conf
sentry-site.xml

● RESTful client APIs (Ongoing)
● Use HTTP requests to manage roles and privileges

Generic Authorization Model
Hive Solr Kafka

Local
File/HDFS

Sentry
Database

Sentry
Shell

REST API

Provider Backend

Policy Engine

Authorization Provider

Access Binding Layer

Policy Metadata Store

Authorization Data Model
● Authorization data model defines the objects to be subject to authorization

rules, the granularity of actions to be allowed and privilege rules that allow

access to objects.

● In generic model, different data application objects are represented as

resources. Actions and privileges can be transformed into read, write or

all operations based on data application definition.

● For example, SQL authorization data model: objects are databases,

tables, views, uris or functions; privileges are create database, insert into

table, create function using ‘func.jar’ and so on.

Authorization Data Model (cont…)

● Solr authorization data model: objects are indexes, collections, or documents;

actions and privileges can be search through collections or documents,

create index, list status of cores and so on.

● Sqoop authorization data model: objects are resources, servers, connectors,

links or jobs; actions and privileges can be interpreted as connect to server,

execute job.

● Kafka authorization data model: objects are clusters, topics or consumer

groups; actions and privileges could be write on topic for producer, create on

cluster for auto topic etc.

Integrating with Universal Authorization Model

● Define Authorization data:
● Define authorizables as resources. For example, Solr:///collection=c1/field=f1;

Hive:///database=db/table=tbl/column=cl.

● Define actions and privilege rules. For example, Solr read on collection means

user can search through collection. Hive read on database means user can show

databases.

● Extend generic Plugin Engine:
● Query Sentry to retrieve privileges, do the transformation, return rules which can

be used to authorize access actions.

● Policy enforcement on data application side:
● Implement hook and binding to enforce authorization by using Plugin Engine.

Integration Use Cases

● Authorizing Hive

● Authorizing Solr

● Authorizing Sqoop2

Authorizing Hive

● Define authorization data model:
● Authorization objects: server, database, table, view, column and so on
● Access actions: create, insert, select etc.
● Privileges: create database, insert into table, select column

● Extend binding and hook to retrieve privileges from Sentry
● HS2 integrate hook into build stage
● HMS integrate hook into a pre metadata change event

● Extend metadata in the backend Db: privilege (including resources
and actions). Resource could be defined as:
database=db1->table=tbl1->column=c1

● Extend HS2 or HMS clients to manage Sentry metadata such as roles
and privileges

Authorizing Solr

● Extend authorization data model:
● Authorization objects: collections, documents, indexes or admin

operations.
● Privileges: query on collection, list status of cores, create index

● Extend hook and binding to retrieve privileges from Sentry:
● Implement hooks to override request handler implementation
● Hooks enforce collection or document level authorization

● Extend metadata in the backend Db: privilege (including resources
and actions). Resource could be defined as collection=c1->field=f1

● SolrCli wraps around SentryCLI to manage metadata

Authorizing Sqoop2

● Extend authorization data model:
● Authorize objects: server, connector, link and job
● Access actions: show, read, write etc.
● Privileges: connection read, link write, job read

● Extend binding and hook to retrieve privileges from Sentry
● Client -> JobRequestHandler -> Authorize through Sentry -> JDBC Repo

● Extend metadata: privileges (including resources and actions).
Resource could be defined as: server=server1->connector=conn

● Sqoop Cli is extended to manage Sentry metadata such as roles and
privileges

Sentry Releases

● Successfully graduated from the Incubator in March of 2016 and now
is a Top-Level Apache project

● Sentry 1.6.0 released on Feb 24, 2016
● Add capability to export/import to dump or load Sentry metadata
● Integrate Sqoop with Sentry by using generic authorization model

● About to release 1.7.0
● Integrate Hive v2 into Sentry
● Integrate Kafka with Sentry by using generic authorization model
● Integrate Solr with Sentry by using generic authorization model

Future Work

● New design of Sentry HA
● Compatible with HMS HA and HDFS ACLs Sync Up

● RESTful client APIs to define authorization data model
● Continue work for generic authorization model

● Attribute Based Access Control

Reference

● Apache Sentry: https://cwiki.apache.org/confluence/display/SENTRY/Home

● Integrating with Sentry New Universal Authorization Model:
https://cwiki.apache.org/confluence/display/SENTRY/Integrating+with+Sentry
+New+Universal+Authorization+Model

Questions?

