
Trafodion SQL Reference Manual

Part Number: T775-110-001
Published: April 2015
Edition: Trafodion Release 1.1.0

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Legal Notice

The information contained herein is subject to change without notice. This documentation is distributed on an “AS IS” basis, without warranties or
conditions of any kind, either express or implied. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

NOTICE REGARDING OPEN SOURCE SOFTWARE: Project Trafodion is licensed under the Apache License, Version 2.0 (the "License"); you may
not use software from Project Trafodion except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/
licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Acknowledgements

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. Java® is a registered trademark of Oracle and/or its affiliates.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents
About This Document...17

Intended Audience..17
New and Changed Information in This Edition..17
Document Organization..17
Notation Conventions..18

General Syntax Notation..18
Publishing History...20
We Encourage Your Comments..20

1 Introduction...21
SQL Language...21
Using Trafodion SQL to Access HBase Tables...21

Initializing the Trafodion Metadata...21
Ways to Access HBase Tables...22
Trafodion SQL Tables Versus Native HBase Tables..23
Supported SQL Statements With HBase Tables...23

Using Trafodion SQL to Access Hive Tables..24
ANSI Names for Hive Tables...24
Type Mapping From Hive to Trafodion SQL...24
Supported SQL Statements With Hive Tables...24

Data Consistency and Access Options...25
READ COMMITTED..25

Transaction Management...25
User-Defined and System-Defined Transactions...26
Rules for DML Statements..26
Effect of AUTOCOMMIT Option...26
Concurrency..26
Transaction Isolation Levels..26

ANSI Compliance and Trafodion SQL Extensions..27
ANSI-Compliant Statements...27
Statements That Are Trafodion SQL Extensions...28
ANSI-Compliant Functions...28

Trafodion SQL Error Messages..29
2 SQL Statements..30

Categories...30
Data Definition Language (DDL) Statements...30
Data Manipulation Language (DML) Statements...31
Transaction Control Statements...31
Data Control and Security Statements...31
Stored Procedure and User-Defined Function Statements..32
Prepared Statements...32
Control Statements...33
Object Naming Statements...33
SHOW, GET, and EXPLAIN Statements...33

ALTER LIBRARY Statement...34
Syntax Description of ALTER LIBRARY..34
Considerations for ALTER LIBRARY..34
Examples of ALTER LIBRARY..34

ALTER TABLE Statement..36
Syntax Description of ALTER TABLE...37
Considerations for ALTER TABLE...40

Contents 3

Example of ALTER TABLE...40
ALTER USER Statement...41

Syntax Description of ALTER USER..41
Considerations for ALTER USER..41
Examples of ALTER USER..41

BEGIN WORK Statement...42
Considerations for BEGIN WORK..42
Example of BEGIN WORK..42

CALL Statement..43
Syntax Description of CALL..43
Considerations for CALL..43
Examples of CALL..44

COMMIT WORK Statement...46
Considerations for COMMIT WORK...46
Example of COMMIT WORK..46

CONTROL QUERY CANCEL Statement...47
Syntax Description of CONTROL QUERY CANCEL...47
Considerations for CONTROL QUERY CANCEL...47
Example of CONTROL QUERY CANCEL...48

CONTROL QUERY DEFAULT Statement..49
Syntax Description of CONTROL QUERY DEFAULT...49
Considerations for CONTROL QUERY DEFAULT...49
Examples of CONTROL QUERY DEFAULT..49

CREATE FUNCTION Statement...50
Syntax Description of CREATE FUNCTION..50
Considerations for CREATE FUNCTION..52
Examples of CREATE FUNCTION...52

CREATE INDEX Statement..53
Syntax Description of CREATE INDEX...53
Considerations for CREATE INDEX...54
Examples of CREATE INDEX..55

CREATE LIBRARY Statement..56
Syntax Description of CREATE LIBRARY...56
Considerations for CREATE LIBRARY...56
Examples of CREATE LIBRARY..57

CREATE PROCEDURE Statement...58
Syntax Description of CREATE PROCEDURE...58
Considerations for CREATE PROCEDURE..62
Examples of CREATE PROCEDURE...63

CREATE ROLE Statement..66
Syntax Description of CREATE ROLE...66
Considerations for CREATE ROLE...66
Examples of CREATE ROLE..66

CREATE SCHEMA Statement..67
Syntax Description of CREATE SCHEMA...67
Considerations for CREATE SCHEMA...67
Examples of CREATE SCHEMA..68

CREATE TABLE Statement...69
Syntax Description of CREATE TABLE..70
Considerations for CREATE TABLE..74
Authorization and Availability Requirements..74
Considerations for CREATE VOLATILE TABLE..75
Considerations for CREATE TABLE ... LIKE...77
Considerations for CREATE TABLE AS...78
Trafodion SQL Extensions to CREATE TABLE...78

4 Contents

Examples of CREATE TABLE...79
Examples of CREATE TABLE AS..79

CREATE VIEW Statement...81
Syntax Description of CREATE VIEW...81
Considerations for CREATE VIEW..82
Examples of CREATE VIEW...84

DELETE Statement...86
Syntax Description of DELETE...86
Considerations for DELETE...86
Examples of DELETE...87

DROP FUNCTION Statement...88
Syntax Description of DROP FUNCTION...88
Considerations for DROP FUNCTION...88
Examples of DROP FUNCTION...88

DROP INDEX Statement...89
Syntax Description of DROP INDEX..89
Considerations for DROP INDEX..89
Examples of DROP INDEX...89

DROP LIBRARY Statement...90
Syntax Description of DROP LIBRARY..90
Considerations for DROP LIBRARY..90
Examples of DROP LIBRARY..90

DROP PROCEDURE Statement..92
Syntax Description of DROP PROCEDURE...92
Considerations for DROP PROCEDURE...92
Examples of DROP PROCEDURE..92

DROP ROLE Statement...93
Syntax Description of DROP ROLE..93
Considerations for DROP ROLE..93
Before You Drop a Role..93
Active Sessions for the User...93
Examples of DROP ROLE..93

DROP SCHEMA Statement...95
Syntax Description of DROP SCHEMA..95
Considerations for DROP SCHEMA..95
Example of DROP SCHEMA..95

DROP TABLE Statement..96
Syntax Description of DROP TABLE...96
Considerations for DROP TABLE...96
Examples of DROP TABLE...96

DROP VIEW Statement..97
Syntax Description of DROP VIEW...97
Considerations for DROP VIEW...97
Example of DROP VIEW...97

EXECUTE Statement..98
Syntax Description of EXECUTE..98
Considerations for EXECUTE..99
Examples of EXECUTE..99

EXPLAIN Statement...101
Syntax Description of EXPLAIN...101
Considerations for EXPLAIN..101

GET Statement...103
Syntax Description of GET...103
Considerations for GET...104
Examples of GET...105

Contents 5

GET HBASE OBJECTS Statement...107
Syntax Description of GET HBASE OBJECTS..107
Examples of GET HBASE OBJECTS...107

GET VERSION OF METADATA Statement...109
Considerations for GET VERSION OF METADATA..109
Examples of GET VERSION OF METADATA...109

GET VERSION OF SOFTWARE Statement..110
Considerations for GET VERSION OF SOFTWARE...110
Examples of GET VERSION OF SOFTWARE..110

GRANT Statement..111
Syntax Description of GRANT..111
Considerations for GRANT..112
Examples of GRANT..112

GRANT COMPONENT PRIVILEGE Statement...114
Syntax Description of GRANT COMPONENT PRIVILEGE...114
Considerations for GRANT COMPONENT PRIVILEGE...116
Example of GRANT COMPONENT PRIVILEGE..116

GRANT ROLE Statement..117
Syntax Description of GRANT ROLE...117
Considerations for GRANT ROLE...117
Example of GRANT ROLE...117

INSERT Statement...118
Syntax Description of INSERT...118
Considerations for INSERT..118
Examples of INSERT...120

INVOKE Statement...122
Syntax Description of INVOKE ..122
Considerations for INVOKE...122
Example of INVOKE...122

MERGE Statement...123
Syntax Description of MERGE ...123
Considerations for MERGE ...123
Example of MERGE ...125

PREPARE Statement...126
Syntax Description of PREPARE...126
Considerations for PREPARE..126
Examples of PREPARE...126

REGISTER USER Statement...128
Syntax Description of REGISTER USER...128
Considerations for REGISTER USER...128
Examples of REGISTER USER...129

REVOKE Statement...130
Syntax Description of REVOKE...130
Considerations for REVOKE...131
Examples of REVOKE...131

REVOKE COMPONENT PRIVILEGE Statement..133
Syntax Description of REVOKE COMPONENT PRIVILEGE..133
Considerations for REVOKE COMPONENT PRIVILEGE..134
Example of REVOKE COMPONENT PRIVILEGE...134

REVOKE ROLE Statement...135
Syntax Description of REVOKE ROLE..135
Considerations for REVOKE ROLE..135
Examples of REVOKE ROLE...136

ROLLBACK WORK Statement...137
Syntax Description of ROLLBACK WORK...137

6 Contents

Considerations for ROLLBACK WORK...137
Example of ROLLBACK WORK..137

SELECT Statement...138
Syntax Description of SELECT..140
Considerations for SELECT..146
Considerations for Select List...148
Considerations for GROUP BY...148
Considerations for ORDER BY..148
Considerations for UNION...149
Examples of SELECT...150

SET SCHEMA Statement..156
Syntax Description of SET SCHEMA...156
Considerations for SET SCHEMA...156
Example of SET SCHEMA...156

SET TRANSACTION Statement...157
Syntax Description of SET TRANSACTION...157
Considerations for SET TRANSACTION..157
Examples of SET TRANSACTION...157

SHOWCONTROL Statement..159
Syntax Description of SHOWCONTROL...159
Example of SHOWCONTROL...159

SHOWDDL Statement...160
Syntax Description of SHOWDDL...160
Considerations for SHOWDDL...160
Examples of SHOWDDL...161

SHOWDDL SCHEMA Statement...163
Syntax Description for SHOWDDL SCHEMA...163
Considerations for SHOWDDL SCHEMA..163
Example of SHOWDDL SCHEMA..163

SHOWSTATS Statement...164
Syntax Description of SHOWSTATS..164
Considerations for SHOWSTATS..165
Examples of SHOWSTATS...165

TABLE Statement...167
Considerations for TABLE..167
Example of TABLE..167

UNREGISTER USER Statement..168
Syntax Description of UNREGISTER USER..168
Considerations for UNREGISTER USER..168
Example of UNREGISTER USER..168

UPDATE Statement..169
Syntax Description of UPDATE..169
Considerations for UPDATE...170
Examples of UPDATE..172

UPSERT Statement...173
Syntax Description of UPSERT..173
Examples of UPSERT...173

VALUES Statement...175
Considerations for VALUES..175
Examples of VALUES..175

3 SQL Utilities...176
LOAD Statement...177

Syntax Description of LOAD...177
Considerations for LOAD..178

Contents 7

Example of LOAD..179
POPULATE INDEX Utility..180

Syntax Description of POPULATE INDEX..180
Considerations for POPULATE INDEX..180
Examples of POPULATE INDEX..181

PURGEDATA Utility...182
Syntax Description of PURGEDATA...182
Considerations for PURGEDATA...182
Example of PURGEDATA...182

UNLOAD Statement..183
Syntax Description of UNLOAD..183
Considerations for UNLOAD..184
Example of UNLOAD...184

UPDATE STATISTICS Statement..186
Syntax Description of UPDATE STATISTICS...186
Considerations for UPDATE STATISTICS...189
Examples of UPDATE STATISTICS..191

4 SQL Language Elements..192
Authorization IDs..193
Character Sets...193
Columns..193

Column References...193
Derived Column Names..193
Column Default Settings..194

Constraints..195
Creating or Adding Constraints on SQL Tables..195
Constraint Names..195

Correlation Names...196
Explicit Correlation Names..196
Implicit Correlation Names..196
Examples of Correlation Names...196

Database Objects...197
Ownership..197

Database Object Names...198
Logical Names for SQL Objects...198
SQL Object Namespaces..198

Data Types..199
Comparable and Compatible Data Types..201
Character String Data Types..204
Datetime Data Types..205
Interval Data Types...207
Numeric Data Types ..209

Expressions..211
Character Value Expressions...211
Datetime Value Expressions...212
Interval Value Expressions...215
Numeric Value Expressions...218

Identifiers..221
Regular Identifiers..221
Delimited Identifiers..221
Case-Insensitive Delimited Identifiers...221
Examples of Identifiers..221

Indexes...222
SQL Indexes..222

8 Contents

Keys..223
Clustering Keys..223
SYSKEY..223
Index Keys..223
Primary Keys...223

Literals..224
Character String Literals..224
Datetime Literals..226
Interval Literals...227
Numeric Literals...229

Null..231
Using Null Versus Default Values..231
Defining Columns That Allow or Prohibit Null..231

Predicates..233
BETWEEN Predicate..233
Comparison Predicates...234
EXISTS Predicate..238
IN Predicate..239
LIKE Predicate...241
NULL Predicate..243
Quantified Comparison Predicates...244

Privileges...247
Roles...248
Schemas...249

Creating and Dropping Schemas...249
Search Condition..250

Considerations for Search Condition..250
Examples of Search Condition...251

Subquery..252
SELECT Form of a Subquery..252
Using Subqueries to Provide Comparison Values..252
Nested Subqueries When Providing Comparison Values...252
Correlated Subqueries When Providing Comparison Values...252

Tables...254
Base Tables and Views...254
Example of a Base Table..254

Views..255
SQL Views..255
Example of a View...255

5 SQL Clauses..256
DEFAULT Clause...257

Examples of DEFAULT...257
FORMAT Clause...259

Considerations for Date Formats..260
Considerations for Other Formats...260
Examples of FORMAT...260

SAMPLE Clause..261
Considerations for SAMPLE...262
Examples of SAMPLE..262

SEQUENCE BY Clause..268
Considerations for SEQUENCE BY...268
Examples of SEQUENCE BY..269

TRANSPOSE Clause...271
Considerations for TRANSPOSE...272

Contents 9

Examples of TRANSPOSE...273
6 SQL Functions and Expressions...278

Categories...278
Standard Normalization...278
Aggregate (Set) Functions...278
Character String Functions...279
Datetime Functions...280
Mathematical Functions..281
Sequence Functions..282
Other Functions and Expressions..284

ABS Function...285
Example of ABS...285

ACOS Function..286
Examples of ACOS..286

ADD_MONTHS Function...287
Examples of ADD_MONTHS...287

ASCII Function..288
Considerations for ASCII...288
Example of ASCII...288

ASIN Function..289
Examples of ASIN..289

ATAN Function...290
Examples of ATAN...290

ATAN2 Function...291
Example of ATAN2..291

AUTHNAME Function..292
Considerations for AUTHNAME...292
Example of AUTHNAME...292

AVG Function...293
Considerations for AVG..293
Examples of AVG...293

BITAND Function..295
Considerations for BITAND..295
Restrictions for BITAND...295
Examples of BITAND..295

CASE (Conditional) Expression...296
Considerations for CASE...297
Examples of CASE...297

CAST Expression..299
Considerations for CAST...299
Valid Conversions for CAST ..299
Examples of CAST...300

CEILING Function...301
Example of CEILING..301

CHAR Function...302
Considerations for CHAR..302
Example of CHAR..302

CHAR_LENGTH Function...303
Considerations for CHAR_LENGTH..303
Examples of CHAR_LENGTH...303

COALESCE Function..304
Example of COALESCE...304

CODE_VALUE Function..305
Example of CODE_VALUE Function..305

10 Contents

CONCAT Function..306
Concatenation Operator (||)..306
Considerations for CONCAT...306
Examples of CONCAT..306

CONVERTTOHEX Function...308
Considerations for CONVERTTOHEX..308
Examples of CONVERTTOHEX..308

CONVERTTIMESTAMP Function..310
Considerations for CONVERTTIMESTAMP...310
Examples of CONVERTTIMESTAMP..310

COS Function...311
Example of COS..311

COSH Function..312
Example of COSH...312

COUNT Function..313
Considerations for COUNT...313
Examples of COUNT..313

CURRENT Function...315
Example of CURRENT..315

CURRENT_DATE Function..316
Examples of CURRENT_DATE..316

CURRENT_TIME Function...317
Example of CURRENT_TIME..317

CURRENT_TIMESTAMP Function...318
Example of CURRENT_TIMESTAMP..318

CURRENT_USER Function..319
Considerations for CURRENT_USER..319
Example of CURRENT_USER...319

DATE_ADD Function..320
Examples of DATE_ADD...320

DATE_SUB Function...321
Examples of DATE_SUB..321

DATEADD Function...322
Examples of DATEADD...322

DATEDIFF Function..323
Examples of DATEDIFF..323

DATEFORMAT Function...324
Considerations for DATEFORMAT...324
Examples of DATEFORMAT...324

DATE_PART Function (of an Interval)..325
Examples of DATE_PART...325

DATE_PART Function (of a Timestamp)...326
Examples of DATE_PART...326

DATE_TRUNC Function..327
Examples of DATE_TRUNC..327

DAY Function...328
Example of DAY..328

DAYNAME Function..329
Considerations for DAYNAME...329
Example of DAYNAME...329

DAYOFMONTH Function...330
Examples of DAYOFMONTH...330

DAYOFWEEK Function..331
Example of DAYOFWEEK...331

DAYOFYEAR Function..332

Contents 11

Example of DAYOFYEAR...332
DECODE Function..333

Considerations for DECODE..333
Examples of DECODE..334

DEGREES Function..336
Examples of DEGREES..336

DIFF1 Function...337
Considerations for DIFF1..337
Examples of DIFF1...337

DIFF2 Function...339
Considerations for DIFF2..339
Examples of DIFF2...339

EXP Function..341
Examples of EXP..341

EXPLAIN Function...342
Considerations for EXPLAIN Function..342
Examples of EXPLAIN Function...344

EXTRACT Function..345
Examples of EXTRACT..345

FLOOR Function...346
Examples of FLOOR...346

HOUR Function..347
Example of HOUR...347

INSERT Function...348
Examples of INSERT...348

ISNULL Function...349
Examples of ISNULL...349

JULIANTIMESTAMP Function...350
Considerations for JULIANTIMESTAMP..350
Examples of JULIANTIMESTAMP..350

LASTNOTNULL Function..351
Example of LASTNOTNULL..351

LCASE Function..352
Example of LCASE...352

LEFT Function...353
Examples of LEFT...353

LOCATE Function..354
Considerations for LOCATE...354
Examples of LOCATE..354

LOG Function...355
Example of LOG..355

LOG10 Function...356
Example of LOG10..356

LOWER Function...357
Considerations for LOWER..357
Example of LOWER..357

LPAD Function..358
Examples of LPAD..358

LTRIM Function...359
Considerations for LTRIM...359
Example of LTRIM...359

MAX/MAXIMUM Function...360
Considerations for MAX/MAXIMUM..360
Example of MAX/MAXIMUM..360

MIN Function...361

12 Contents

Considerations for MIN..361
Example of MIN..361

MINUTE Function...362
Example of MINUTE...362

MOD Function...363
Example of MOD...363

MONTH Function...364
Example of MONTH..364

MONTHNAME Function..365
Considerations for MONTHNAME...365
Example of MONTHNAME...365

MOVINGAVG Function...366
Example of MOVINGAVG..366

MOVINGCOUNT Function..367
Considerations for MOVINGCOUNT...367
Example of MOVINGCOUNT...367

MOVINGMAX Function...368
Example of MOVINGMAX..368

MOVINGMIN Function...369
Example of MOVINGMIN..369

MOVINGSTDDEV Function..370
Example of MOVINGSTDDEV...370

MOVINGSUM Function...372
Example of MOVINGSUM..372

MOVINGVARIANCE Function..373
Example of MOVINGVARIANCE...373

NULLIF Function..375
Example of NULLIF...375

NULLIFZERO Function...376
Examples of NULLIFZERO...376

NVL Function...377
Examples of NVL...377

OCTET_LENGTH Function..378
Considerations for OCTET_LENGTH...378
Example of OCTET_LENGTH...378

OFFSET Function...379
Example of OFFSET..379

PI Function...380
Example of PI..380

POSITION Function...381
Considerations for POSITION..381
Examples of POSITION...381

POWER Function..382
Examples of POWER..382

QUARTER Function...383
Example of QUARTER...383

RADIANS Function..384
Examples of RADIANS...384

RANK/RUNNINGRANK Function..385
Considerations for RANK/RUNNINGRANK..385
Examples of RANK/RUNNINGRANK..385

REPEAT Function...388
Example of REPEAT..388

REPLACE Function...389
Example of REPLACE..389

Contents 13

RIGHT Function..390
Examples of RIGHT..390

ROUND Function..391
Examples of ROUND..391

ROWS SINCE Function...392
Considerations for ROWS SINCE...392
Examples of ROWS SINCE...392

ROWS SINCE CHANGED Function..394
Considerations for ROWS SINCE CHANGED...394
Examples of ROWS SINCE CHANGED..394

RPAD Function..395
Examples of RPAD Function...395

RTRIM Function...396
Considerations for RTRIM..396
Example of RTRIM..396

RUNNINGAVG Function...397
Considerations for RUNNINGAVG...397
Example of RUNNINGAVG..397

RUNNINGCOUNT Function..398
Considerations for RUNNINGCOUNT..398
Example of RUNNINGCOUNT...398

RUNNINGMAX Function...399
Example of RUNNINGMAX..399

RUNNINGMIN Function..400
Example of RUNNINGMIN...400

RUNNINGRANK Function...400
RUNNINGSTDDEV Function...401

Considerations for RUNNINGSTDDEV..401
Examples of RUNNINGSTDDEV..401

RUNNINGSUM Function...402
Example of RUNNINGSUM..402

RUNNINGVARIANCE Function..403
Examples of RUNNINGVARIANCE..403

SECOND Function..404
Example of SECOND...404

SIGN Function...405
Examples of SIGN...405

SIN Function..406
Example of SIN...406

SINH Function..407
Example of SINH...407

SPACE Function..408
Example of SPACE...408

SQRT Function..409
Example of SQRT...409

STDDEV Function..410
Considerations for STDDEV...410
Examples of STDDEV..411

SUBSTRING/SUBSTR Function..412
Alternative Forms...412
Considerations for SUBSTRING/SUBSTR...412
Examples of SUBSTRING/SUBSTR..413

SUM Function..414
Considerations for SUM..414
Example of SUM..414

14 Contents

TAN Function...415
Example of TAN..415

TANH Function...416
Example of TANH..416

THIS Function...417
Considerations for THIS..417
Example of THIS..417

TIMESTAMPADD Function..418
Examples of TIMESTAMPADD..418

TIMESTAMPDIFF Function...419
Examples of TIMESTAMPDIFF...419

TRANSLATE Function...420
TRIM Function..421

Considerations for TRIM..421
Examples of TRIM..421

UCASE Function...422
Considerations for UCASE..422
Examples of UCASE...422

UPPER Function..423
Example of UPPER..423

UPSHIFT Function..424
Examples of UPSHIFT...424

USER Function..425
Considerations for USER...425
Examples of USER..425

VARIANCE Function..426
Considerations for VARIANCE...426
Examples of VARIANCE..427

WEEK Function..428
Example of WEEK...428

YEAR Function..429
Example of YEAR...429

ZEROIFNULL Function...430
Example of ZEROIFNULL...430

7 OLAP Functions..431
Considerations for Window Functions..431

ORDER BY Clause Supports Expressions For OLAP Functions..431
Limitations for Window Functions...432

AVG Window Function..433
Examples of AVG Window Function...433

COUNT Window Function...434
Examples of COUNT Window Function..434

DENSE_RANK Window Funtion...435
Examples of DENSE_RANK Window Function...435

MAX Window Function...435
Examples of MAX Window Function...436

MIN Window Function..436
Examples of MIN Window Function...437

RANK Window Function...437
Examples of RANK Window Function...438

ROW_NUMBER Window Function..438
Examples of ROW_NUMBER Window Function...438

STDDEV Window Function...438
Examples of STDDEV..439

Contents 15

SUM Window Function...439
Examples of SUM Window Function...440

VARIANCE Window Function...440
Examples of VARIANCE Window Function..441

8 SQL Runtime Statistics...442
PERTABLE and OPERATOR Statistics..442
Adaptive Statistics Collection..442
Retrieving SQL Runtime Statistics...443

Using the GET STATISTICS Command...443
Displaying SQL Runtime Statistics..447

Examples of Displaying SQL Runtime Statistics...451
Using the Parent Query ID...455
Child Query ID..456

Gathering Statistics About RMS ...457
Using the QUERYID_EXTRACT Function..459

Syntax of QUERYID_EXTRACT..459
Examples of QUERYID_EXTRACT..459

Statistics for Each Fragment-Instance of an Active Query..460
Syntax of STATISTICS Table-Valued Function...460
Considerations For Obtaining Statistics For Each Fragment-Instance of an Active Query.............460

A Reserved Words...462
Reserved Trafodion SQL Identifiers ...462

B Control Query Default (CQD) Attributes...466
HBase Environment CQDs...466

HBASE_INTERFACE..466
Hive Environment CQDs..466

HIVE_MAX_STRING_LENGTH...466
Managing Histograms...466

CACHE_HISTOGRAMS_REFRESH_INTERVAL...466
HIST_NO_STATS_REFRESH_INTERVAL..467
HIST_PREFETCH...467
HIST_ROWCOUNT_REQUIRING_STATS...468

Optimizer..468
JOIN_ORDER_BY_USER..468
MDAM_SCAN_METHOD...469
SUBQUERY_UNNESTING...469

Managing Schemas..470
SCHEMA..470

Transaction Control and Locking...470
BLOCK_TO_PREVENT_HALLOWEEN..470
UPD_ORDERED...471

C Limits..472
Index...473

16 Contents

About This Document
This manual describes reference information about the syntax of SQL statements, functions, and
other SQL language elements supported by the Trafodion project’s database software.
Trafodion SQL statements and utilities are entered interactively or from script files using a client-based
tool, such as the Trafodion Command Interface (TrafCI). To install and configure a client application
that enables you to connect to and use a Trafodion database, see the Trafodion Client Installation
Guide.

NOTE: In this manual, SQL language elements, statements, and clauses within statements are
based on the ANSI SQL:1999 standard.

Intended Audience
This manual is intended for database administrators and application programmers who are using
SQL to read, update, and create Trafodion SQL tables, which map to HBase tables, and to access
native HBase and Hive tables.
You should be familiar with structured query language (SQL) and with the American National
Standard Database Language SQL:1999.

New and Changed Information in This Edition
This edition includes updates for these new features:

Location in the ManualNew Feature

• “OLAP Functions” (page 431)On Line Analytical Process (OLAP) window functions

• “CONTROL QUERY CANCEL Statement” (page 47)Ability to cancel DDL, update statistics, and additional child
query operations in addition to DML statements

• “CONTROL QUERY CANCEL Statement” (page 47)Authorization required to run the CONTROL QUERY
CANCEL Statement

Ability to grant privileges on behalf of a role using the
GRANTED BY clause.

• “GRANT COMPONENT PRIVILEGE Statement”
(page 114)

• “GRANT Statement” (page 111)

Authorization required for all SHOWDDL commands • “SHOWDDL Statement” (page 160)

• “SHOWDDL SCHEMA Statement” (page 163)

• “SHOWDDL Statement” (page 160)Ability to display the DDL syntax of a library object using
the SHOWDDL LIBRARY command

• “GET HBASE OBJECTS Statement” (page 107)Listing of HBase objects using the GET HBASE OBJECTS
command through an SQL interface

Document Organization

DescriptionChapter or Appendix

Introduces Trafodion SQL and covers topics such as data
consistency, transaction management, and ANSI
compliance.

Chapter 1: “Introduction” (page 21)

Describes the SQL statements supported by Trafodion SQL.Chapter 2: “SQL Statements” (page 30)

Describes the SQL utilities supported by Trafodion SQL.Chapter 3: “SQL Utilities” (page 176)

Intended Audience 17

DescriptionChapter or Appendix

Describes parts of the language, such as database objects,
data types, expressions, identifiers, literals, and predicates,
which occur within the syntax of Trafodion SQL statements.

Chapter 4: “SQL Language Elements” (page 192)

Describes clauses used by Trafodion SQL statements.Chapter 5: “SQL Clauses” (page 256)

Describes specific functions and expressions that you can
use in Trafodion SQL statements.

Chapter 6: “SQL Functions and Expressions” (page 278)

Describes how to gather statistics for active queries or for
the Runtime Management System (RMS) and describes the
RMS counters that are returned.

Chapter 8: “SQL Runtime Statistics” (page 442)

Describes specific on line analytical processing functions.Chapter 7: “OLAP Functions” (page 431)

Lists the words that are reserved in Trafodion SQL.Appendix A: “Reserved Words” (page 462)

Describes the Control Query Default (CQD) attributes that
are supported in a Trafodion SQL environment.

Appendix B: “Control Query Default (CQD) Attributes”
(page 466)

Describes limits in Trafodion SQL.Appendix C: “Limits” (page 472)

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
SELECT

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters within text indicate case-sensitive keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For example:

myfile.sh

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:

DATETIME [start-field TO] end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of

18

the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

DROP VIEW view [RESTRICT]
 [CASCADE]

DROP VIEW view [RESTRICT | CASCADE]

{ } Braces
Braces enclose required syntax items. For example:

FROM { grantee[, grantee]...}

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:

INTERVAL { start-field TO end-field }
 { single-field }

INTERVAL { start-field TO end-field | single-field }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

{expression | NULL}

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:

ATTRIBUTE[S] attribute [, attribute]...

{, sql-expression}...

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:

expression-n…

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

DAY (datetime-expression)

@script-file

Quotation marks around a symbol such as a bracket or brace indicate that the symbol is a
required character that you must type as shown. For example:

"[" ANY N "]" | "[" FIRST N "]"

According to the previous syntax, you must include square brackets around ANY and FIRST
clauses (for example, [ANY 10] or [FIRST 5]). Do not include the quotation marks.

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:

Notation Conventions 19

DAY (datetime-expression)

DAY(datetime-expression)

If no space exists between two items, spaces are not permitted. In this example, no spaces are
permitted between the period and any other items:

myfile.sh

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:

match-value [NOT] LIKE pattern

 [ESCAPE esc-char-expression]

Publishing History

Publication DateProduct VersionPart Number

April 2015Trafodion Release 1.1.0T775-110-001

January 2015Trafodion Release 1.0.0T775-100-001

October 2014Trafodion Release 0.9.0 BetaT775-090-001

August 2014Trafodion Release 0.8.0 BetaT775-080-003
This edition of the manual includes updates to address
Launchpad bug 1354228. See the “CREATE TABLE
Statement” (page 69).

August 2014Trafodion Release 0.8.0 BetaT775-080-002
This edition of the manual includes updates to address
Launchpad bug 1352479. See the “SELECT Statement”
(page 138).

June 2014Trafodion Release 0.8.0 BetaT775-080-001

We Encourage Your Comments
The Trafodion community encourages your comments concerning this document. We are committed
to providing documentation that meets your needs. Send any errors found, suggestions for
improvement, or compliments to:
trafodion-documentation@lists.launchpad.net
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

20

https://bugs.launchpad.net/bugs/1354228
https://bugs.launchpad.net/bugs/1352479
mailto:trafodion-documentation@lists.launchpad.net

1 Introduction
The Trafodion SQL database software allows you to use SQL statements, which comply closely to
ANSI SQL:1999, to access data in Trafodion SQL tables, which map to HBase tables, and to
access native HBase tables and Hive tables.
This introduction describes:

• “SQL Language”

• “Using Trafodion SQL to Access HBase Tables”

• “Using Trafodion SQL to Access Hive Tables”

• “Data Consistency and Access Options”

• “Transaction Management”

• “ANSI Compliance and Trafodion SQL Extensions”

• “Trafodion SQL Error Messages”
Other sections of this manual describe the syntax and semantics of individual statements, commands,
and language elements.

SQL Language
The SQL language consists of statements and other language elements that you can use to access
SQL databases. For descriptions of individual SQL statements, see Chapter 2: “SQL Statements”
(page 30).
SQL language elements are part of statements and commands and include data types, expressions,
functions, identifiers, literals, and predicates. For more information, see Chapter 4: “SQL Language
Elements” (page 192) and Chapter 5: “SQL Clauses” (page 256). For information on specific functions
and expressions, see Chapter 6: “SQL Functions and Expressions” (page 278) and Chapter 7:
“OLAP Functions” (page 431).

Using Trafodion SQL to Access HBase Tables
You can use Trafodion SQL statements to read, update, and create HBase tables.

• “Initializing the Trafodion Metadata” (page 21)

• “Ways to Access HBase Tables” (page 22)

• “Trafodion SQL Tables Versus Native HBase Tables” (page 23)

• “Supported SQL Statements With HBase Tables” (page 23)
For a list of Control Query Default (CQD) settings for the HBase environment, see “HBase
Environment CQDs” (page 466).

Initializing the Trafodion Metadata
Before using SQL statements for the first time to access HBase tables, you will need to initialize the
Trafodion metadata. To initialize the Trafodion metadata, run this command:
initialize trafodion;

SQL Language 21

Ways to Access HBase Tables
Trafodion SQL supports these ways to access HBase tables:

• “Accessing Trafodion SQL Tables” (page 22)

• “Cell-Per-Row Access to HBase Tables (Technology Preview)” (page 22)

• “Rowwise Access to HBase Tables (Technology Preview)” (page 23)

Accessing Trafodion SQL Tables
A Trafodion SQL table is a relational SQL table generated by a CREATE TABLE statement and
mapped to an HBase table. Trafodion SQL tables have regular ANSI names in the catalog
TRAFODION. A Trafodion SQL table name can be a fully qualified ANSI name of the form
TRAFODION.schema-name.object-name.
To access a Trafodion SQL table, specify its ANSI table name in a Trafodion SQL statement, similar
to how you would specify an ANSI table name when running SQL statements in a relational
database. For example:
CREATE TABLE trafodion.sales.odetail
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum));

INSERT INTO trafodion.sales.odetail VALUES (900000, 7301, 425.00, 100);

SET SCHEMA trafodion.sales;
SELECT * FROM odetail;

For more information about Trafodion SQL tables, see “Trafodion SQL Tables Versus Native HBase
Tables” (page 23) and “Tables” (page 254).

Cell-Per-Row Access to HBase Tables (Technology Preview)

NOTE: This is a Technology Preview (Complete But Not Tested) feature, meaning that it is
functionally complete but has not been tested or debugged. For more information about what
Technology Preview means, see the Technology Preview Features page on the Trafodion wiki.

To access HBase data using cell-per-row mode, specify the schema HBASE."_CELL_" and the
full ANSI name of the table as a delimited table name. You can specify the name of any HBase
table, regardless of whether it was created through Trafodion SQL. For example:
select * from hbase."_CELL_"."TRAFODION.MYSCH.MYTAB";
select * from hbase."_CELL_"."table_created_in_HBase";

All tables accessed through this schema have the same column layout:
>>invoke hbase."_CELL_"."table_created_in_HBase";
 (
 ROW_ID VARCHAR(100) ...
 , COL_FAMILY VARCHAR(100) ...
 , COL_NAME VARCHAR(100) ...
 , COL_TIMESTAMP LARGEINT ...
 , COL_VALUE VARCHAR(1000) ...
)
 PRIMARY KEY (ROW_ID)
>>select * from hbase."_CELL_"."mytab";

22 Introduction

https://wiki.trafodion.org/wiki/index.php/Technology_Preview_Features

Rowwise Access to HBase Tables (Technology Preview)

NOTE: This is a Technology Preview (Complete But Not Tested) feature, meaning that it is
functionally complete but has not been tested or debugged. For more information about what
Technology Preview means, see the Technology Preview Features page on the Trafodion wiki.

To access HBase data using rowwise mode, specify the schema HBASE."_ROW_" and the full
ANSI name of the table as a delimited table name. You can specify the name of any HBase table,
regardless of whether it was created through Trafodion SQL. For example:
select * from hbase."_ROW_"."TRAFODION.MYSCH.MYTAB";
select * from hbase."_ROW_"."table_created_in_HBase";

All column values of the row are returned as a single, big varchar:
>>invoke hbase."_ROW_"."mytab";
 (
 ROW_ID VARCHAR(100) ...
 , COLUMN_DETAILS VARCHAR(10000) ...
)
 PRIMARY KEY (ROW_ID)
>>select * from hbase."_ROW_"."mytab";

Trafodion SQL Tables Versus Native HBase Tables
Trafodion SQL tables have many advantages over regular HBase tables:

• They can be made to look like regular, structured SQL tables with fixed columns.

• They support the usual SQL data types supported in relational databases.

• They support compound keys, unlike HBase tables that have a single row key (a string).

• They support indexes.

• They support salting, which is a technique of adding a hash value of the row key as a key
prefix to avoid hot spots for sequential keys. For the syntax, see the “CREATE TABLE Statement”
(page 69).

The problem with Trafodion SQL tables is that they use a fixed format to represent column values,
making it harder for native HBase applications to access them. Also, they have a fixed structure,
so users lose the flexibility of dynamic columns that comes with HBase.

Supported SQL Statements With HBase Tables
You can use these SQL statements with HBase tables:

• “SELECT Statement” (page 138)

• “INSERT Statement” (page 118)

• “UPDATE Statement” (page 169)

• “DELETE Statement” (page 86)

• “MERGE Statement” (page 123)

• “GET Statement” (page 103)

• “INVOKE Statement” (page 122)

• “ALTER TABLE Statement” (page 36)

• “CREATE INDEX Statement” (page 53)

• “CREATE TABLE Statement” (page 69)

• “CREATE VIEW Statement” (page 81)

• “DROP INDEX Statement” (page 89)

Using Trafodion SQL to Access HBase Tables 23

https://wiki.trafodion.org/wiki/index.php/Technology_Preview_Features

• “DROP TABLE Statement” (page 96)

• “DROP VIEW Statement” (page 97)

• “GRANT Statement” (page 111)

• “REVOKE Statement” (page 130)

Using Trafodion SQL to Access Hive Tables
You can use Trafodion SQL statements to access Hive tables.

• “ANSI Names for Hive Tables” (page 24)

• “Type Mapping From Hive to Trafodion SQL” (page 24)

• “Supported SQL Statements With Hive Tables” (page 24)
For a list of Control Query Default (CQD) settings for the Hive environment, see “Hive Environment
CQDs” (page 466).

ANSI Names for Hive Tables
Hive tables appear in the Trafodion Hive ANSI namespace in a special catalog and schema named
HIVE.HIVE.
To select from a Hive table named T, specify an implicit or explicit name, such as HIVE.HIVE.T, in
a Trafodion SQL statement. This example should work if a Hive table named T has already been
defined:
set schema hive.hive;
cqd hive_max_string_length '20'; -- creates a more readable display
select * from t; -- implicit table name
set schema trafodion.seabase;
select * from hive.hive.t; -- explicit table name

Type Mapping From Hive to Trafodion SQL
Trafodion performs the following data-type mappings:

Trafodion SQL TypeHive Type

smallinttinyint

smallintsmallint

intint

largeintbigint

varchar(n bytes) character set utf81string

realfloat

float(54)double

timestamp(6)2timestamp
1 The value n is determined by CQD HIVE_MAX_STRING_LENGTH. See “Hive Environment CQDs” (page 466).
2 Hive supports timestamps with nanosecond resolution (precision of 9). Trafodion SQL supports only microsecond resolution

(precision 6).

Supported SQL Statements With Hive Tables
You can use these SQL statements with Hive tables:

• “SELECT Statement” (page 138)

• “LOAD Statement” (page 177)

24 Introduction

• GET TABLES (See the “GET Statement” (page 103).)

• “INVOKE Statement” (page 122)

Data Consistency and Access Options
Access options for DML statements affect the consistency of the data that your query accesses.
For any DML statement, you specify access options by using the FOR option ACCESS clause
and, for a SELECT statement, by using this same clause, you can also specify access options for
individual tables and views referenced in the FROM clause.
The possible settings for option in a DML statement are:

Specifies that the data accessed by the DML statement must
be from committed rows.

“READ COMMITTED”

The SQL default access option for DML statements is READ COMMITTED.
For related information about transactions, see “Transaction Isolation Levels” (page 26).

READ COMMITTED
This option allows you to access only committed data.
The implementation requires that a lock can be acquired on the data requested by the DML
statement—but does not actually lock the data, thereby reducing lock request conflicts. If a lock
cannot be granted (implying that the row contains uncommitted data), the DML statement request
waits until the lock in place is released.
READ COMMITTED provides the next higher level of data consistency (compared to READ
UNCOMMITTED). A statement executing with this access option does not allow dirty reads, but
both nonrepeatable reads and phantoms are possible.
READ COMMITTED provides sufficient consistency for any process that does not require a repeatable
read capability.
READ COMMITTED is the default isolation level.

Transaction Management
A transaction (a set of database changes that must be completed as a group) is the basic recoverable
unit in case of a failure or transaction interruption. Transactions are controlled through client tools
that interact with the database using ODBC or JDBC. The typical order of events is:
1. Transaction is started.
2. Database changes are made.
3. Transaction is committed.
If, however, the changes cannot be made or if you do not want to complete the transaction, you
can abort the transaction so that the database is rolled back to its original state.
This subsection discusses these considerations for transaction management:

• “User-Defined and System-Defined Transactions” (page 26)

• “Rules for DML Statements” (page 26)

• “Effect of AUTOCOMMIT Option” (page 26)

• “Concurrency” (page 26)

• “Transaction Isolation Levels” (page 26)

Data Consistency and Access Options 25

User-Defined and System-Defined Transactions

User-Defined Transactions
Transactions you define are called user-defined transactions. To be sure that a sequence of statements
executes successfully or not at all, you can define one transaction consisting of these statements
by using the BEGIN WORK statement and COMMIT WORK statement. You can abort a transaction
by using the ROLLBACK WORK statement. If AUTOCOMMIT is on, you do not have to end the
transaction explicitly as Trafodion SQL will end the transaction automatically. Sometimes an error
occurs that requires the user-defined transaction to be aborted. Trafodion SQL will automatically
abort the transaction and return an error indicating that the transaction was rolled back.

System-Defined Transactions
In some cases, Trafodion SQL defines transactions for you. These transactions are called
system-defined transactions. Most DML statements initiate transactions implicitly at the start of
execution. See “Implicit Transactions” (page 157). However, even if a transaction is initiated
implicitly, you must end a transaction explicitly with the COMMIT WORK statement or the ROLLBACK
WORK statement. If AUTOCOMMIT is on, you do not need to end a transaction explicitly.

Rules for DML Statements
If deadlock occurs, the DML statement times out and receives an error.

Effect of AUTOCOMMIT Option
AUTOCOMMIT is an option that can be set in a SET TRANSACTION statement. It specifies whether
Trafodion SQL will commit automatically, or roll back if an error occurs, at the end of statement
execution. This option applies to any statement for which the system initiates a transaction. See
“SET TRANSACTION Statement” (page 157).
If this option is set to ON, Trafodion SQL automatically commits any changes, or rolls back any
changes, made to the database at the end of statement execution.

Concurrency
Concurrency is defined by two or more processes accessing the same data at the same time. The
degree of concurrency available—whether a process that requests access to data that is already
being accessed is given access or placed in a wait queue—depends on the purpose of the access
mode (read or update) and the isolation level. Currently, the only isolation level is READ
COMMITTED.
Trafodion SQL provides concurrent database access for most operations and controls database
access through concurrency control and the mechanism for opening and closing tables. For DML
operations, the access option affects the degree of concurrency. See “Data Consistency and Access
Options” (page 25).

Transaction Isolation Levels
A transaction has an isolation level that is “READ COMMITTED”.

READ COMMITTED
This option, which is ANSI compliant, allows your transaction to access only committed data.
No row locks are acquired when READ COMMITTED is the specified isolation level.
READ COMMITTED provides the next level of data consistency. A transaction executing with this
isolation level does not allow dirty reads, but both nonrepeatable reads and phantoms are possible.
READ COMMITTED provides sufficient consistency for any transaction that does not require a
repeatable-read capability.
The default isolation level is READ COMMITTED.

26 Introduction

ANSI Compliance and Trafodion SQL Extensions
Trafodion SQL complies most closely with Core SQL 99. Trafodion SQL also includes some features
from SQL 99 and part of the SQL 2003 standard, and special Trafodion SQL extensions to the
SQL language.
Statements and SQL elements in this manual are ANSI compliant unless specified as Trafodion
SQL extensions.

ANSI-Compliant Statements
These statements are ANSI compliant, but some might contain Trafodion SQL extensions:

• ALTER TABLE statement

• CALL statement

• COMMIT WORK statement

• CREATE FUNCTION statement

• CREATE PROCEDURE statement

• CREATE ROLE statement

• CREATE SCHEMA statement

• CREATE TABLE statement

• CREATE VIEW statement

• DELETE statement

• DROP FUNCTION statement

• DROP PROCEDURE statement

• DROP ROLE statement

• DROP SCHEMA statement

• DROP TABLE statement

• DROP VIEW statement

• EXECUTE statement

• GRANT statement

• GRANT ROLE statement

• INSERT statement

• MERGE statement

• PREPARE statement

• REVOKE statement

• REVOKE ROLE statement

• ROLLBACK WORK statement

• SELECT statement

• SET SCHEMA statement

• SET TRANSACTION statement

• TABLE statement

• UPDATE statement

• VALUES statement

ANSI Compliance and Trafodion SQL Extensions 27

Statements That Are Trafodion SQL Extensions
These statements are Trafodion SQL extensions to the ANSI standard.

• ALTER LIBRARY statement

• ALTER USER statement

• BEGIN WORK statement

• CONTROL QUERY CANCEL statement

• CONTROL QUERY DEFAULT statement

• CREATE INDEX statement

• CREATE LIBRARY statement

• DROP INDEX statement

• DROP LIBRARY statement

• EXPLAIN statement

• GET statement

• GET HBASE OBJECTS statement

• GET VERSION OF METADATA statement

• GET VERSION OF SOFTWARE statement

• GRANT COMPONENT PRIVILEGE statement

• INVOKE statement

• LOAD statement

• REGISTER USER statement

• REVOKE COMPONENT PRIVILEGE statement

• SHOWCONTROL statement

• SHOWDDL statement

• SHOWDDL SCHEMA statement

• SHOWSTATS statement

• UNLOAD statement

• UNREGISTER USER statement

• UPDATE STATISTICS statement

• UPSERT statement

ANSI-Compliant Functions
These functions are ANSI compliant, but some might contain Trafodion SQL extensions:

• AVG function

• CASE expression

• CAST expression

• CHAR_LENGTH

• COALESCE

• COUNT Function

• CURRENT

28 Introduction

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• CURRENT_USER

• EXTRACT

• LOWER

• MAX

• MIN

• NULLIF

• OCTET_LENGTH

• POSITION

• SESSION_USER

• SUBSTRING

• SUM

• TRIM

• UPPER
All other functions are Trafodion SQL extensions.

Trafodion SQL Error Messages
Trafodion SQL reports error messages and exception conditions. When an error condition occurs,
Trafodion SQL returns a message number and a brief description of the condition. For example,
Trafodion SQL might display this error message:

*** ERROR[1000] A syntax error occurred.

The message number is the SQLCODE value (without the sign). In this example, the SQLCODE
value is 1000.

Trafodion SQL Error Messages 29

2 SQL Statements
This section describes the syntax and semantics of Trafodion SQL statements.
Trafodion SQL statements are entered interactively or from script files using a client-based tool,
such as the Trafodion Command Interface (TrafCI). To install and configure a client application
that enables you to connect to and use a Trafodion database, see the Trafodion Client Installation
Guide.

Categories
The statements are categorized according to their functionality:

• “Data Definition Language (DDL) Statements”

• “Data Manipulation Language (DML) Statements”

• “Transaction Control Statements”

• “Data Control and Security Statements”

• “Stored Procedure and User-Defined Function Statements”

• “Prepared Statements”

• “Control Statements”

• “Object Naming Statements”

• “SHOW, GET, and EXPLAIN Statements”

Data Definition Language (DDL) Statements
Use these DDL statements to create, drop, or alter the definition of a Trafodion SQL schema or
object.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)
for the session.

Updates the physical filename for a library object in a
Trafodion database.

“ALTER LIBRARY Statement” (page 34)

Changes a table.“ALTER TABLE Statement” (page 36)

Changes attributes for a user.“ALTER USER Statement” (page 41)

Registers a user-defined function (UDF) written in C as a
function within a Trafodion database.

“CREATE FUNCTION Statement” (page 50)

Creates an index on a table.“CREATE INDEX Statement” (page 53)

Registers a library object in a Trafodion database.“CREATE LIBRARY Statement” (page 56)

Registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

“CREATE PROCEDURE Statement” (page 58)

Creates a role.“CREATE ROLE Statement” (page 66)

Creates a schema in the database.“CREATE SCHEMA Statement” (page 67)

Creates a table.“CREATE TABLE Statement” (page 69)

Creates a view.“CREATE VIEW Statement” (page 81)

Removes a user-defined function (UDF) from the Trafodion
database.

“DROP FUNCTION Statement” (page 88)

Drops an index.“DROP INDEX Statement” (page 89)

30 SQL Statements

Removes a library object from the Trafodion database and
also removes the library file referenced by the library object.

“DROP LIBRARY Statement” (page 90)

Removes a stored procedure in Java (SPJ) from the Trafodion
database.

“DROP PROCEDURE Statement” (page 92)

Drops a role.“DROP ROLE Statement” (page 93)

Drops a schema from the database.“DROP SCHEMA Statement” (page 95)

Drops a table.“DROP TABLE Statement” (page 96)

Drops a view.“DROP VIEW Statement” (page 97)

Registers a user in the SQL database, associating the user's
login name with a database username.

“REGISTER USER Statement” (page 128)

Removes a database username from the SQL database.“UNREGISTER USER Statement” (page 168)

Data Manipulation Language (DML) Statements
Use these DML statements to delete, insert, select, or update rows in one or more tables:

Deletes rows from a table or view.“DELETE Statement” (page 86)

Inserts data into tables and views.“INSERT Statement” (page 118)

Either performs an upsert operation (that is, updates a table
if the row exists or inserts into a table if the row does not

“MERGE Statement” (page 123)

exist) or updates (merges) matching rows from one table
to another.

Retrieves data from tables and views.“SELECT Statement” (page 138)

Equivalent to the query specification SELECT * FROM
table

“TABLE Statement” (page 167)

Updates values in columns of a table or view.“UPDATE Statement” (page 169)

Updates a table if the row exists or inserts into a table if
the row does not exist.

“UPSERT Statement” (page 173)

Displays the results of the evaluation of the expressions and
the results of row subqueries within the row value
constructors.

“VALUES Statement” (page 175)

Transaction Control Statements
Use these statements to specify user-defined transactions and to set attributes for the next transaction:

Starts a transaction.“BEGIN WORK Statement” (page 42)

Commits changes made during a transaction and ends the
transaction.

“COMMIT WORK Statement” (page 46)

Undoes changes made during a transaction and ends the
transaction.

“ROLLBACK WORK Statement” (page 137)

Sets attributes for the next SQL transaction — whether to
automatically commit database changes.

“SET TRANSACTION Statement” (page 157)

Data Control and Security Statements
Use these statements to register users, create roles, and grant and revoke privileges:

Changes attributes associated with a user who is registered
in the database.

“ALTER USER Statement” (page 41)

Creates an SQL role.“CREATE ROLE Statement” (page 66)

Deletes an SQL role.“DROP ROLE Statement” (page 93)

Categories 31

Grants access privileges on an SQL object to specified users
or roles.

“GRANT Statement” (page 111)

Grants one or more component privileges to a user or role.“GRANT COMPONENT PRIVILEGE Statement” (page 114)

Grants one or more roles to a user.“GRANT ROLE Statement” (page 117)

Registers a user in the SQL database, associating the user's
login name with a database username.

“REGISTER USER Statement” (page 128)

Revokes access privileges on an SQL object from specified
users or roles.

“REVOKE Statement” (page 130)

Removes one or more component privileges from a user or
role.

“REVOKE COMPONENT PRIVILEGE Statement” (page 133)

Removes one or more roles from a user.“REVOKE ROLE Statement” (page 135)

Removes a database username from the SQL database.“UNREGISTER USER Statement” (page 168)

Stored Procedure and User-Defined Function Statements
Use these statements to create and execute stored procedures in Java (SPJs) or create user-defined
functions (UDFs) and to modify authorization to access libraries or to execute SPJs or UDFs:

Updates the physical filename for a library object in a
Trafodion database.

“ALTER LIBRARY Statement” (page 34)

Initiates the execution of a stored procedure in Java (SPJ)
in a Trafodion database.

“CALL Statement” (page 43)

Registers a user-defined function (UDF) written in C as a
function within a Trafodion database.

“CREATE FUNCTION Statement” (page 50)

Registers a library object in a Trafodion database.“CREATE LIBRARY Statement” (page 56)

Registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

“CREATE PROCEDURE Statement” (page 58)

Removes a user-defined function (UDF) from the Trafodion
database.

“DROP FUNCTION Statement” (page 88)

Removes a library object from the Trafodion database and
also removes the library file referenced by the library object.

“DROP LIBRARY Statement” (page 90)

Removes a stored procedure in Java (SPJ) from the Trafodion
database.

“DROP PROCEDURE Statement” (page 92)

Grants privileges for accessing a library object or executing
an SPJ or UDF to specified users.

“GRANT Statement” (page 111)

Revokes privileges for accessing a library object or
executing an SPJ or UDF from specified users.

“REVOKE Statement” (page 130)

Prepared Statements
Use these statements to prepare and execute an SQL statement:

Executes an SQL statement previously compiled by a
PREPARE statement.

“EXECUTE Statement” (page 98)

Compiles an SQL statement for later use with the EXECUTE
statement in the same session.

“PREPARE Statement” (page 126)

32 SQL Statements

Control Statements
Use these statements to control the execution, default options, plans, and performance of DML
statements:

Cancels an executing query that you identify with a query
ID.

“CONTROL QUERY CANCEL Statement” (page 47)

Changes a default attribute to influence a query plan.“CONTROL QUERY DEFAULT Statement” (page 49)

Object Naming Statements
Use this statements to specify default ANSI names for the schema:

Sets the default ANSI schema for unqualified object names
for the current session.

“SET SCHEMA Statement” (page 156)

SHOW, GET, and EXPLAIN Statements
Use these statements to display information about database objects or query execution plans:

Displays information contained in the query execution plan.“EXPLAIN Statement” (page 101)

Displays the names of database objects, components,
component privileges, roles, or users that exist in the
Trafodion instance.

“GET Statement” (page 103)

Displays a list of HBase objects through an SQL interface“GET HBASE OBJECTS Statement” (page 107)

Displays the version of the metadata in the Trafodion
instance and indicates if the metadata is current.

“GET VERSION OF METADATA Statement” (page 109)

Displays the version of the Trafodion software that is
installed on the system and indicates if it is current.

“GET VERSION OF SOFTWARE Statement” (page 110)

Generates a record description that corresponds to a row
in the specified table or view.

“INVOKE Statement” (page 122)

Displays the CONTROL QUERY DEFAULT attributes in effect.“SHOWCONTROL Statement” (page 159)

Describes the DDL syntax used to create an object as it
exists in the metadata, or it returns a description of a user,
role, or component in the form of a GRANT statement.

“SHOWDDL Statement” (page 160)

Displays the DDL syntax used to create a schema as it exists
in the metadata and shows the authorization ID that owns
the schema.

“SHOWDDL SCHEMA Statement” (page 163)

Displays the histogram statistics for one or more groups of
columns within a table. These statistics are used to devise
optimized access plans.

“SHOWSTATS Statement” (page 164)

Categories 33

ALTER LIBRARY Statement
• “Syntax Description of ALTER LIBRARY”

• “Considerations for ALTER LIBRARY”

• “Examples of ALTER LIBRARY”
The ALTER LIBRARY statement updates the physical filename for a library object in a Trafodion
database. A library object can be an SPJ's JAR file or a UDF's library file.
ALTER LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

ALTER LIBRARY [[catalog-name.]schema-name.]library-name
 FILE library-filename
 [HOST NAME host-name]
 [LOCAL FILE host-filename]

Syntax Description of ALTER LIBRARY
[[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify the name of a library object that
has already been registered in the schema. If you do not fully qualify the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“Identifiers” (page 221) and “Database Object Names” (page 198).

FILE library-filename

specifies the full path of the redeployed library file, which either an SPJ's JAR file or a UDF's
library file.

HOST NAME host-name

specifies the name of the client host machine where the deployed file resides.
LOCAL FILE host-filename

specifies the path on the client host machine where the deployed file is stored.

Considerations for ALTER LIBRARY
• HOST NAME and LOCAL FILE are position dependent.

Required Privileges
To issue an ALTER LIBRARY statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the library.

• You have the ALTER or ALTER_LIBRARY component privilege for the SQL_OPERATIONS
component.

Examples of ALTER LIBRARY
• This ALTER LIBRARY statement updates the JAR file (SPJs) for a library named SALESLIB in the

SALES schema:

34 SQL Statements

ALTER LIBRARY sales.saleslib FILE Sales2.jar;

• This ALTER LIBRARY statement updates the library file (UDFs) for a library named MYUDFS in
the default schema:
ALTER LIBRARY myudfs FILE $TMUDFLIB;

ALTER LIBRARY Statement 35

ALTER TABLE Statement
• “Syntax Description of ALTER TABLE”

• “Considerations for ALTER TABLE”

• “Example of ALTER TABLE”
The ALTER TABLE statement changes a Trafodion SQL table. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

ALTER TABLE name alter-action

alter-action is:
 ADD [COLUMN] column-definition
 | ADD IF NOT EXISTS column-definition
 | ADD [CONSTRAINT constraint-name] table-constraint
 | DROP CONSTRAINT constraint-name [RESTRICT]
 | RENAME TO new-name [CASCADE]
 | DROP COLUMN [IF EXISTS] column-name

column-definition is:
column-name data-type

 ([DEFAULT default]
 [[CONSTRAINT constraint-name] column-constraint]...)

data-type is:
 CHAR[ACTER] [(length)[CHARACTERS]]
 [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT] CASESPECIFIC]
 | CHAR[ACTER] VARYING (length)
 [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT] CASESPECIFIC]
 | VARCHAR (length) [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT] CASESPECIFIC]
 | NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | NCHAR [(length) [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT] CASESPECIFIC]
 | NCHAR VARYING(length) [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT] CASESPECIFIC]
 | SMALLINT [SIGNED|UNSIGNED]
 | INT[EGER] [SIGNED|UNSIGNED]
 | LARGEINT
 | DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
 | FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION
 | DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]
 | INTERVAL { start-field TO end-field | single-field }

default is:
literal

 | NULL
 | CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP }

36 SQL Statements

column-constraint is:
 NOT NULL
 | UNIQUE
 | CHECK (condition)
 | REFERENCES ref-spec

table-constraint is:
 UNIQUE (column-list)
 | CHECK (condition)
 | FOREIGN KEY (column-list) REFERENCES ref-spec

ref-spec is:
referenced-table [(column-list)]

column-list is:
column-name[, column-name]...

Syntax Description of ALTER TABLE
name

specifies the current name of the object. See “Database Object Names” (page 198).
ADD [COLUMN] column-definition

adds a column to table.
The clauses for the column-definition are:
column-name

specifies the name for the new column in the table. column-name is an SQL identifier.
column-name must be unique among column names in the table. If the column name is
a Trafodion SQL reserved word, you must delimit it by enclosing it in double quotes. For
example: "sql".myview. See “Identifiers” (page 221).

data-type

specifies the data type of the values that can be stored in column-name. See “Data Types”
(page 199). If a default is not specified, NULL is used.

DEFAULT default
specifies a default value for the column or specifies that the column does not have a default
value. You can declare the default value explicitly by using the DEFAULT clause, or you
can enable null to be used as the default by omitting both the DEFAULT and NOT NULL
clauses. If you omit the DEFAULT clause and specify NOT NULL, Trafodion SQL returns an
error. For existing rows of the table, the added column takes on its default value.
If you set the default to the datetime value CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP, Trafodion SQL uses January 1, 1 A.D. 12:00:00.000000 as the
default date and time for the existing rows.
For any row that you add after the column is added, if no value is specified for the column
as part of the add row operation, the column receives a default value based on the current
timestamp at the time the row is added.

[[CONSTRAINT constraint-name] column-constraint]
specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL
expands the constraint name by using the schema for table. See “Database Object
Names” (page 198).
If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

ALTER TABLE Statement 37

column-constraint options:
NOT NULL

is a column constraint that specifies that the column cannot contain nulls. If you omit
NOT NULL, nulls are allowed in the column. If you specify both NOT NULL and NO
DEFAULT, each row inserted in the table must include a value for the column. See “Null”
(page 231).

UNIQUE
is a column constraint that specifies that the column cannot contain more than one
occurrence of the same value. If you omit UNIQUE, duplicate values are allowed unless
the column is part of the PRIMARY KEY. Columns that you define as unique must be
specified as NOT NULL.

CHECK (condition)
is a constraint that specifies a condition that must be satisfied for each row in the table.
See “Search Condition” (page 250). You cannot refer to the CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP function in a CHECK constraint, and you
cannot use subqueries in a CHECK constraint.

REFERENCES ref-spec

specifies a REFERENCES column constraint. The maximum combined length of the
columns for a REFERENCES constraint is 2048 bytes.
ref-spec is:

referenced-table [(column-list)]
referenced-table is the table referenced by the foreign key in a referential
constraint. referenced-table cannot be a view. referenced-table cannot
be the same as table. referenced-table corresponds to the foreign key in
the table.
column-list specifies the column or set of columns in the referenced-table
that corresponds to the foreign key in table. The columns in the column list
associated with REFERENCES must be in the same order as the columns in the
column list associated with FOREIGN KEY. If column-list is omitted, the
referenced table's PRIMARY KEY columns are the referenced columns.
A table can have an unlimited number of referential constraints, and you can specify
the same foreign key in more than one referential constraint, but you must define
each referential constraint separately. You cannot create self-referencing foreign
key constraints.

ADD [CONSTRAINT constraint-name] table-constraint
adds a constraint to the table and optionally specifies constraint-name as the name for
the constraint. The new constraint must be consistent with any data already present in the table.
CONSTRAINT constraint-name

specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL
expands the constraint name by using the schema for table. See “Database Object Names”
(page 198).
If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

38 SQL Statements

table-constraint options:
UNIQUE (column-list)

is a table constraint that specifies that the column or set of columns cannot contain more
than one occurrence of the same value or set of values.
column-list cannot include more than one occurrence of the same column. In
addition, the set of columns that you specify on a UNIQUE constraint cannot match the
set of columns on any other UNIQUE constraint for the table or on the PRIMARY KEY
constraint for the table. All columns defined as unique must be specified as NOT NULL.
A UNIQUE constraint is enforced with a unique index. If there is already a unique
index on column-list, Trafodion SQL uses that index. If a unique index does not
exist, the system creates a unique index.

CHECK (condition)
is a constraint that specifies a condition that must be satisfied for each row in the table.
See “Search Condition” (page 250). You cannot refer to the CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP function in a CHECK constraint, and you
cannot use subqueries in a CHECK constraint.

FOREIGN KEY (column-list) REFERENCES ref-spec NOT ENFORCED
is a table constraint that specifies a referential constraint for the table, declaring that
a column or set of columns (called a foreign key) in table can contain only values
that match those in a column or set of columns in the table specified in the REFERENCES
clause. However, because NOT ENFORCED is specified, this relationship is not checked.
The two columns or sets of columns must have the same characteristics (data type,
length, scale, precision). Without the FOREIGN KEY clause, the foreign key in table
is the column being defined; with the FOREIGN KEY clause, the foreign key is the
column or set of columns specified in the FOREIGN KEY clause. For information about
ref-spec, see REFERENCES ref-spec NOT ENFORCED.

DROP CONSTRAINT constraint-name [RESTRICT]
drops a constraint from the table.
If you drop a constraint, Trafodion SQL drops its dependent index if Trafodion SQL originally
created the same index. If the constraint uses an existing index, the index is not dropped.
CONSTRAINT constraint-name

specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL
expands the constraint name by using the schema for table. See “Database Object Names”
(page 198).
If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

RENAME TO new-name [CASCADE]
changes the logical name of the object within the same schema.
new-name

specifies the new name of the object after the RENAME TO operation occurs.
CASCADE

specifies that indexes and constraints on the renamed object will be renamed.
ADD IF NOT EXISTS column-definition

adds a column to table if it does not already exist in the table.

ALTER TABLE Statement 39

The clauses for the column-definition are the same as described in ADD [COLUMN]
column-definition.

DROP COLUMN [IF EXISTS] column-name
drops the specified column from table, including the column’s data. You cannot drop a
primary key column.

Considerations for ALTER TABLE

Effect of Adding a Column on View Definitions
The addition of a column to a table has no effect on existing view definitions. Implicit column
references specified by SELECT * in view definitions are replaced by explicit column references
when the definition clauses are originally evaluated.

Authorization and Availability Requirements
ALTER TABLE works only on user-created tables.

Required Privileges
To issue an ALTER TABLE statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the table.

• You have the ALTER or ALTER_TABLE component privilege for the SQL_OPERATIONS
component.

Privileges Needed to Create a Referential Integrity Constraint
To create a referential integrity constraint (that is, a constraint on the table that refers to a column
in another table), one of the following must be true:

• You are DB__ROOT.

• You are the owner of the referencing and referenced tables.

• You have these privileges on the referencing and referenced table:

For the referencing table, you have the ALTER or ALTER_TABLE component privilege for
the SQL_OPERATIONS component.

◦

◦ For the referenced table, you have the REFERENCES (or ALL) privilege on the referenced
table through your username or through a granted role.

If the constraint refers to the other table in a query expression, you must also have SELECT privileges
on the other table.

Example of ALTER TABLE
This example adds a column:
ALTER TABLE persnl.project
 ADD COLUMN projlead
 NUMERIC (4) UNSIGNED

40 SQL Statements

ALTER USER Statement
• “Syntax Description of ALTER USER”

• “Considerations for ALTER USER”

• “Examples of ALTER USER”
The ALTER USER statement changes attributes associated with a user who is registered in the
database.
ALTER USER is a Trafodion SQL extension.

ALTER USER database-username alter-action[, alter-action]

alter-action is:
 SET EXTERNAL NAME directory-service-username
 | SET { ONLINE | OFFLINE }

Syntax Description of ALTER USER
database-username

is the name of a currently registered database user.
SET EXTERNAL NAME

changes the name that identifies the user in the directory service. This is also the name the user
specifies when connecting to the database.
directory-service-username

specifies the new name of the user in the directory service.
directory-service-username is a regular or delimited case-insensitive identifier.
See “Case-Insensitive Delimited Identifiers” (page 221).

SET { ONLINE | OFFLINE }
changes the attribute that controls whether the user is allowed to connect to the database.
ONLINE

specifies that the user is allowed to connect to the database.
OFFLINE

specifies that the user is not allowed to connect to the database.

Considerations for ALTER USER
Only a user with user administrative privileges (that is, a user who has been granted the
MANAGE_USERS component privilege) can do the following:

• Set the EXTERNAL NAME for any user

• Set the ONLINE | OFFLINE attribute for any user
Initially, DB__ROOT is the only database user who has been granted the MANAGE_USERS
component privilege.

Examples of ALTER USER
• To change a user's external name:

ALTER USER ajones SET EXTERNAL NAME "Americas\ArturoJones";

• To change a user's attribute to allow the user to connect to the database:
ALTER USER ajones SET ONLINE;

ALTER USER Statement 41

BEGIN WORK Statement
• “Considerations for BEGIN WORK”

• “Example of BEGIN WORK”
The BEGIN WORK statement enables you to start a transaction explicitly—where the transaction
consists of the set of operations defined by the sequence of SQL statements that begins immediately
after BEGIN WORK and ends with the next COMMIT or ROLLBACK statement. See “Transaction
Management” (page 25). BEGIN WORK will raise an error if a transaction is currently active.
BEGIN WORK is a Trafodion SQL extension.

BEGIN WORK

Considerations for BEGIN WORK
BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a transaction.

Example of BEGIN WORK
Group three separate statements—two INSERT statements and an UPDATE statement—that update
the database within a single transaction:

--- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

INSERT INTO sales.orders VALUES (125, DATE '2008-03-23',
 DATE '2008-03-30', 75, 7654);
--- 1 row(s) inserted.

INSERT INTO sales.odetail VALUES (125, 4102, 25000, 2);
--- 1 row(s) inserted.

UPDATE invent.partloc SET qty_on_hand = qty_on_hand - 2
 WHERE partnum = 4102 AND loc_code = 'G45';
--- 1 row(s) updated.

--- This statement ends a transaction.
COMMIT WORK;
--- SQL operation complete.

42 SQL Statements

CALL Statement
• “Syntax Description of CALL”

• “Considerations for CALL”

• “Examples of CALL”
The CALL statement invokes a stored procedure in Java (SPJ) in a Trafodion SQL database.

CALL procedure-ref ([argument-list])

procedure-ref is:
 [[catalog-name.]schema-name.]procedure-name

argument-list is:
SQL-expression[, SQL-expression]...

Syntax Description of CALL
procedure-ref

specifies an ANSI logical name of the form:
[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters. For
more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).
If you do not fully qualify the procedure name, Trafodion SQL qualifies it according to the
schema of the current session.

argument-list

accepts arguments for IN, INOUT, or OUT parameters. The arguments consist of SQL
expressions, including dynamic parameters, separated by commas:
SQL-expression[{, SQL-expression}...]

Each expression must evaluate to a value of one of these data types:

• Character value

• Date-time value

• Numeric value
Interval value expressions are disallowed in SPJs. For more information, see “Input Parameter
Arguments” (page 44) and “Output Parameter Arguments” (page 44).
Do not specify result sets in the argument list.

Considerations for CALL

Usage Restrictions
You can use a CALL statement as a stand-alone SQL statement in applications or command-line
interfaces, such as TrafCI. You cannot use a CALL statement inside a compound statement or with
rowsets.

Required Privileges
To issue a CALL statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the stored procedure.

• You have the EXECUTE (or ALL) privileges, either directly through your username or through
a granted role. For more information, see the “GRANT Statement” (page 111).

CALL Statement 43

When the stored procedure executes, it executes as the Trafodion ID.

Input Parameter Arguments
You pass data to an SPJ by using IN or INOUT parameters. For an IN parameter argument, use
one of these SQL expressions:

• Literal

• SQL function (including CASE and CAST expressions)

• Arithmetic or concatenation operation

• Scalar subquery

• Dynamic parameter (for example, ?) in an application

• Named (for example, ?param) or unnamed (for example, ?) parameter in TrafCI
For an INOUT parameter argument, you can use only a dynamic, named, or unnamed parameter.
For more information, see “Expressions” (page 211).

Output Parameter Arguments
An SPJ returns values in OUT and INOUT parameters. Output parameter arguments must be
dynamic parameters in an application (for example, ?) or named or unnamed parameters in HPDCI
(for example, ?param or ?). Each calling application defines the semantics of the OUT and INOUT
parameters in its environment.

Data Conversion of Parameter Arguments
Trafodion SQL performs an implicit data conversion when the data type of a parameter argument
is compatible with but does not match the formal data type of the stored procedure. For stored
procedure input values, the conversion is from the actual argument value to the formal parameter
type. For stored procedure output values, the conversion is from the actual output value, which has
the data type of the formal parameter, to the declared type of the dynamic parameter.

Null Input and Output
You can pass a null value as input to or output from an SPJ, provided that the corresponding Java
data type of the parameter supports nulls. If a null is input or output for a parameter that does not
support nulls, Trafodion SQL returns an error.

Transaction Semantics
The CALL statement automatically initiates a transaction if no active transaction exists. However,
the failure of a CALL statement does not always automatically abort the transaction.

Examples of CALL
• In TrafCI, execute an SPJ named MONTHLYORDERS, which has one IN parameter represented

by a literal and one OUT parameter represented by an unnamed parameter, ?:
CALL sales.monthlyorders(3,?);

• This CALL statement executes a stored procedure, which accepts one IN parameter (a date
literal), returns one OUT parameter (a row from the column, NUM_ORDERS), and returns two
result sets:
CALL sales.ordersummary('01/01/2001', ?);

NUM_ORDERS

 13

ORDERNUM NUM_PARTS AMOUNT ORDER_DATE LAST_NAME
---------- -------------- --------------- ---------- ------------------

44 SQL Statements

 100210 4 19020.00 2006-04-10 HUGHES
 100250 4 22625.00 2006-01-23 HUGHES
 101220 4 45525.00 2006-07-21 SCHNABL
 200300 3 52000.00 2006-02-06 SCHAEFFER
 200320 4 9195.00 2006-02-17 KARAJAN
 200490 2 1065.00 2006-03-19 WEIGL
 .
 .
 .

--- 13 row(s) selected.

ORDERNUM PARTNUM UNIT_PRICE QTY_ORDERED PARTDESC
---------- -------- ------------ ---------- ------------------

 100210 2001 1100.00 3 GRAPHIC PRINTER,M1
 100210 2403 620.00 6 DAISY PRINTER,T2
 100210 244 3500.00 3 PC GOLD, 30 MB
 100210 5100 150.00 10 MONITOR BW, TYPE 1
 100250 6500 95.00 10 DISK CONTROLLER
 100250 6301 245.00 15 GRAPHIC CARD, HR
 .
 .
 .

--- 70 row(s) selected.

--- SQL operation complete.

CALL Statement 45

COMMIT WORK Statement
• “Considerations for COMMIT WORK”

• “Example of COMMIT WORK”
The COMMIT WORK statement commits any changes to objects made during the current transaction
and ends the transaction. See “Transaction Management” (page 25).

COMMIT [WORK]

WORK is an optional keyword that has no effect.
COMMIT WORK issued outside of an active transaction generates error 8605.

Considerations for COMMIT WORK
BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a transaction.

Example of COMMIT WORK
Suppose that your application adds information to the inventory. You have received 24 terminals
from a new supplier and want to add the supplier and update the quantity on hand. The part
number for the terminals is 5100, and the supplier is assigned supplier number 17. The cost of
each terminal is $800.
The transaction must add the order for terminals to PARTSUPP, add the supplier to the SUPPLIER
table, and update QTY_ON_HAND in PARTLOC. After the INSERT and UPDATE statements execute
successfully, you commit the transaction, as shown:

-- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

-- This statement inserts a new entry into PARTSUPP.
INSERT INTO invent.partsupp
VALUES (5100, 17, 800.00, 24);
--- 1 row(s) inserted.

-- This statement inserts a new entry into SUPPLIER.
INSERT INTO invent.supplier
VALUES (17, 'Super Peripherals','751 Sanborn Way',
 'Santa Rosa', 'California', '95405');
--- 1 row(s) inserted.

-- This statement updates the quantity in PARTLOC.
UPDATE invent.partloc
SET qty_on_hand = qty_on_hand + 24
WHERE partnum = 5100 AND loc_code = 'G43';
--- 1 row(s) updated.

-- This statement ends a transaction.
COMMIT WORK;
--- SQL operation complete.

46 SQL Statements

CONTROL QUERY CANCEL Statement
The CONTROL QUERY CANCEL statement cancels an executing query that you identify with a
query ID. You can execute the CONTROL QUERY CANCEL statement in a client-based tool like
TrafCI or through any ODBC or JDBC application.
CONTROL QUERY CANCEL is a Trafodion SQL extension.

CONTROL QUERY CANCEL QID query-id [COMMENT 'comment-text']

Syntax Description of CONTROL QUERY CANCEL
query-id

specifies the query ID of an executing query, which is a unique identifier generated by the SQL
compiler.

'comment-text'
specifies an optional comment to be displayed in the canceled query’s error message.

Considerations for CONTROL QUERY CANCEL

Benefits of CONTROL QUERY CANCEL
For many queries, the CONTROL QUERY CANCEL statement allows the termination of the query
without stopping the master executor process (MXOSRVR). This type of cancellation has these
benefits over standard ODBC/JDBC cancel methods:

• An ANSI-defined error message is returned to the client session, and SQLSTATE is set to
HY008.

• Important cached objects persist after the query is canceled, including the master executor
process and its compiler, the compiled statements cached in the master, and the compiler’s
query cache and its cached metadata and histograms.

• The client does not need to reestablish its connection, and its prepared statements are preserved.

• When clients share connections using a middle-tier application server, the effects of canceling
one client’s executing query no longer affect other clients sharing the same connection.

Restrictions on CONTROL QUERY CANCEL
Some executing queries may not respond to a CONTROL QUERY CANCEL statement within a
60-second interval. For those queries, Trafodion SQL stops their ESP processes if there are any. If
this action allows the query to be canceled, you will see all the benefits listed above.
If the executing query does not terminate within 120 seconds after the CONTROL QUERY CANCEL
statement is issued, Trafodion SQL stops the master executor process, terminating the query and
generating a lost connection error. In this case, you will not see any of the benefits listed above.
Instead, you will lose your connection and will need to reconnect and re-prepare the query. This
situation often occurs with the CALL, DDL, and utility statements and rarely with other statements.
The CONTROL QUERY CANCEL statement does not work with these statements:

• Unique queries, which operate on a single row and a single partition

• Queries that are not executing, such as a query that is being compiled

• CONTROL QUERY DEFAULT, BEGIN WORK, COMMIT WORK, ROLLBACK WORK, and
EXPLAIN statements

• Statically compiled metadata queries

• Queries executed in anomalous conditions, such as queries without runtime statistics or without
a query ID

CONTROL QUERY CANCEL Statement 47

Required Privileges
To issue a CONTROL QUERY CANCEL statement, one of the following must be true:

• You are DB__ROOT.

• You own (that is, issued) the query.

• You have the QUERY_CANCEL component privilege for the SQL_OPERATIONS component.

Example of CONTROL QUERY CANCEL
This CONTROL QUERY CANCEL statement cancels a specified query and provides a comment
concerning the cancel operation:
control query cancel qid MXID11000010941212288634364991407000000003806U3333300_156016_S1 comment 'Query is
consuming too many resources.';

In a separate session, the client that issued the query will see this error message indicating that
the query has been canceled:
>>execute s1;

*** ERROR[8007] The operation has been canceled. Query is consuming too many resources.

48 SQL Statements

CONTROL QUERY DEFAULT Statement
The CONTROL QUERY DEFAULT statement changes the default settings for the current process.
You can execute the CONTROL QUERY DEFAULT statement in a client-based tool like TrafCI or
through any ODBC or JDBC application.
CONTROL QUERY DEFAULT is a Trafodion SQL extension.

{ CONTROL QUERY DEFAULT | CQD } control-default-option

control-default-option is:

attribute {'attr-value' | RESET}

Syntax Description of CONTROL QUERY DEFAULT
attribute

is a character string that represents an attribute name. For descriptions of these attributes, see
“Control Query Default (CQD) Attributes” (page 466).

attr-value

is a character string that specifies an attribute value. You must specify attr-value as a
quoted string—even if the value is a number.

RESET
specifies that the attribute that you set by using a CONTROL QUERY DEFAULT statement in the
current session is to be reset to the value or values in effect at the start of the current session.

Considerations for CONTROL QUERY DEFAULT

Scope of CONTROL QUERY DEFAULT
The result of the execution of a CONTROL QUERY DEFAULT statement stays in effect until the current
process terminates or until the execution of another statement for the same attribute overrides it.
CQDs are applied at compile time, so CQDs do not affect any statements that are already prepared.
For example:
PREPARE x FROM SELECT * FROM t;
CONTROL QUERY DEFAULT SCHEMA 'myschema';
EXECUTE x; -- uses the default schema SEABASE
SELECT * FROM t2; -- uses MYSCHEMA;
PREPARE y FROM SELECT * FROM t3;
CONTROL QUERY DEFAULT SCHEMA 'seabase';
EXECUTE y; -- uses MYSCHEMA;

Examples of CONTROL QUERY DEFAULT
• Change the maximum supported length of the column names to 200 for the current process:

CONTROL QUERY DEFAULT HBASE_MAX_COLUMN_NAME_LENGTH '200';

• Reset the HBASE_MAX_COLUMN_NAME_LENGTH attribute to its initial value in the current
process:
CONTROL QUERY DEFAULT HBASE_MAX_COLUMN_NAME_LENGTH RESET;

CONTROL QUERY DEFAULT Statement 49

CREATE FUNCTION Statement
• “Syntax Description of CREATE FUNCTION”

• “Considerations for CREATE FUNCTION”

• “Examples of CREATE FUNCTION”
The CREATE FUNCTION statement registers a user-defined function (UDF) written in C as a function
within a Trafodion database. Currently, Trafodion supports the creation of scalar UDFs, which
return a single value or row when invoked. Scalar UDFs are invoked as SQL expressions in the
SELECT list or WHERE clause of a SELECT statement.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE FUNCTION function-ref ([parameter-declaration[, parameter-declaration]...])
 {RETURN | RETURNS} (return-parameter-declaration[, return-parameter-declaration]...)
 EXTERNAL NAME 'character-string-literal'
 LIBRARY [[catalog-name.]schema-name.]library-name
 [LANGUAGE C]
 [PARAMETER STYLE SQL]
 [NO SQL]
 [NOT DETERMINISTIC | DETERMINISTIC]
 [FINAL CALL | NO FINAL CALL]
 [NO STATE AREA | STATE AREA size]
 [NO PARALLELISM | ALLOW ANY PARALLELISM]

function-ref is:
 [[catalog-name.]schema-name.]function-name

parameter-declaration is:
 [IN] [sql-parameter-name] sql-datatype

return-parameter-declaration is:
 [OUT] [sql-parameter-name] sql-datatype

Syntax Description of CREATE FUNCTION
function-ref ([parameter-declaration[, parameter-declaration]...])

specifies the name of the function and any SQL parameters that correspond to the signature
of the external function.
function-ref

specifies an ANSI logical name of the form:
[[catalog-name.]schema-name.]function-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).
Specify a name that is unique and does not exist for any procedure or function in the same
schema.
If you do not fully qualify the function name, Trafodion SQL qualifies it according to the
schema of the current session.

parameter-declaration

specifies an SQL parameter that corresponds to the signature of the external function:
[IN] [sql-parameter-name] sql-datatype

IN
specifies that the parameter passes data to the function.

sql-parameter-name

specifies an SQL identifier for the parameter. For more information, see “Identifiers”
(page 221).

50 SQL Statements

sql-datatype

specifies an SQL data type that corresponds to the data type of the parameter in the
signature of the external function. sql-datatype is one of the supported SQL data
types in Trafodion. See “Data Types” (page 199).

{RETURN | RETURNS} (return-parameter-declaration[,
return-parameter-declaration]...)

specifies the type of output of the function.
return-parameter-declaration

specifies an SQL parameter for an output value:
[OUT] [sql-parameter-name] sql-datatype

OUT
specifies that the parameter accepts data from the function.

sql-parameter-name

specifies an SQL identifier for the return parameter. For more information, see
“Identifiers” (page 221).

sql-datatype

specifies an SQL data type for the return parameter. sql-datatype is one of the
supported SQL data types in Trafodion. See “Data Types” (page 199).

EXTERNAL NAME 'method-name'
specifies the case-sensitive name of the external function’s method.

LIBRARY [[catalog-name.]schema-name.]library-name
specifies the ANSI logical name of a library containing the external function. If you do not fully
qualify the library name, Trafodion SQL qualifies it according to the schema of the current
session.

LANGUAGE C
specifies that the external function is written in the C language. This clause is optional.

PARAMETER STYLE SQL
specifies that the run-time conventions for arguments passed to the external function are those
of the SQL language. This clause is optional.

NO SQL
specifies that the function does not perform SQL operations. This clause is optional.

DETERMINISTIC | NOT DETERMINISTIC
specifies whether the function always returns the same values for OUT parameters for a given
set of argument values (DETERMINISTIC, the default behavior) or does not return the same
values (NOT DETERMINISTIC). If the function is deterministic, Trafodion SQL is not required to
execute the function each time to produce results; instead, Trafodion SQL caches the results
and reuses them during subsequent executions, thus optimizing the execution.

FINAL CALL | NO FINAL CALL
specifies whether or not a final call is made to the function. A final call enables the function to
free up system resources. The default is FINAL CALL.

NO STATE AREA | STATE AREA size

specifies whether or not a state area is allocated to the function. size is an integer denoting
memory in bytes. Acceptable values range from 0 to 16000. The default is NO STATE AREA.

NO PARALLELISM | ALLOW ANY PARALLELISM
specifies whether or not parallelism is applied when the function is invoked. The default is
ALLOW ANY PARALLELISM.

CREATE FUNCTION Statement 51

Considerations for CREATE FUNCTION

Required Privileges
To issue a CREATE FUNCTION statement, one of the following must be true:

• You are DB__ROOT.

• You are creating the function in a shared schema, and you have the USAGE (or ALL) privilege
on the library that will be used in the creation of the function. The USAGE privilege provides
you with read access to the library’s underlying library file.

• You are the private schema owner and have the USAGE (or ALL) privilege on the library that
will be used in the creation of the function. The USAGE privilege provides you with read
access to the library’s underlying library file.

• You have the CREATE or CREATE_ROUTINE component level privilege for the
SQL_OPERATIONS component and have the USAGE (or ALL) privilege on the library that will
be used in the creation of the function. The USAGE privilege provides you with read access
to the library’s underlying library file.

NOTE: In this case, if you create a function in a private schema, it will be owned by the
schema owner.

Examples of CREATE FUNCTION
• This CREATE FUNCTION statement creates a function that adds two integers:

create function add2 (int, int)
 returns (total_value int)
 external name 'add2'
 library myudflib;

• This CREATE FUNCTION statement creates a function that returns the minimum, maximum,
and average values of five input integers:
create function mma5 (int, int, int, int, int)
 returns (min_value int, max_value int, avg_value int)
 external name 'mma5'
 library myudflib;

• This CREATE FUNCTION statement creates a function that reverses an input string of at most
32 characters:
create function reverse (varchar(32))
 returns (reversed_string varchar(32))
 external name 'reverse'
 library myudflib;

52 SQL Statements

CREATE INDEX Statement
• “Syntax Description of CREATE INDEX”

• “Considerations for CREATE INDEX”

• “Examples of CREATE INDEX”
The CREATE INDEX statement creates an SQL index based on one or more columns of a table or
table-like object. The CREATE VOLATILE INDEX statement creates an SQL index with a lifespan
that is limited to the SQL session that the index is created. Volatile indexes are dropped automatically
when the session ends. See “Indexes” (page 222).
CREATE INDEX is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE [VOLATILE] INDEX index ON table
 (column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]]...)
 [HBASE_OPTIONS (hbase-options-list)]
 [SALT LIKE TABLE]

hbase-options-list is:
hbase-option = 'value'[, hbase-option = 'value']...

Syntax Description of CREATE INDEX
index

is an SQL identifier that specifies the simple name for the new index. You cannot qualify index
with its schema name. Indexes have their own namespace within a schema, so an index name
might be the same as a table or constraint name. However, no two indexes in a schema can
have the same name.

table

is the name of the table for which to create the index. See “Database Object Names” (page 198).
column-name [ASC[ENDING] | DESC[ENDING]] [,column-name [ASC[ENDING] |
DESC[ENDING]]]...

specifies the columns in table to include in the index. The order of the columns in the index
need not correspond to the order of the columns in the table.
ASCENDING or DESCENDING specifies the storage and retrieval order for rows in the index.
The default is ASCENDING.
Rows are ordered by values in the first column specified for the index. If multiple index rows
share the same value for the first column, the values in the second column are used to order
the rows, and so forth. If duplicate index rows occur in a nonunique index, their order is based
on the sequence specified for the columns of the key of the underlying table. For ordering (but
not for other purposes), nulls are greater than other values.

HBASE_OPTIONS (hbase-option = 'value'[, hbase-option = 'value']...)
a list of HBase options to set for the index. These options are applied independently of any
HBase options set for the index’s table.

CREATE INDEX Statement 53

hbase-option = 'value'
is one of the these HBase options and its assigned value:

Accepted Values1HBase Option

'true' | 'false'BLOCKCACHE

'65536' | 'positive-integer'BLOCKSIZE

'NONE' | 'ROW' | 'ROWCOL'BLOOMFILTER

'true' | 'false'CACHE_BLOOMS_ON_WRITE

'true' | 'false'CACHE_DATA_ON_WRITE

'true' | 'false'CACHE_INDEXES_ON_WRITE

'true' | 'false'COMPACT

'GZ' | 'LZ4' | 'LZO' | 'NONE' | 'SNAPPY'COMPACT_COMPRESSION

'GZ' | 'LZ4' | 'LZO' | 'NONE' | 'SNAPPY'COMPRESSION

'DIFF' | 'FAST_DIFF' | 'NONE' | 'PREFIX'DATA_BLOCK_ENCODING

'USE_DEFAULT' | 'SKIP_WAL' | 'ASYNC_WAL' | 'SYNC_WAL' |
'FSYNC_WAL'

DURABILITY

'true' | 'false'EVICT_BLOCKS_ON_CLOSE

'true' | 'false'IN_MEMORY

'true' | 'false'KEEP_DELETED_CELLS

'positive-integer'MAX_FILESIZE

'1' | 'positive-integer'MAX_VERSIONS

'positive-integer'MEMSTORE_FLUSH_SIZE

'0' | 'positive-integer'MIN_VERSIONS

'positive-integer', which should be less than maximum length
of the key for the table. It applies only if the SPLIT_POLICY is
KeyPrefixRegionSplitPolicy.

PREFIX_LENGTH_KEY

'0' | '1'REPLICATION_SCOPE

'org.apache.hadoop.hbase.regionserver.ConstantSizeRegionSplitPolicy'
|

SPLIT_POLICY

'org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy'
| 'org.apache.hadoop.hbase.regionserver.KeyPrefixRegionSplitPolicy'

'-1' (forever) | 'positive-integer'TTL
1 Values in boldface are default values.

SALT LIKE TABLE
causes the index to use the same salting scheme (that is, SALT USING num PARTITIONS
[ON (column[, column]...)]) as its base table.

Considerations for CREATE INDEX
Indexes are created under a single transaction. When an index is created, the following steps
occur:

• Transaction begins (either a user-started transaction or a system-started transaction).

• Rows are written to the metadata.

• Physical labels are created to hold the index (as non audited).

54 SQL Statements

• The base table is locked for read shared access which prevents inserts, updates, and deletes
on the base table from occurring.

• The index is loaded by reading the base table for read uncommitted access using side tree
inserts.

NOTE:
A side tree insert is a fast way of loading data that can perform specialized optimizations
because the partitions are not audited and empty.

• After load is complete, the index audit attribute is turned on and it is attached to the base
table (to bring the index online).

• The transaction is committed, either by the system or later by the requestor.
If the operation fails after basic semantic checks are performed, the index no longer exists and the
entire transaction is rolled back even if it is a user-started transaction.

Authorization and Availability Requirements
An index always has the same security as the table it indexes.
CREATE INDEX locks out INSERT, DELETE, and UPDATE operations on the table being indexed. If
other processes have rows in the table locked when the operation begins, CREATE INDEX waits
until its lock request is granted or timeout occurs.
You cannot access an index directly.

Required Privileges
To issue a CREATE INDEX statement, one of the following must be true:

• You are DB__ROOT.

• You are creating the table in a shared schema.

• You are the private schema owner.

• You are the owner of the table.

• You have the ALTER, ALTER_TABLE, CREATE, or CREATE_INDEX component privilege for the
SQL_OPERATIONS component.

NOTE: In this case, if you create an index in a private schema, it will be owned by the
schema owner.

Limits on Indexes
For nonunique indexes, the sum of the lengths of the columns in the index plus the sum of the length
of the clustering key of the underlying table cannot exceed 2048 bytes.
No restriction exists on the number of indexes per table.

Examples of CREATE INDEX
• This example creates an index on two columns of a table:

CREATE INDEX xempname
 ON persnl.employee (last_name, first_name);

CREATE INDEX Statement 55

CREATE LIBRARY Statement
• “Syntax Description of CREATE LIBRARY”

• “Considerations for CREATE LIBRARY”

• “Examples of CREATE LIBRARY”
The CREATE LIBRARY statement registers a library object in a Trafodion database. A library object
can be an SPJ's JAR file or a UDF's library file.
CREATE LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE LIBRARY [[catalog-name.]schema-name.]library-name
 FILE 'library-filename'
 [HOST NAME 'host-name']
 [LOCAL FILE 'host-filename']

Syntax Description of CREATE LIBRARY
[[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify a name that is unique and does not
exist for libraries in the same schema. If you do not fully qualify the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“Identifiers” (page 221) and “Database Object Names” (page 198).

FILE 'library-filename'
specifies the full path of a deployed library file, which either an SPJ's JAR file or a UDF's library
file.

NOTE: Make sure to upload the library file to the Trafodion cluster and then copy the library
file to the same directory on all the nodes in the cluster before running the CREATE LIBRARY
statement. Otherwise, you will see an error message indicating that the JAR or DLL file was not
found.

HOST NAME 'host-name'
specifies the name of the client host machine where the deployed file resides.

LOCAL FILE 'host-filename'
specifies the path on the client host machine where the deployed file is stored.

Considerations for CREATE LIBRARY
• A library object cannot refer to a library file referenced by another library object. If the

library-filename is in use by another library object, the CREATE LIBRARY command will
fail.

• The library-filename must specify an existing file. Otherwise, the CREATE LIBRARY
command will fail.

• The CREATE LIBRARY command does not verify that the specified library-filename is a
valid executable file.

• HOST NAME and LOCAL FILE are position dependent.

56 SQL Statements

Required Privileges
To issue a CREATE LIBRARY statement, one of the following must be true:

• You are DB__ROOT.

• You are creating the library in a shared schema and have the MANAGE_LIBRARY privilege.

• You are the private schema owner and have the MANAGE_LIBRARY privilege.

• You have the CREATE or CREATE_LIBRARY component privilege for the SQL_OPERATIONS
component and have the MANAGE_LIBRARY privilege.

NOTE: In this case, if you create a library in a private schema, it will be owned by the
schema owner.

Examples of CREATE LIBRARY
• This CREATE LIBRARY statement registers a library named SALESLIB in the SALES schema for

a JAR file (SPJs):
CREATE LIBRARY sales.saleslib FILE '/opt/home/trafodion/spjjars/Sales.jar';

• This CREATE LIBRARY statement registers a library named MYUDFS in the default schema for
a library file (UDFs):
CREATE LIBRARY myudfs FILE $UDFLIB;

CREATE LIBRARY Statement 57

CREATE PROCEDURE Statement
• “Syntax Description of CREATE PROCEDURE”

• “Considerations for CREATE PROCEDURE”

• “Examples of CREATE PROCEDURE”
The CREATE PROCEDURE statement registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE PROCEDURE procedure-ref([sql-parameter-list])
 EXTERNAL NAME 'java-method-name [java-signature]'
 LIBRARY [[catalog-name.]schema-name.]library-name
 [EXTERNAL SECURITY external-security-type]
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 [NO SQL | CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA]
 [DYNAMIC RESULT SETS integer]
 [TRANSACTION REQUIRED | NO TRANSACTION REQUIRED]
 [DETERMINISTIC | NOT DETERMINISTIC]
 [NO ISOLATE | ISOLATE]

procedure-ref is:
 [[catalog-name.]schema-name.]procedure-name

sql-parameter-list is:
sql-parameter[, sql-parameter]...

sql-parameter is:
 [parameter-mode] [sql-identifier] sql-datatype

parameter-mode is:
 IN
 | OUT
 | INOUT

java-method-name is:
 [package-name.]class-name.method-name

java-signature is:
 ([java-parameter-list])

java-parameter-list is:
java-datatype[, java-datatype]...

external-security-type is:
 DEFINER
 | INVOKER

NOTE: Delimited variables in this syntax diagram are case-sensitive. Case-sensitive variables
include java-method-name, java-signature, and class-file-path, and any delimited
part of the procedure-ref. The remaining syntax is not case-sensitive.

Syntax Description of CREATE PROCEDURE
procedure-ref([sql-parameter[, sql-parameter]...])

specifies the name of the stored procedure in Java (SPJ) and any SQL parameters that correspond
to the signature of the SPJ method.

58 SQL Statements

procedure-ref

specifies an ANSI logical name of the form:
[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).
Specify a name that is unique and does not exist for any procedure or function in the same
schema. Trafodion SQL does not support the overloading of procedure names. That is, you
cannot register the same procedure name more than once with different underlying SPJ
methods.
If you do not fully qualify the procedure name, Trafodion SQL qualifies it according to the
schema of the current session.

sql-parameter

specifies an SQL parameter that corresponds to the signature of the SPJ method:
[parameter-mode] [sql-identifier] sql-datatype

parameter-mode

specifies the mode IN, OUT, or INOUT of a parameter. The default is IN.
IN

specifies a parameter that passes data to an SPJ.
OUT

specifies a parameter that accepts data from an SPJ. The parameter must be an
array.

INOUT
specifies a parameter that passes data to and accepts data from an SPJ. The
parameter must be an array.

sql-identifier

specifies an SQL identifier for the parameter. For more information, see “Identifiers”
(page 221).

sql-datatype

specifies an SQL data type that corresponds to the Java parameter of the SPJ method.
sql-datatype can be:

Maps to Java Data Type...SQL Data Type

java.lang.StringCHAR[ACTER]
CHAR[ACTER] VARYING
VARCHAR
PIC[TURE] X1

NCHAR
NCHAR VARYING
NATIONAL CHAR[ACTER]
NATIONAL CHAR[ACTER] VARYING

java.sql.DateDATE

java.sql.TimeTIME

java.sql.TimestampTIMESTAMP

java.math.BigDecimalNUMERIC (including NUMERIC with a precision
greater than eighteen)2

DEC[IMAL]2

PIC[TURE] S93

CREATE PROCEDURE Statement 59

Maps to Java Data Type...SQL Data Type

shortSMALLINT2

int or java.lang.Integer4INT[EGER]2

long or java.lang.Long4LARGEINT2

double or java.lang.Double4FLOAT

float or java.lang.Float4REAL

double or java.lang.Double4DOUBLE PRECISION

1 The Trafodion database stores PIC X as a CHAR data type.
2 Numeric data types of SQL parameters must be SIGNED, which is the default in the Trafodion database.
3 The Trafodion database stores PIC S9 as a DECIMAL or NUMERIC data type.
4 By default, the SQL data type maps to a Java primitive type. The SQL data type maps to a Java wrapper

class only if you specify the wrapper class in the Java signature of the EXTERNAL NAME clause.

For more information, see “Data Types” (page 199).
EXTERNAL NAME 'java-method-name [java-signature]'

java-method-name

specifies the case-sensitive name of the SPJ method of the form:
[package-name.]class-name.method-name

The Java method must exist in a Java class file, class-name.class, within a library
registered in the database. The Java method must be defined as public and static
and have a return type of void.
If the class file that contains the SPJ method is part of a package, you must also specify the
package name. If you do not specify the package name, the CREATE PROCEDURE statement
fails to register the SPJ.

java-signature

specifies the signature of the SPJ method and consists of:
([java-datatype[, java-datatype]...])

The Java signature is necessary only if you want to specify a Java wrapper class (for
example, java.lang.Integer) instead of a Java primitive data type (for example, int).
An SQL data type maps to a Java primitive data type by default.
The Java signature is case-sensitive and must be placed within parentheses, such as
(java.lang.Integer, java.lang.Integer). The signature must specify each of
the parameter data types in the order they appear in the Java method definition within the
class file. Each Java data type that corresponds to an OUT or INOUT parameter must be
followed by empty square brackets ([]), such as java.lang.Integer[].
java-datatype

specifies a mappable Java data type. For the mapping of the Java data types to SQL
data types, see sql-datatype.

LIBRARY [[catalog-name.]schema-name.]library-name
specifies the ANSI logical name of a library containing the SPJ method. If you do not fully
qualify the library name, Trafodion SQL qualifies it according to the schema of the current
session.

60 SQL Statements

EXTERNAL SECURITY external-security-type

determines the privileges, or rights, that users have when executing (or calling) the SPJ. An SPJ
can have one of these types of external security:
• INVOKER determines that users can execute, or invoke, the stored procedure using the

privileges of the user who invokes the stored procedure. This behavior is referred to as
invoker rights and is the default behavior if EXTERNAL SECURITY is not specified. Invoker
rights allow a user who has the execute privilege on the SPJ to call the SPJ using his or
her existing privileges. In this case, the user must be granted privileges to access the
underlying database objects on which the SPJ operates.

NOTE: Granting a user privileges to the underlying database objects gives the user
direct access to those database objects, which could pose a risk to more sensitive or critical
data to which users should not have access. For example, an SPJ might operate on a
subset of the data in an underlying database object, but that database object might contain
other more sensitive or critical data to which users should not have access.

• DEFINER determines that users can execute, or invoke, the stored procedure using the
privileges of the user who created the stored procedure. This behavior is referred to as
definer rights. The advantage of definer rights is that users are allowed to manipulate data
by invoking the stored procedure without having to be granted privileges to the underlying
database objects. That way, users are restricted from directly accessing or manipulating
more sensitive or critical data in the database. However, be careful about the users to
whom you grant execute privilege on an SPJ with definer external security because those
users will be able to execute the SPJ without requiring privileges to the underlying database
objects.

LANGUAGE JAVA
specifies that the external user-defined routine is written in the Java language.

PARAMETER STYLE JAVA
specifies that the run-time conventions for arguments passed to the external user-defined routine
are those of the Java language.

NO SQL
specifies that the SPJ cannot perform SQL operations.

CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA
specifies that the SPJ can perform SQL operations. All these options behave the same as
CONTAINS SQL, meaning that the SPJ can read and modify SQL data. Use one of these
options to register a method that contains SQL statements. If you do not specify an SQL access
mode, the default is CONTAINS SQL.

DYNAMIC RESULT SETS integer

specifies the maximum number of result sets that the SPJ can return. This option is applicable
only if the method signature contains a java.sql.ResultSet[] object. If the method
contains a result set object, the valid range is 1 to 255 inclusive. The actual number of result
sets returned by the SPJ method can be less than or equal to this number. If you do not specify
this option, the default value is 0 (zero), meaning that the SPJ does not return result sets.

TRANSACTION REQUIRED | NO TRANSACTION REQUIRED
determines whether the SPJ must run in a transaction inherited from the calling application
(TRANSACTION REQUIRED, the default option) or whether the SPJ runs without inheriting the
calling application’s transaction (NO TRANSACTION REQUIRED). Typically, you will want the
stored procedure to inherit the transaction from the calling application. However, if the SPJ
method does not access the database or if you want the stored procedure to manage its own
transactions, you should set the stored procedure’s transaction attribute to NO TRANSACTION
REQUIRED. For more information, see “Effects of the Transaction Attribute on SPJs” (page 62).

CREATE PROCEDURE Statement 61

DETERMINISTIC | NOT DETERMINISTIC
specifies whether the SPJ always returns the same values for OUT and INOUT parameters for
a given set of argument values (DETERMINISTIC) or does not return the same values (NOT
DETERMINISTIC, the default option). If you specify DETERMINISTIC, Trafodion SQL is not
required to call the SPJ each time to produce results; instead, Trafodion SQL caches the results
and reuses them during subsequent calls, thus optimizing the CALL statement.

NO ISOLATE | ISOLATE
specifies that the SPJ executes either in the environment of the database server (NO ISOLATE)
or in an isolated environment (ISOLATE, the default option). Trafodion SQL allows both options
but always executes the SPJ in the UDR server process (ISOLATE).

Considerations for CREATE PROCEDURE

Required Privileges
To issue a CREATE PROCEDURE statement, one of the following must be true:

• You are DB__ROOT.

• You are creating the procedure in a shared schema, and you have the USAGE (or ALL) privilege
on the library that will be used in the creation of the stored procedure. The USAGE privilege
provides you with read access to the library’s underlying JAR file, which contains the SPJ Java
method.

• You are the private schema owner and have the USAGE (or ALL) privilege on the library that
will be used in the creation of the stored procedure. The USAGE privilege provides you with
read access to the library’s underlying JAR file, which contains the SPJ Java method.

• You have the CREATE or CREATE_ROUTINE component level privilege for the
SQL_OPERATIONS component and have the USAGE (or ALL) privilege on the library that will
be used in the creation of the stored procedure. The USAGE privilege provides you with read
access to the library’s underlying JAR file, which contains the SPJ Java method.

NOTE: In this case, if you create a stored procedure in a private schema, it will be owned
by the schema owner.

Effects of the Transaction Attribute on SPJs

Transaction Required

Using Transaction Control Statements or Methods

If you specify TRANSACTION REQUIRED (the default option), a CALL statement automatically
initiates a transaction if there is no active transaction. In this case, you should not use transaction
control statements (or equivalent JDBC transaction methods) in the SPJ method. Transaction control
statements include COMMIT WORK and ROLLBACK WORK, and the equivalent JDBC transaction
methods are Connection.commit() and Connection.rollback(). If you try to use transaction
control statements or methods in an SPJ method when the stored procedure’s transaction attribute
is set to TRANSACTION REQUIRED, the transaction control statements or methods in the SPJ method
are ignored, and the Java virtual machine (JVM) does not report any errors or warnings. When
the stored procedure’s transaction attribute is set to TRANSACTION REQUIRED, you should rely
on the transaction control statements or methods in the application that calls the stored procedure
and allow the calling application to manage the transactions.

Committing or Rolling Back a Transaction

If you do not use transaction control statements in the calling application, the transaction initiated
by the CALL statement might not automatically commit or roll back changes to the database. When
AUTOCOMMIT is ON (the default setting), the database engine automatically commits or rolls

62 SQL Statements

back any changes made to the database at the end of the CALL statement execution. However,
when AUTOCOMMIT is OFF, the current transaction remains active until the end of the client
session or until you explicitly commit or roll back the transaction. To ensure an atomic unit of work
when calling an SPJ, use the COMMIT WORK statement in the calling application to commit the
transaction when the CALL statement succeeds, and use the ROLLBACK WORK statement to roll
back the transaction when the CALL statement fails.

No Transaction Required
In some cases, you might not want the SPJ method to inherit the transaction from the calling
application. Instead, you might want the stored procedure to manage its own transactions or to
run without a transaction. Not inheriting the calling application’s transaction is useful in these
cases:

• The stored procedure performs several long-running operations, such as multiple DDL or table
maintenance operations, on the database. In this case, you might want to commit those
operations periodically from within the SPJ method to avoid locking tables for a long time.

• The stored procedure performs certain SQL operations that must run without an active
transaction. For example, INSERT, UPDATE, and DELETE statements with the WITH NO
ROLLBACK option are rejected when a transaction is already active, as is the case when a
stored procedure inherits a transaction from the calling application. The PURGEDATA utility
is also rejected when a transaction is already active.

• The stored procedure does not access the database. In this case, the stored procedure does
not need to inherit the transaction from the calling application. By setting the stored procedure’s
transaction attribute to NO TRANSACTION REQUIRED, you can avoid the overhead of the
calling application’s transaction being propagated to the stored procedure.

In these cases, you should set the stored procedure’s transaction attribute to NO TRANSACTION
REQUIRED when creating the stored procedure.
If you specify NO TRANSACTION REQUIRED and if the SPJ method creates a JDBC default
connection, that connection will have autocommit enabled by default. You can either use the
autocommit transactions or disable autocommit (conn.setAutoCommit(false);) and use the
JDBC transaction methods, Connection.commit() and Connection.rollback(), to commit
or roll back work where needed.

Examples of CREATE PROCEDURE
• This CREATE PROCEDURE statement registers an SPJ named LOWERPRICE, which does not

accept any arguments:
SET SCHEMA SALES;

CREATE PROCEDURE lowerprice()
 EXTERNAL NAME 'Sales.lowerPrice'
 LIBRARY saleslib
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

Because the procedure name is not qualified by a catalog and schema, Trafodion SQL qualifies
it according to the current session settings, where the catalog is TRAFODION (by default) and
the schema is set to SALES. Since the procedure needs to be able to read and modify SQL
data, MODIFIES SQL DATA is specified in the CREATE PROCEDURE statement.
To call this SPJ, use this CALL statement:
CALL lowerprice();

CREATE PROCEDURE Statement 63

The LOWERPRICE procedure lowers the price of items with 50 or fewer orders by 10 percent
in the database.

• This CREATE PROCEDURE statement registers an SPJ named TOTALPRICE, which accepts three
input parameters and returns a numeric value, the total price to an INOUT parameter:
CREATE PROCEDURE trafodion.sales.totalprice(IN qty NUMERIC (18),
 IN rate VARCHAR (10),
 INOUT price NUMERIC (18,2))
 EXTERNAL NAME 'Sales.totalPrice'
 LIBRARY sales.saleslib
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 NO SQL;

To call this SPJ in TrafCI, use these statements:
SET PARAM ?p 10.00;

CALL sales.totalprice(23, 'standard', ?p);

p

 253.97

--- SQL operation complete.

Since the procedure does not read and modify any SQL data, NO SQL is specified in the
CREATE PROCEDURE statement.

• This CREATE PROCEDURE statement registers an SPJ named MONTHLYORDERS, which accepts
an integer value for the month and returns the number of orders:
CREATE PROCEDURE sales.monthlyorders(IN INT, OUT number INT)
 EXTERNAL NAME 'Sales.numMonthlyOrders (int, java.lang.Integer[])'
 LIBRARY sales.saleslib
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

Because the OUT parameter is supposed to map to the Java wrapper class,
java.lang.Integer, you must specify the Java signature in the EXTERNAL NAME clause.
To invoke this SPJ, use this CALL statement:
CALL sales.monthlyorders(3, ?);

ORDERNUM

 4

--- SQL operation complete.

• This CREATE PROCEDURE statement registers an SPJ named ORDERSUMMARY, which accepts
a date (formatted as a string) and returns information about the orders on or after that date.
CREATE PROCEDURE sales.ordersummary(IN on_or_after_date VARCHAR (20),
 OUT num_orders LARGEINT)
 EXTERNAL NAME 'Sales.orderSummary (int, long[])'
 LIBRARY sales.saleslib
 EXTERNAL SECURITY invoker
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA
 DYNAMIC RESULT SETS 2;

To invoke this SPJ, use this CALL statement:
CALL neo.sales.ordersummary('01-01-2014', ?);

64 SQL Statements

The ORDERSUMMARY procedure returns this information about the orders on or after the
specified date, 01-01-2014:
NUM_ORDERS

 13

ORDERNUM NUM_PARTS AMOUNT ORDER_DATE LAST_NAME
-------- -------------------- -------------------- ---------- --------------------
 100210 4 19020.00 2014-04-10 HUGHES
 100250 4 22625.00 2014-01-23 HUGHES
 101220 4 45525.00 2014-07-21 SCHNABL

--- 13 row(s) selected.

ORDERNUM PARTNUM UNIT_PRICE QTY_ORDERED PARTDESC
-------- ------- ---------- ----------- ------------------
 100210 244 3500.00 3 PC GOLD, 30 MB
 100210 2001 1100.00 3 GRAPHIC PRINTER,M1
 100210 2403 620.00 6 DAISY PRINTER,T2

--- 70 row(s) selected.

--- SQL operation complete.

CREATE PROCEDURE Statement 65

CREATE ROLE Statement
• “Syntax Description of CREATE ROLE”

• “Considerations for CREATE ROLE”

• “Examples of CREATE ROLE”
The CREATE ROLE statement creates an SQL role. See “Roles” (page 248).

CREATE ROLE role-name [WITH ADMIN grantor]

grantor is:
database-username

Syntax Description of CREATE ROLE
role-name

is an SQL identifier that specifies the new role. role-name is a regular or delimited
case-insensitive identifier. See “Case-Insensitive Delimited Identifiers” (page 221). role-name
cannot be an existing role name, and it cannot be a registered database username. However,
role-name can be a configured directory-service username.

WITH ADMIN grantor

specifies a role owner other than the current user. This is an optional clause.
grantor

specifies a registered database username to whom you assign the role owner.

Considerations for CREATE ROLE
• To create a role, you must either be DB__ROOT or have been granted the MANAGE_ROLES

component privilege for SQL_OPERATIONS.
• PUBLIC, _SYSTEM, NONE, and database usernames beginning with DB__ are reserved. You

cannot specify a role-name with any such name.

Role Ownership
You can give role ownership to a user by specifying the user in the WITH ADMIN grantor clause
with the grantor as the user.
The role owner can perform these operations:
• Grant and revoke the role to users.

• Drop the role.
Role ownership is permanent. After you create the role, the ownership of the role cannot be changed
or assigned to another user.

Examples of CREATE ROLE
• To create a role and assign the current user as the role owner:

CREATE ROLE clerks;

• To create a role and assign another user as the role owner:
CREATE ROLE sales WITH ADMIN cmiller;

66 SQL Statements

CREATE SCHEMA Statement
• “Syntax Description of CREATE SCHEMA”

• “Considerations for CREATE SCHEMA”

• “Examples of CREATE SCHEMA”
The CREATE SCHEMA statement creates a schema in the database. See “Schemas” (page 249).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)
for the session.

CREATE [schema-class] SCHEMA schema-clause

schema-class is:
 [PRIVATE | SHARED]

schema-clause is:
 { schema-name [AUTHORIZATION authid] | AUTHORIZATION authid }

Syntax Description of CREATE SCHEMA
schema-class

indicates whether access to the schema is restricted to the authorization ID by default (PRIVATE)
or whether any database user may add objects to the schema (SHARED). The default class is
PRIVATE.

NOTE: Schemas created in Trafodion Release 0.9 or earlier are SHARED schemas.

schema-name

is a name for the new schema and is an SQL identifier that specifies a unique name that is not
currently a schema name. This parameter is optional. However, if you do not specify a schema
name, you must specify the authorization clause. If a schema name is not provided, the
authorization ID is used for the schema name. If the authorization ID name matches an existing
schema, the CREATE SCHEMA command fails.

authid

is the name of the database user or role will own and administer the schema. If this clause is
not present, the current user becomes the schema owner.

Considerations for CREATE SCHEMA

Reserved Schema Names
Schema names that begin with a leading underscore (_) are reserved for future use.

AUTHORIZATION Clause
The AUTHORIZATION clause is optional. If you omit this clause, the current user becomes the
schema owner.

NOTE: An authorization ID is assigned to a schema name even if authorization is not enabled
for the Trafodion database. However, no enforcement occurs unless authorization is enabled.

CREATE SCHEMA Statement 67

The schema owner can perform operations on the schema and on objects within the schema. For
example:
• Alter DDL of objects

• Drop the schema

• Drop objects

• Manage objects with utility commands such as UPDATE STATISTICS and PURGEDATA

Who Can Create a Schema
The privilege to create a schema is controlled by the component privilege CREATE_SCHEMA for
the SQL_OPERATIONS component. By default, this privilege is granted to PUBLIC, but it can be
revoked by DB__ROOT.
When authorization is initialized, these authorization IDs are granted the CREATE_SCHEMA
privilege:
• PUBLIC

• DB__ROOT

• DB__ROOTROLE
DB__ROOT or anyone granted the DB_ROOTROLE role can grant the CREATE_SCHEMA privilege.

Examples of CREATE SCHEMA
• This example creates a private schema schema named MYSCHEMA, which will be owned

by the current user:
CREATE SCHEMA myschema;

• This example creates a shared schema and designates CliffG as the schema owner:
CREATE SHARED SCHEMA hockey_league AUTHORIZATION "CliffG";

• This example creates a private schema and designates the role DBA as the schema owner:
CREATE PRIVATE SCHEMA contracts AUTHORIZATION DBA;

Users with the role DBA granted to them can grant access to objects in the CONTRACTS
schema to other users and roles.

• This example creates a schema named JSMITH:
CREATE PRIVATE SCHEMA AUTHORIZATION JSmith;

68 SQL Statements

CREATE TABLE Statement
• “Syntax Description of CREATE TABLE”

• “Considerations for CREATE TABLE”

• “Examples of CREATE TABLE”
The CREATE TABLE statement creates a Trafodion SQL table, which is a mapping of a relational
SQL table to an HBase table. The CREATE VOLATILE TABLE statement creates a temporary Trafodion
SQL table that exists only during an SQL session. The CREATE TABLE AS statement creates a table
based on the data attributes of a SELECT query and populates the table using the data returned
by the SELECT query. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE [VOLATILE] TABLE IF NOT EXISTS table
 { table-spec | like-spec }
 [SALT USING num PARTITIONS [ON (column[, column]...)]]
 [STORE BY {PRIMARY KEY | (key-column-list)}]

[HBASE_OPTIONS (hbase-options-list)]
[LOAD IF EXISTS | NO LOAD]

 [AS select-query]

table-spec is:
 (table-element [,table-element]...)

table-element is:
column-definition

 | [CONSTRAINT constraint-name] table-constraint

column-definition is:
column data-type

 [DEFAULT default | NO DEFAULT]
 [[CONSTRAINT constraint-name] column-constraint]...

data-type is:
 CHAR[ACTER] [(length [CHARACTERS])]
 [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT]CASESPECIFIC]
 | CHAR[ACTER] VARYING (length [CHARACTERS])
 [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT]CASESPECIFIC]
 | VARCHAR (length) [CHARACTER SET char-set-name]
 [UPSHIFT] [[NOT]CASESPECIFIC]
 | NCHAR (length) [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]
 | NCHAR VARYING(length [CHARACTERS]) [UPSHIFT] [[NOT] CASESPECIFIC]
 | NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | SMALLINT [SIGNED|UNSIGNED]
 | INT[EGER] [SIGNED|UNSIGNED]
 | LARGEINT
 | DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
 | FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION
 | DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]
 | INTERVAL { start-field TO end-field | single-field }

CREATE TABLE Statement 69

default is:
literal

 | NULL
 | CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP

column-constraint is:
 NOT NULL
 | UNIQUE
 | PRIMARY KEY [ASC[ENDING] | DESC[ENDING]]
 | CHECK (condition)
 | REFERENCES ref-spec

table-constraint is:
 UNIQUE (column-list)
 | PRIMARY KEY (key-column-list)
 | CHECK (condition)
 | FOREIGN KEY (column-list) REFERENCES ref-spec

ref-spec is:
referenced-table [(column-list)]

column-list is:
column-name [,column-name]...

key-column-list is:
column-name [ASC[ENDING] | DESC[ENDING]]

 [,column-name [ASC[ENDING] | DESC[ENDING]]]...

like-spec is:
 LIKE source-table [include-option]

hbase-options-list is:
hbase-option = 'value'[, hbase-option = 'value']...

Syntax Description of CREATE TABLE
VOLATILE

specifies a volatile table, which is a table limited to the session that creates the table. After the
session ends, the table is automatically dropped. See “Considerations for CREATE VOLATILE
TABLE” (page 75).

IF NOT EXISTS
creates an HBase table if it does not already exist when the table is created. This option does
not apply to volatile tables.

table

specifies the ANSI logical name of the table. See “Database Object Names” (page 198). This
name must be unique among names of tables and views within its schema.

SALT USING num PARTITIONS [ON (column[, column]...)]
pre-splits the table into multiple regions when the table is created. Salting adds a hash value
of the row key as a key prefix, thus avoiding hot spots for sequential keys. The number of
partitions that you specify can be a function of the number of region servers present in the
HBase cluster. You can specify a number from 2 to 1024. If you do not specify columns, the
default is to use all primary key columns.

STORE BY { PRIMARY KEY | (key-column-list)}
specifies a set of columns on which to base the clustering key. The clustering key determines
the order of rows within the physical file that holds the table. The storage order has an effect
on how you can partition the object.
PRIMARY KEY

bases the clustering key on the primary key columns.

70 SQL Statements

key-column-list

bases the clustering key on the columns in the key-column-list. The key columns in
key-column-list must be specified as NOT NULL and must be the same as the primary
key columns that are defined on the table. If STORE BY is not specified, then the clustering
key is the PRIMARY KEY.

HBASE_OPTIONS (hbase-option = 'value'[, hbase-option = 'value']...)
a list of HBase options to set for the table.
hbase-option = 'value'

is one of the these HBase options and its assigned value:

Accepted Values1HBase Option

'true' | 'false'BLOCKCACHE

'65536' | 'positive-integer'BLOCKSIZE

'NONE' | 'ROW' | 'ROWCOL'BLOOMFILTER

'true' | 'false'CACHE_BLOOMS_ON_WRITE

'true' | 'false'CACHE_DATA_ON_WRITE

'true' | 'false'CACHE_INDEXES_ON_WRITE

'true' | 'false'COMPACT

'GZ' | 'LZ4' | 'LZO' | 'NONE' | 'SNAPPY'COMPACT_COMPRESSION

'GZ' | 'LZ4' | 'LZO' | 'NONE' | 'SNAPPY'COMPRESSION

'DIFF' | 'FAST_DIFF' | 'NONE' | 'PREFIX'DATA_BLOCK_ENCODING

'USE_DEFAULT' | 'SKIP_WAL' | 'ASYNC_WAL' | 'SYNC_WAL' |
'FSYNC_WAL'

DURABILITY

'true' | 'false'EVICT_BLOCKS_ON_CLOSE

'true' | 'false'IN_MEMORY

'true' | 'false'KEEP_DELETED_CELLS

'positive-integer'MAX_FILESIZE

'1' | 'positive-integer'MAX_VERSIONS

'positive-integer'MEMSTORE_FLUSH_SIZE

'0' | 'positive-integer'MIN_VERSIONS

'positive-integer', which should be less than maximum length
of the key for the table. It applies only if the SPLIT_POLICY is
KeyPrefixRegionSplitPolicy.

PREFIX_LENGTH_KEY

'0' | '1'REPLICATION_SCOPE

'org.apache.hadoop.hbase.regionserver.ConstantSizeRegionSplitPolicy'
|

SPLIT_POLICY

'org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy'
| 'org.apache.hadoop.hbase.regionserver.KeyPrefixRegionSplitPolicy'

'-1' (forever) | 'positive-integer'TTL
1 Values in boldface are default values.

LOAD IF EXISTS
loads data into an existing table. Must be used with AS select-query. See “Considerations
for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS” (page 78).

CREATE TABLE Statement 71

NO LOAD
creates a table with the CREATE TABLE AS statement, but does not load data into the table.
See “Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS”
(page 78).

AS select-query

specifies a select query which is used to populate the created table. A select query can be any
SQL select statement.

column data-type

specifies the name and data type for a column in the table. At least one column definition is
required in a CREATE TABLE statement.
column is an SQL identifier. column must be unique among column names in the table. If the
name is a Trafodion SQL reserved word, you must delimit it by enclosing it in double quotes.
Such delimited parts are case-sensitive. For example: "join".
data-type is the data type of the values that can be stored in column. A default value must
be of the same type as the column, including the character set for a character column. See
“Data Types” (page 199). Data type also includes case specific information, such as UPSHIFT.

[NOT] CASESPECIFIC
specifies that the column contains strings that are not case specific. The default is
CASESPECIFIC. Comparison between two values is done in a case insensitive way only if
both are case insensitive. This applies to comparison in a binary predicate, LIKE predicate,
and POSITION/REPLACE string function searches. See “Examples of CREATE TABLE” (page 79).

DEFAULT default | NO DEFAULT
specifies a default value for the column or specifies that the column does not have a default
value. “DEFAULT Clause” (page 257).

CONSTRAINT constraint-name
specifies a name for the column or table constraint. constraint-name must have the same
schema as table and must be unique among constraint names in its schema. If you omit the
schema portions of the name you specify in constraint-name, Trafodion SQL expands the
constraint name by using the schema for table. See “Constraint Names” (page 195) and
“Database Object Names” (page 198).

NOT NULL
is a column constraint that specifies that the column cannot contain nulls. If you omit NOT NULL,
nulls are allowed in the column. If you specify both NOT NULL and NO DEFAULT, each row
inserted in the table must include a value for the column. See “Null” (page 231).

UNIQUE, or, UNIQUE (column-list)
is a column or table constraint, respectively, that specifies that the column or set of columns
cannot contain more than one occurrence of the same value or set of values. If you omit
UNIQUE, duplicate values are allowed unless the column is part of the PRIMARY KEY.
column-list cannot include more than one occurrence of the same column. In addition, the
set of columns that you specify on a UNIQUE constraint cannot match the set of columns on
any other UNIQUE constraint for the table or on the PRIMARY KEY constraint for the table. All
columns defined as unique must be specified as NOT NULL.
A UNIQUE constraint is enforced with a unique index. If there is already a unique index on
column-list, Trafodion SQL uses that index. If a unique index does not exist, the system
creates a unique index.

PRIMARY KEY [ASC[ENDING] | DESC[ENDING]], or, PRIMARY KEY (key-column-list)
is a column or table constraint, respectively, that specifies a column or set of columns as the
primary key for the table. key-column-list cannot include more than one occurrence of
the same column.

72 SQL Statements

ASCENDING and DESCENDING specify the direction for entries in one column within the
key. The default is ASCENDING.
The PRIMARY KEY value in each row of the table must be unique within the table. A PRIMARY
KEY defined for a set of columns implies that the column values are unique and not null. You
can specify PRIMARY KEY only once on any CREATE TABLE statement.
Trafodion SQL uses the primary key as the clustering key of the table to avoid creating a
separate, unique index to implement the primary key constraint.
A PRIMARY KEY constraint is required in Trafodion SQL.

CHECK (condition)
is a constraint that specifies a condition that must be satisfied for each row in the table. See
“Search Condition” (page 250).
You cannot refer to the CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP function
in a CHECK constraint, and you cannot use subqueries in a CHECK constraint.

REFERENCES ref-spec

specifies a REFERENCES column constraint. The maximum combined length of the columns for
a REFERENCES constraint is 2048 bytes.
ref-spec is:

referenced-table [(column-list)]
referenced-table is the table referenced by the foreign key in a referential constraint.
referenced-table cannot be a view. referenced-table cannot be the same as
table. referenced-table corresponds to the foreign key in the table.
column-list specifies the column or set of columns in the referenced-table that
corresponds to the foreign key in table. The columns in the column list associated with
REFERENCES must be in the same order as the columns in the column list associated with
FOREIGN KEY. If column-list is omitted, the referenced table's PRIMARY KEY columns
are the referenced columns.
A table can have an unlimited number of referential constraints, and you can specify the
same foreign key in more than one referential constraint, but you must define each referential
constraint separately. You cannot create self-referencing foreign key constraints.

FOREIGN KEY (column-list) REFERENCES ref-spec

is a table constraint that specifies a referential constraint for the table, declaring that a column
or set of columns (called a foreign key) in table can contain only values that match those in
a column or set of columns in the table specified in the REFERENCES clause.
The two columns or sets of columns must have the same characteristics (data type, length, scale,
precision). Without the FOREIGN KEY clause, the foreign key in table is the column being
defined; with the FOREIGN KEY clause, the foreign key is the column or set of columns specified
in the FOREIGN KEY clause. For information about ref-spec, see REFERENCES ref-spec.

LIKE source-table [include-option]...
directs Trafodion SQL to create a table like the existing table, source-table, omitting
constraints (with the exception of the NOT NULL and PRIMARY KEY constraints) and partitions
unless the include-option clauses are specified.
source-table

is the ANSI logical name for the existing table and must be unique among names of tables
and views within its schema.

include-option

WITH CONSTRAINTS
directs Trafodion SQL to use constraints from source-table. Constraint names for
table are randomly generated unique names.

CREATE TABLE Statement 73

When you perform a CREATE TABLE LIKE, whether or not you include the WITH
CONSTRAINTS clause, the target table will have all the NOT NULL column constraints
that exist for the source table with different constraint names.

WITH PARTITIONS
directs Trafodion SQL to use partition definitions from source-table. Each new table
partition resides on the same volume as its original source-table counterpart. The
new table partitions do not inherit partition names from the original table. Instead,
Trafodion SQL generates new names based on the physical file location.
If you specify the LIKE clause and the SALT USING num PARITIONS clause, you cannot
specify WITH PARTITIONS.

Considerations for CREATE TABLE
The following subsections provide considerations for various CREATE TABLE options:

• “Authorization and Availability Requirements” (page 74)

• “Considerations for CREATE VOLATILE TABLE” (page 75)

• “Considerations for CREATE TABLE ... LIKE” (page 77)

• “Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS” (page 78)

• “Considerations for CREATE TABLE AS” (page 78)

Authorization and Availability Requirements

Required Privileges
To issue a CREATE TABLE statement, one of the following must be true:

• You are DB__ROOT.

• You are creating the table in a shared schema.

• You are the private schema owner.

• You have the CREATE or CREATE_TABLE component privilege for the SQL_OPERATIONS
component.

NOTE: In this case, if you create a table in a private schema, it will be owned by the schema
owner.

Privileges Needed to Create a Referential Integrity Constraint
To create a referential integrity constraint (that is, a constraint on the table that refers to a column
in another table), one of the following must be true:

• You are DB__ROOT.

• You are the owner of the referencing and referenced tables.

• You have these privileges on the referencing and referenced table:

For the referencing table, you have the CREATE or CREATE_TABLE component privilege
for the SQL_OPERATIONS component.

◦

◦ For the referenced table, you have the REFERENCES (or ALL) privilege on the referenced
table through your username or through a granted role.

If the constraint refers to the other table in a query expression, you must also have SELECT privileges
on the other table.

74 SQL Statements

Considerations for CREATE VOLATILE TABLE
• Volatile temporary tables are closely linked to the session. Their namespace is unique across

multiple concurrent sessions, and therefore allow multiple sessions to use the same volatile
temporary table names simultaneously without any conflicts.

• Volatile tables support creation of indexes.

• Volatile tables are partitioned by the system. The number of partitions is limited to four partitions
by default. The partitions will be distributed across the cluster. The default value is four partitions
regardless of the system configuration.

• Statistics are not automatically updated for volatile tables. If you need statistics, you must
explicitly run UPDATE STATISTICS.

• Volatile tables can be created and accessed using one-part, two-part, or three-part names.
However, you must use the same name (one part, two part, or three part) for any further DDL
or DML statements on the created volatile table. See “Examples of CREATE TABLE” (page 79).

• Trafodion SQL allows users to explicitly specify primary key and STORE BY clauses on columns
that contain null values.

• Trafodion SQL does not require that the first column in a volatile table contain not null values
and be the primary key. Instead, Trafodion SQL attempts to partition the table, if possible,
using an appropriate suitable key column as the primary and partitioning key. For more
information, see “How Trafodion SQL Selects Suitable Keys for Volatile Tables” (page 75).

Restrictions for CREATE VOLATILE TABLE
These items are not supported for volatile tables:

• ALTER statement

• User constraints

• Creating views

• Creating non-volatile indexes on a volatile table or a volatile index on a non-volatile table

• CREATE TABLE LIKE operations

How Trafodion SQL Supports Nullable Keys for Volatile Tables

• Allows nullable keys in primary key, STORE BY, and unique constraints.

• A null value is treated as the highest value for that column.

• A null value as equal to other null values and only one value is allowed for that column.

How Trafodion SQL Selects Suitable Keys for Volatile Tables
Trafodion SQL searches for the first suitable column in the list of columns of the table being created.
Once the column is located, the table is partitioned on it. The searched columns in the table might
be explicitly specified (as in a CREATE TABLE statement) or implicitly created (as in a CREATE
TABLE AS SELECT statement).
The suitable key column is selected only if no primary key or STORE BY clause has been specified
in the statement. If any of these clauses have been specified, they are used to select the key columns.
Trafodion SQL follows these guidelines to search for and select suitable keys:

• A suitable column can be a nullable column.

• Certain data types in Trafodion SQL cannot be used as a partitioning key. Currently, this
includes any floating point columns (REAL, DOUBLE PRECISION, and FLOAT).

CREATE TABLE Statement 75

• Trafodion SQL searches for a suitable column according to this predefined order:

Numeric columns are chosen first, followed by fixed CHAR, DATETIME, INTERVAL, and
VARCHAR data types.

◦

◦ Within numeric data types, the order is binary NUMERIC (LARGEINT, INTEGER,
SMALLINT), and DECIMAL.

◦ An unsigned column is given preference over a signed column.

◦ A non-nullable column is given preference over a nullable column.

◦ If all data types are the same, the first column is selected.

• If a suitable column is not located, the volatile table becomes a non-partitioned table with a
system-defined SYSKEY as its primary key.

• If a suitable column is located, it becomes the partitioning key where the primary key is
suitable_column, SYSKEY. This causes the table to be partitioned while preventing the
duplicate key and null-to-non-null errors.

Table 1 shows the order of precedence, from low to high, of data types when Trafodion SQL
searches for a suitable key. A data type appearing later has precedence over previously-appearing
data types. Data types that do not appear in Table 1 cannot be chosen as a key column.

Table 1 Precedence of Data Types During Suitable Key Searches

Precedence of Data Types (From Low to High)

VARCHAR

INTERVAL

DATETIME

CHAR(ACTER)

DECIMAL (signed, unsigned)

SMALLINT (signed, unsigned)

INTEGER (signed, unsigned)

LARGEINT (signed only)

Creating Nullable Constraints in a Volatile Table
These examples show the creation of nullable constraints (primary key, STORE BY, and unique) in
a volatile table:
create volatile table t (a int, primary key(a));
create volatile table t (a int, store by primary key);
create volatile table t (a int unique);

Creating a Volatile Table With a Nullable Primary Key
This example creates a volatile table with a nullable primary key:
>>create volatile table t (a int, primary key(a));

 --- SQL operation complete.

Only one unique null value is allowed:
>>insert into t values (null);

 --- 1 row(s) inserted.
 >>insert into t values (null);

76 SQL Statements

 *** ERROR[8102] The operation is prevented by a unique constraint.

 --- 0 row(s) inserted.

Examples for Selecting Suitable Keys for Volatile Tables
These examples show the order by which Trafodion SQL selects a suitable key based on the
precedence rules described in “How Trafodion SQL Selects Suitable Keys for Volatile Tables”
(page 75):

• Selects column a as the primary and partitioning key:
create volatile table t (a int);

• Selects column b because int has a higher precedence than char:
create volatile table t (a char(10), b int);

• Selects column b because not null has precedence over nullable columns:
create volatile table t (a int, b int not null);

• Selects column b because int has precedence over decimal:
create volatile table t (a decimal(10), b int);

• Selects the first column, a, because both columns have the same data type:
create volatile table t (a int not null, b int not null);

• Selects column b because char has precedence over date:
create volatile table t (a date, b char(10));

• Selects column b because the real data type is not part of the columns to be examined:
create volatile table t (a real, b date);

• Does not select any column as the primary/partitioning key. SYSKEY is used automatically.
create volatile table t (a real, b double precision not null);

Similar examples would be used for CREATE TABLE AS SELECT queries.

Considerations for CREATE TABLE ... LIKE
The CREATE TABLE LIKE statement does not create views, owner information, or privileges for the
new table based on the source table. Privileges associated with a new table created by using the
LIKE specification are defined as if the new table is created explicitly by the current user.

CREATE TABLE ... LIKE and File Attributes
CREATE TABLE ... LIKE creates a table like another table, with the exception of file attributes. File
attributes include COMPRESSION, and so on. If you do not include the attribute value as part of
the CREATE TABLE ... LIKE command, SQL creates the table with the default value for the attributes
and not the value from the source object. For example, to create a table like another table that
specifies compression, you must specify the compression attribute value as part of the CREATE
TABLE... LIKE statement. In the following example, the original CREATE TABLE statement creates a
table without compression. However, in the CREATE TABLE ... LIKE statement, compression is
specified.

-- Original Table
create table NPTEST
(FIRST_NAME CHAR(12) CHARACTER SET ISO88591 COLLATE DEFAULT NO DEFAULT
NOT NULL
, LAST_NAME CHAR(24) CHARACTER SET ISO88591 COLLATE
DEFAULT NO DEFAULT NOT NULL
 , ADDRESS CHAR(128) CHARACTER SET ISO88591 COLLATE
DEFAULT DEFAULT NULL

CREATE TABLE Statement 77

 , ZIP INT DEFAULT 0
 , PHONE CHAR(10) CHARACTER SET ISO88591 COLLATE
DEFAULT DEFAULT NULL , SSN LARGEINT NO DEFAULT NOT NULL
 , INFO1 CHAR(128) CHARACTER SET ISO88591 COLLATE
DEFAULT DEFAULT NULL , INFO2 CHAR(128) CHARACTER SET ISO88591 COLLATE
DEFAULT DEFAULT NULL , primary key (SSN,first_name,last_name)
)
max table size 512

-- CREATE TABLE LIKE

create table LSCE002 like NPTEST ATTRIBUTE compression type hardware;

Considerations for CREATE TABLE AS
These considerations apply to CREATE TABLE AS:

• Access to the table built by CREATE TABLE AS will be a full table scan because a primary and
clustering key cannot be easily defined.

• Compile time estimates and runtime information is not generated for CREATE TABLE AS tables.

• You cannot manage CREATE TABLE AS tables using WMS compile time or runtime rules.

• You cannot specify a primary key for a CREATE TABLE AS table without explicitly defining all
the columns in the CREATE TABLE statement.

• You cannot generate an explain plan for a CREATE TABLE AS ...INSERT/SELECT statement.
You can, however, use the EXPLAIN plan for a CREATE TABLE AS ... INSERT/SELECT statement
if you use the NO LOAD option.

• You cannot use the ORDER BY clause in a CREATE TABLE AS statement. The compiler
transparently orders the selected rows to improve the efficiency of the insert.

Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS
The LOAD IF EXISTS option in a CREATE TABLE AS statement causes data to be loaded into an
existing table. If you do not specify the LOAD IF EXISTS option and try to load data into an existing
table, the CREATE TABLE AS statement fails to execute. Use the LOAD IF EXISTS option with the
AS clause in these scenarios:

• Running CREATE TABLE AS without re-creating the table. The table must be empty. Otherwise,
the CREATE TABLE AS statement returns an error. Delete the data in the table by using a
DELETE statement before issuing the CREATE TABLE AS statement.

• Using CREATE TABLE AS to incrementally add data to an existing table. You must start a
user-defined transaction before issuing the CREATE TABLE AS statement. If you try to execute
the CREATE TABLE AS statement without starting a user-defined transaction, an error is returned,
stating that data already exists in the table. With a user-defined transaction, newly added
rows are rolled back if an error occurs.

The NO LOAD option in a CREATE TABLE AS statement creates a table with the CREATE TABLE
AS statement, but does not load data into the table. The option is useful if you must create a table
to review its structure and to analyze the SELECT part of the CREATE TABLE AS statement with the
EXPLAIN statement. You can also use EXPLAIN to analyze the implicated INSERT/SELECT part of
the CREATE TABLE AS ... NO LOAD statement. For example:
CREATE TABLE ttgt NO LOAD AS (SELECT ...);

Trafodion SQL Extensions to CREATE TABLE
This statement is supported for compliance with ANSI SQL:1999 Entry Level. Trafodion SQL
extensions to the CREATE TABLE statement are ASCENDING, DESCENDING, and PARTITION
clauses. CREATE TABLE LIKE is also an extension.

78 SQL Statements

Examples of CREATE TABLE
• This example creates a table. The clustering key is the primary key.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum));

• This example creates a table like the JOB table with the same constraints:
CREATE TABLE PERSNL.JOB_CORPORATE
 LIKE PERSNL.JOB WITH CONSTRAINTS;

• This is an example of NOT CASESPECIFIC usage:
CREATE TABLE T (a char(10) NOT CASESPECIFIC, b char(10));
INSERT INTO T values ('a', 'A');

• A row is not returned in this example. Constant ‘A’ is case sensitive, whereas column ‘a’ is
insensitive.
SELECT * FROM T WHERE a = 'A';

• The row is returned in this example. Both sides are case sensitive.
SELECT * FROM T WHERE a = 'A' (not casespecific);

• The row is returned in this example. A case sensitive comparison is done because column ‘b’
is case sensitive.
SELECT * FROM T WHERE b = 'A';

• The row is returned in this example. A case sensitive comparison is done because column ‘b’
is case sensitive.
SELECT * FROM T WHERE b = 'A' (not casespecific);

Examples of CREATE TABLE AS
This section shows the column attribute rules used to generate and specify the column names and
data types of the table being created.

• If column-attributes are not specified, the select list items of the select-query are used
to generate the column names and data attributes of the created table. If the select list item is
a column, then it is used as the name of the created column. For example:
create table t as select a,b from t1

Table t has 2 columns named (a,b) and the same data attributes as columns from table t1.

• If the select list item is an expression, it must be renamed with an AS clause. An error is returned
if expressions are not named. For example:
create table t as select a+1 as c from t1

Table t has 1 column named (c) and data attribute of (a+1)
create table t as select a+1 from t1

An error is returned, expression must be renamed.

• If column-attributes are specified and contains datatype-info, then they override
the attributes of the select items in the select query. These data attributes must be compatible
with the corresponding data attributes of the select list items in the select-query.
create table t(a int) as select b from t1

Table t has one column named “a” with data type “int”.
create table t(a char(10)) as select a+1 b from t1;

CREATE TABLE Statement 79

An error is returned because the data attribute of column “a”, a char, does not match the data
attribute of the select list item “b” a numeric.

• If column-attributes are specified and they only contain column-name, then the specified
column-name override any name that was derived from the select query.
create table t(c,d) as select a,b from t1

Table t has 2 columns, c and d, which has the data attributes of columns a and b from table
t1.

• If column-attributes are specified, then they must contain attributes corresponding to all
select list items in the select-query. An error is returned, if a mismatch exists.
create table t(a int) as select b,c from t1

An error is returned. Two items need to be specified as part of the table-attributes.

• The column-attributes must specify either the column-name datatype-info pair or
just the column-name for all columns. You cannot specify some columns with just the name
and others with name and data type.
create table t(a int, b) as select c,d from t1

An error is returned.

In the following example, table t1 is created. Table t2 is created using the CREATE TABLE AS
syntax without table attributes:
CREATE TABLE t1 (c1 int not null primary key,
 c2 char(50));

CREATE TABLE t2 (c1 int, c2 char (50) UPSHIFT NOT NULL)
 AS SELECT * FROM t1;

80 SQL Statements

CREATE VIEW Statement
• “Syntax Description of CREATE VIEW”

• “Considerations for CREATE VIEW”

• “Examples of CREATE VIEW”
The CREATE VIEW statement creates a Trafodion SQL view. See “Views” (page 255).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE [OR REPLACE] VIEW view
 [(column-name] [,column-name ...)]
 AS query-expr [order-by-clause]
 [WITH CHECK OPTION]

Syntax Description of CREATE VIEW
OR REPLACE

creates a view if one does not exist or replaces a view if a view of the same name exists. The
view being replaced might have the same view definition or a different view definition.

view

specifies the ANSI logical name of the view. See “Database Object Names” (page 198). This
name must be unique among names of tables and views within its schema.

(column-name [,column-name]...)
specifies names for the columns of the view. Column names in the list must match one-for-one
with columns in the table specified by query-expr.
If you omit this clause, columns in the view have the same names as the corresponding columns
in query-expr. You must specify this clause if any two columns in the table specified by
query-expr have the same name or if any column of that table does not have a name. For
example, this query expression SELECT MAX(salary), AVG(salary) AS
average_salary FROM employee the first column does not have a name.
No two columns of the view can have the same name; if a view refers to more than one table
and the select list refers to columns from different tables with the same name, you must specify
new names for columns that would otherwise have duplicate names.

AS query-expr

specifies the columns for the view and sets the selection criteria that determines the rows that
make up the view. For information about character string literals, see “Character String Literals”
(page 224). For the syntax and syntax description of query-expr, see “SELECT Statement”
(page 138). The CREATE VIEW statement provides this restriction with regard to the query-expr
syntax: [ANY N], [FIRST N] select list items are not allowed in a view.

order-by-clause

specifies the order in which to sort the rows of the final result table. For the syntax and syntax
description of the order-by-clause, see “SELECT Statement” (page 138). The CREATE VIEW
statement restricts the order-by-clause with regard to the access-clause and
mode-clause. The access-mode and mode-clause cannot follow the order-by-clause.

WITH CHECK OPTION
specifies that no row can be inserted or updated in the database through the view unless the
row satisfies the view definition—that is, the search condition in the WHERE clause of the query

CREATE VIEW Statement 81

expression must evaluate to true for any row that is inserted or updated. This option is only
allowed for updatable views.
If you omit this option, a newly inserted row or an updated row need not satisfy the view
definition, which means that such a row can be inserted or updated in the table but does not
appear in the view. This check is performed each time a row is inserted or updated.
WITH CHECK OPTION does not affect the query expression; rows must always satisfy the view
definition.

Considerations for CREATE VIEW
• If you specify CREATE OR REPLACE VIEW:

A new view is created if a view of the same name does not exist.◦
◦ If a view of same name exists, the old view definition is dropped, and a view with a new

definition is created. No check will be done to see if the new view is identical to the view
it is replacing. The CREATE OR REPLACE VIEW command will unilaterally drop the old
view definition and replace it with the new view definition.

◦ The privileges granted on the old view will be re-granted on the new view. If the re-grant
of privileges fails, the CREATE OR REPLACE VIEW operation fails.

◦ When CREATE OR REPLACE VIEW replaces an existing view, any dependent views will
be dropped.

• You can specify GROUP BY using ordinals to refer to the relative position within the SELECT
list. For example, GROUP BY 3, 2, 1.

• Dynamic parameters are not allowed.

Effect of Adding a Column on View Definitions
The addition of a column to a table has no effect on any existing view definitions or conditions
included in constraint definitions. Any implicit column references specified by SELECT * in view or
constraint definitions are replaced by explicit column references when the definition clauses are
originally evaluated.

Authorization and Availability Requirements
To issue a CREATE VIEW statement, you must have SELECT privileges on the objects underlying
the view or be the owner of the objects underlying the view, and one of the following must be true:

• You are DB__ROOT.

• You are creating the view in a shared schema.

• You are the private schema owner.

• You have the CREATE or CREATE_VIEW component privilege for the SQL_OPERATIONS
component.

NOTE: In this case, if you create a view in a private schema, it will be owned by the schema
owner.

When you create a view on a single table, the owner of the view is automatically given all privileges
WITH GRANT OPTION on the view. However, when you create a view that spans multiple tables,
the owner of the view is given only SELECT privileges WITH GRANT OPTION. If you try to grant
privileges to another user on the view other than SELECT, you will receive a warning that you lack
the grant option for that privilege.

82 SQL Statements

Updatable and Non-Updatable Views
Single table views can be updatable. Multi-table views cannot be updatable.
To define an updatable view, a query expression must also meet these requirements:

• It cannot contain a JOIN, UNION, or EXCEPT clause.

• It cannot contain a GROUP BY or HAVING clause.

• It cannot directly contain the keyword DISTINCT.

• The FROM clause must refer to exactly one table or one updatable view.

• It cannot contain a WHERE clause that contains a subquery.

• The select list cannot include expressions or functions or duplicate column names.

ORDER BY Clause Guidelines
The ORDER BY clause can be specified in the SELECT portion of a CREATE VIEW definition. Any
SELECT syntax that is valid when the SELECT portion is specified on its own is also valid during
the view definition. An ORDER BY clause can contain either the column name from the SELECT list
or from select-list-index.
When a DML statement is issued against the view, the rules documented in the following sections
are used to apply the ORDER BY clause.

When to Use ORDER BY
An ORDER BY clause is used in a view definition only when the clause is under the root of the
Select query that uses that view. If the ORDER BY clause appears in other intermediate locations
or in a subquery, it is ignored.
Consider this CREATE VIEW statement:
create view v as select a from t order by a;
select * from v x, v y;

Or this INSERT statement:
insert into t1 select * from v;

In these two examples, the ORDER BY clause is ignored during DML processing because the first
appears as part of a derived table and the second as a subquery selects, both created after the
view expansion.
If the same query is issued using explicit derived tables instead of a view, a syntax error is returned:
select * from (select a from t order by a) x, (select a from t order by a) y;

This example returns a syntax error because an ORDER BY clause is not supported in a subquery.
The ORDER BY clause is ignored if it is part of a view and used in places where it is not supported.
This is different than returning an error when the same query was written with explicit ORDER BY
clause, as is shown in the preceding examples.

ORDER BY in a View Definition With No Override
If the SELECT query reads from the view with no explicit ORDER BY override, the ORDER BY
semantics of the view definition are used.
In this example, the ordering column is the one specified in the CREATE VIEW statement:
create view v as select * from t order by a
Select * from v

The SELECT query becomes equivalent to:
select * from t order by a;

CREATE VIEW Statement 83

ORDER BY in a View Definition With User Override
If a SELECT query contains an explicit ORDER BY clause, it overrides the ORDER BY clause specified
in the view definition.
For example:
create view v as select a,b from t order by a;
select * from v order by b;

In this example, order by b overrides the order by a specified in the view definition.
The SELECT query becomes equivalent to:
select a,b from t order by b;

Nested View Definitions
In case of nested view definitions, the ORDER BY clause in the topmost view definition overrides
the ORDER BY clause of any nested view definitions.
For example:
create view v1 as select a,b from t1 order by a;
create view v2 as select a,b from v1 order by b;
select * from v2;

In this example, the ORDER BY specified in the definition of view v2 overrides the ORDER BY
specified in the definition of view v1.
The SELECT query becomes equivalent to:
select a,b from (select a, b from t) x order by b;

Examples of CREATE VIEW
• This example creates a view on a single table without a view column list:

CREATE VIEW SALES.MYVIEW1 AS
 SELECT ordernum, qty_ordered FROM SALES.ODETAIL;

• This example replaces the view, MYVIEW1, with a different view definition:
CREATE OR REPLACE VIEW SALES.MYVIEW1 AS
 SELECT ordernum, qty_ordered FROM SALES.ODETAIL
 WHERE unit_price > 100;

• This example creates a view with a column list:
CREATE VIEW SALES.MYVIEW2
 (v_ordernum, t_partnum) AS
 SELECT v.ordernum, t.partnum
 FROM SALES.MYVIEW1 v, SALES.ODETAIL t;

• This example creates a view from two tables by using an INNER JOIN:
CREATE VIEW MYVIEW4
 (v_ordernum, v_partnum) AS
 SELECT od.ordernum, p.partnum
 FROM SALES.ODETAIL OD INNER JOIN SALES.PARTS P
 ON od.partnum = p.partnum;

Vertical Partition Example
This example creates three logical vertical partitions for a table, vp0, vp1, and vp2 and then
creates a view vp to access them.
A view can be used to obtain a composite representation of a set of closely related tables. In the
following example tables vp0, vp1 and vp2 all have a key column a. This key column is known
to contain identical rows for all three tables. The three tables vp0, vp1 and vp2 also contain
columns b, c and d respectively. We can create a view vp that combines these three tables and
provides the interface of columns a, b, c and d belonging to a single object.

84 SQL Statements

Trafodion SQL has the ability to eliminate redundant joins in a query. Redundant joins occur when:

• Output of join contains expressions from only one of its two children

• Every row from this child will match one and only one row from the other child
Suppose tables A and B denote generic tables. To check if the rule “every row from this child will
match one and only one row from the other child” is true, Trafodion SQL uses the fact that the join
of Table A with table or subquery B preserves all the rows of A if the join predicate contains an
equi-join predicate that references a key of B, and one of the following is true: The join is a left
outer join where B is the inner table. In this example, for the join between vp0 and vp1, vp0 fills
the role of table A and vp1 fills the role of table B. For the join between vp1 and vp2, vp1 fills
the role of table A and vp2 fills the role of table B.
The view vp shown in this example uses left outer joins to combine the three underlying tables.
Therefore, if the select list in a query that accesses vp does not contain column d from vp2 then
the join to table vp2 in the view vp will not be performed.
create table vp0(a integer not null, b integer, primary key(a));
create table vp1(a integer not null, c integer, primary key(a));
create table vp2(a integer not null, d integer, primary key(a));

create view vp(a,b,c,d) as
select vp0.a, b, c, d
from vp0 left outer join vp1 on vp0.a=vp1.a
 left outer join vp2 on vp0.a=vp2.a;

select a, b from vp; -- reads only vp0
select a, c from vp; -- reads vp0 and vp1
select d from vp; -- reads vp0 and vp2

CREATE VIEW Statement 85

DELETE Statement
• “Syntax Description of DELETE”

• “Considerations for DELETE”

• “Examples of DELETE”
The DELETE statement is a DML statement that deletes a row or rows from a table or an updatable
view. Deleting rows from a view deletes the rows from the table on which the view is based. DELETE
does not remove a table or view, even if you delete the last row in the table or view.
Trafodion SQL provides searched DELETE—deletes rows whose selection depends on a search
condition.
For the searched DELETE form, if no WHERE clause exists, all rows are deleted from the table or
view.

Searched DELETE is:

DELETE FROM table

[WHERE search-condition]

 [[FOR] access-option ACCESS]

access-option is:
 READ COMMITTED

Syntax Description of DELETE
table

names the user table or view from which to delete rows. table must be a base table or an
updatable view. To refer to a table or view, use the ANSI logical name.
See “Database Object Names” (page 198).

WHERE search-condition

specifies a search condition that selects rows to delete. Within the search condition, any columns
being compared are columns in the table or view being deleted from. See “Search Condition”
(page 250).
If you do not specify a search condition, all rows in the table or view are deleted.

[FOR] access-option ACCESS
specifies the access option required for data used to evaluate the search condition. See “Data
Consistency and Access Options” (page 25).
READ COMMITTED

specifies that any data used to evaluate the search condition must come from committed
rows.

The default access option is the isolation level of the containing transaction.

Considerations for DELETE

Authorization Requirements
DELETE requires authority to read and write to the table or view being deleted from and authority
to read tables or views specified in subqueries used in the search condition.

Transaction Initiation and Termination
The DELETE statement automatically initiates a transaction if no transaction is active. Otherwise,
you can explicitly initiate a transaction with the BEGIN WORK statement. When a transaction is

86 SQL Statements

started, the SQL statements execute within that transaction until a COMMIT or ROLLBACK is
encountered or an error occurs.

Isolation Levels of Transactions and Access Options of Statements
The isolation level of an SQL transaction defines the degree to which the operations on data within
that transaction are affected by operations of concurrent transactions. When you specify access
options for the DML statements within a transaction, you override the isolation level of the containing
transaction. Each statement then executes with its individual access option.

Examples of DELETE
• Remove all rows from the JOB table:

DELETE FROM persnl.job;

--- 10 row(s) deleted.

• Remove from the table ORDERS any orders placed with sales representative 220 by any
customer except customer number 1234:
DELETE FROM sales.orders
WHERE salesrep = 220 AND custnum <> 1234;

--- 2 row(s) deleted.

• Remove all suppliers not in Texas from the table PARTSUPP:
DELETE FROM invent.partsupp
WHERE suppnum IN
 (SELECT suppnum FROM samdbcat.invent.supplier
 WHERE state <> 'TEXAS');

--- 41 row(s) deleted.

This statement achieves the same result:
DELETE FROM invent.partsupp
WHERE suppnum NOT IN
 (SELECT suppnum FROM samdbcat.invent.supplier
 WHERE state = 'TEXAS');

--- 41 row(s) deleted.

• This is an example of a self-referencing DELETE statement, where the table from which rows
are deleted is scanned in a subquery:
delete from table1 where a in
(select a from table1 where b > 200)

DELETE Statement 87

DROP FUNCTION Statement
• “Syntax Description of DROP FUNCTION”

• “Considerations for DROP FUNCTION”

• “Examples of DROP FUNCTION”
The DROP FUNCTION statement removes a user-defined function (UDF) from the Trafodion database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP FUNCTION [[catalog-name.]schema-name.]function-name

Syntax Description of DROP FUNCTION
[[catalog-name.]schema-name.]function-name

specifies the ANSI logical name of the function, where each part of the name is a valid SQL
identifier with a maximum of 128 characters. Specify the name of a function that has already
been registered in the schema. If you do not fully qualify the function name, Trafodion SQL
qualifies it according to the schema of the current session. For more information, see “Identifiers”
(page 221) and “Database Object Names” (page 198).

Considerations for DROP FUNCTION

Required Privileges
To issue a DROP FUNCTION statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the function.

• You have the DROP or DROP_ROUTINE component privilege for SQL_OPERATIONS
component.

Examples of DROP FUNCTION
• This DROP FUNCTION statement removes the function named ADD2 from the default schema:

DROP FUNCTION add2;

• This DROP FUNCTION statement removes the function named MMA5 from the default schema:
DROP PROCEDURE mma5;

• This DROP FUNCTION statement removes the function named REVERSE from the default
schema:
DROP PROCEDURE reverse;

88 SQL Statements

DROP INDEX Statement
• “Syntax Description of DROP INDEX”

• “Considerations for DROP INDEX”

• “Examples of DROP INDEX”
The DROP INDEX statement drops a Trafodion SQL index. See “Indexes” (page 222).
DROP INDEX is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP [VOLATILE] INDEX index

Syntax Description of DROP INDEX
index

is the index to drop.
For information, see “Database Object Names” (page 198).

Considerations for DROP INDEX

Required Privileges
To issue a DROP INDEX statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the index or the table associated with the index.

• You have the DROP or DROP_INDEX component privilege for the SQL_OPERATIONS
component.

Examples of DROP INDEX
• This example drops an index:

DROP INDEX myindex;

• This example drops a volatile index:
DROP VOLATILE INDEX vindex;

DROP INDEX Statement 89

DROP LIBRARY Statement
• “Syntax Description of DROP LIBRARY”

• “Considerations for DROP LIBRARY”

• “Examples of DROP LIBRARY”
The DROP LIBRARY statement removes a library object from the Trafodion database and also
removes the library file referenced by the library object.
DROP LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP LIBRARY [[catalog-name.]schema-name.]library-name [RESTRICT | CASCADE]

Syntax Description of DROP LIBRARY
[[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify the name of a library object that
has already been registered in the schema. If you do not fully qualify the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“Identifiers” (page 221) and “Database Object Names” (page 198).

[RESTRICT | CASCADE]
If you specify RESTRICT, the DROP LIBRARY operation fails if any stored procedures in Java
(SPJs) or user-defined functions (UDFs) were created based on the specified library.
If you specify CASCADE, any such dependent procedures or functions are removed as part of
the DROP LIBRARY operation.
The default value is RESTRICT.

Considerations for DROP LIBRARY
• RESTRICT requires that all procedures and functions that refer to the library object be dropped

before you drop the library object. CASCADE automatically drops any procedures or functions
that are using the library.

• If the library filename referenced by the library object does not exist, Trafodion SQL issues a
warning.

Required Privileges
To issue a DROP LIBRARY statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the library.

• You have the DROP or DROP_LIBRARY component privilege for the SQL_OPERATIONS
component.

Examples of DROP LIBRARY
• This DROP LIBRARY statement removes the library named SALESLIB from the SALES schema,

removes the Sales2.jar file referenced by the library, and drops any stored procedures in
Java (SPJs) that were created based on this library:

90 SQL Statements

DROP LIBRARY sales.saleslib CASCADE;

• This DROP LIBRARY statement removes the library named MYUDFS from the default schema
and removes the $TMUDFS library file referenced by the library:
DROP LIBRARY myudfs RESTRICT;

RESTRICT prevents the DROP LIBRARY operation from dropping any user-defined functions
(UDFs) that were created based on this library. If any UDFs were created based on this library,
the DROP LIBRARY operation fails.

DROP LIBRARY Statement 91

DROP PROCEDURE Statement
• “Syntax Description of DROP PROCEDURE”

• “Considerations for DROP PROCEDURE”

• “Examples of DROP PROCEDURE”
The DROP PROCEDURE statement removes a stored procedure in Java (SPJ) from the Trafodion
database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP PROCEDURE [[catalog-name.]schema-name.]procedure-name

Syntax Description of DROP PROCEDURE
[[catalog-name.]schema-name.]procedure-name

specifies the ANSI logical name of the stored procedure in Java (SPJ), where each part of the
name is a valid SQL identifier with a maximum of 128 characters. Specify the name of a
procedure that has already been registered in the schema. If you do not fully qualify the
procedure name, Trafodion SQL qualifies it according to the schema of the current session.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).

Considerations for DROP PROCEDURE

Required Privileges
To issue a DROP PROCEDURE statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the procedure.

• You have the DROP or DROP_ROUTINE component privilege for SQL_OPERATIONS
component.

Examples of DROP PROCEDURE
• This DROP PROCEDURE statement removes the procedure named LOWERPRICE from the

SALES schema:
DROP PROCEDURE sales.lowerprice;

• This DROP PROCEDURE statement removes the procedure TOTALPRICE from the default schema
for the session, which is the SALES schema:
SET SCHEMA sales;
DROP PROCEDURE totalprice;

92 SQL Statements

DROP ROLE Statement
• “Syntax Description of DROP ROLE”

• “Considerations for DROP ROLE”

• “Examples of DROP ROLE”
The DROP ROLE statement deletes an SQL role. See “Roles” (page 248).

DROP ROLE role-name

Syntax Description of DROP ROLE
role-name

is an existing role name. The role cannot be dropped if any of the following are true:
• Any privileges are granted to the role.

• The role is granted to any users.

• The role owns any schemas.

Considerations for DROP ROLE
• To drop a role, you must own the role or have user administrative privileges for the role. You

have user administrative privileges for the role if you have been granted the MANAGE_ROLES
component privilege. Initially, DB__ROOT is the only database user who has been granted
the MANAGE_ROLES component privilege.

• Role names beginning with DB__ are reserved and can only be dropped by DB__ROOT.

• You can determine all users to whom a role has been granted by using the SHOWDDL ROLE
statement. See the “SHOWDDL Statement” (page 160).

Before You Drop a Role
Before dropping a role, follow these guidelines:

• You must revoke all privileges granted to the role.

• You must revoke the role from all users to whom it was granted.

• You must drop all schemas the role is a manager (or owner) of.
You can determine all users to whom a role has been granted with the SHOWDDL statement. See
the “SHOWDDL Statement” (page 160).

Active Sessions for the User
In Trafodion Release 0.9, when you revoke a role from a user, the effects on any active sessions
for the user are undefined. We recommend that you disconnect such sessions. The user then
reconnects to establish new sessions with the updated set of privileges.
Starting in Trafodion Release 1.0, when you revoke a role from a user, the change in privileges
is automatically propagated to and detected by active sessions. There is no need for users to
disconnect from and reconnect to a session to see the updated set of privileges.

Examples of DROP ROLE
• To drop a role:

DROP ROLE clerks;

• To drop a role with dependent privileges:

DROP ROLE Statement 93

-- User administrator creates a role:
CREATE ROLE clerks;
-- User administrator grants privileges on a table to the role:
GRANT ALL PRIVILEGES ON TABLE invent.partloc TO clerks;
-- User administrator grants the role to a user:
GRANT ROLE clerks TO JSmith;
-- JSmith creates a view based upon the granted privilege:
CREATE VIEW invent.partlocView (partnum, loc_code)
 AS SELECT partnum, loc_code FROM invent.partloc;
-- If the user administrator attempts to drop the role, this
-- would fail because of the view created based on
-- the granted privilege.
-- To successfully drop the role, the dependent view
-- and grant must be removed first. For this example:
-- 1. JSmith drops the view:
DROP VIEW invent.partlocView;
-- 2. User administrator revokes the role from the user:
REVOKE ROLE clerks FROM JSmith;
-- 3. User administrator revokes all privileges the role has been granted
REVOKE ALL ON invent.partloc FROM clerks;
-- 4. User administrator drops the role:
DROP ROLE clerks;
-- The DROP ROLE operation succeeds.

94 SQL Statements

DROP SCHEMA Statement
• “Syntax Description of DROP SCHEMA”

• “Considerations for DROP SCHEMA”

• “Example of DROP SCHEMA”
The DROP SCHEMA statement drops a schema from the database. See“Schemas” (page 249).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)
for the session.

DROP SCHEMA schema-name [RESTRICT|CASCADE]

Syntax Description of DROP SCHEMA
schema-name

is the name of the schema to delete.
RESTRICT

If you specify RESTRICT, an error is reported if the specified schema is not empty. The default
is RESTRICT.

CASCADE
If you specify CASCADE, objects in the specified schema and the schema itself are dropped.
Any objects in other schemas that were dependent on objects in this schema are dropped as
well.

Considerations for DROP SCHEMA

Authorization Requirements
To drop a schema, one of the following must be true:

• You are the owner of the schema.

• You have been granted the role that owns the schema.

• You have been granted the DROP_SCHEMA privilege.

Example of DROP SCHEMA
This example drops an empty schema:
DROP SCHEMA sales;

DROP SCHEMA Statement 95

DROP TABLE Statement
• “Syntax Description of DROP TABLE”

• “Considerations for DROP TABLE”

• “Examples of DROP TABLE”
The DROP TABLE statement deletes a Trafodion SQL table and its dependent objects such as indexes
and constraints. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP [VOLATILE] TABLE [IF EXISTS] table [RESTRICT|CASCADE]

Syntax Description of DROP TABLE
VOLATILE

specifies that the table to be dropped is a volatile table.
IF EXISTS

drops the HBase table if it exists. This option does not apply to volatile tables.
table

is the name of the table to delete.
RESTRICT

If you specify RESTRICT and the table is referenced by another object, the specified table cannot
be dropped. The default is RESTRICT.

CASCADE
If you specify CASCADE, the table and all objects referencing the table (such as a view) are
dropped.

Considerations for DROP TABLE

Authorization Requirements
To issue a DROP TABLE statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the table.

• You have the DROP or DROP_TABLE component privilege for the SQL_OPERATIONS
component.

Examples of DROP TABLE
• This example drops a table:

DROP TABLE mysch.mytable;

• This example drops a volatile table:
DROP VOLATILE TABLE vtable;

96 SQL Statements

DROP VIEW Statement
• “Syntax Description of DROP VIEW”

• “Considerations for DROP VIEW”

• “Example of DROP VIEW”
The DROP VIEW statement deletes a Trafodion SQL view. See “Views” (page 255).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP VIEW view [RESTRICT|CASCADE]

Syntax Description of DROP VIEW
view

is the name of the view to delete.
RESTRICT

If you specify RESTRICT, you cannot drop the specified view if it is referenced in the query
expression of any other view or in the search condition of another object's constraint. The
default is RESTRICT.

CASCADE
If you specify CASCADE, any dependent objects are dropped.

Considerations for DROP VIEW

Authorization Requirements
To issue a DROP VIEW statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the view.

• You have the DROP or DROP_VIEW component privilege for the SQL_OPERATIONS
component.

Example of DROP VIEW
This example drops a view:
DROP VIEW mysch.myview;

DROP VIEW Statement 97

EXECUTE Statement
• “Syntax Description of EXECUTE”

• “Considerations for EXECUTE”

• “Examples of EXECUTE”
The EXECUTE statement executes an SQL statement previously compiled by a PREPARE statement
in a Trafodion Command Interface (TrafCI) session.

EXECUTE statement-name
 [USING param [,param]...]]

param is:
 ?param-name | literal-value

Syntax Description of EXECUTE
statement-name

is the name of a prepared SQL statement—that is, the statement name used in the PREPARE
statement. statement-name is an SQL identifier. See “Identifiers” (page 221).

USING param [,param]... param is: ?param-name | literal-value

specifies values for unnamed parameters (represented by ?) in the prepared statement in the
form of either a parameter name (?param-name) or a literal value (literal-value). The
data type of a parameter value must be compatible with the data type of the associated
parameter in the prepared statement.
Parameter values (param) are substituted for unnamed parameters in the prepared statement
by position—the i-th value in the USING clause is the value for the i-th parameter in the statement.
If fewer parameter values exist in the USING clause than unnamed parameters in the PREPARE
statement, Trafodion SQL returns an error. If more parameter values exist in the USING clause
than the unnamed parameters in the PREPARE statement, Trafodion SQL issues warning 15019.
The USING clause does not set parameter values for named parameters (represented by
?param-name) in a prepared statement. To set parameter values for named parameters, use
the SET PARAM command. For more information, see the Trafodion Command Interface Guide.
?param-name

The value for a ?param-name must be previously specified with the SET PARAM command.
The param-name is case-sensitive. For information about the SET PARAM command, see
the Trafodion Command Interface Guide.

literal-value

is a numeric or character literal that specifies the value for the unnamed parameter.
If literal-value is a character literal and the target column type is character, you do
not have to enclose it in single quotation marks. Its data type is determined from the data
type of the column to which the literal is assigned. If the literal-value contains leading
or trailing spaces, commas, or if it matches any parameter names that are already set,
enclose the literal-value in single quotes.

See the “PREPARE Statement” (page 126). For information about the SET PARAM command, see
the Trafodion Command Interface Guide.

98 SQL Statements

Considerations for EXECUTE

Scope of EXECUTE
A statement must be compiled by PREPARE before you EXECUTE it, but after it is compiled, you
can execute the statement multiple times without recompiling it. The statement must have been
compiled during the same TrafCI session as its execution.

Examples of EXECUTE
• Use PREPARE to compile a statement once, and then execute the statement multiple times with

different parameter values. This example uses the SET PARAM command to set parameter
values for named parameters (represented by ?param-name) in the prepared statement.

SQL>prepare findemp from
+>select * from persnl.employee
+>where salary > ?sal and jobcode = ?job;

--- SQL command prepared.

SQL>set param ?sal 40000.00;

SQL>set param ?job 450;

SQL>execute findemp;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ --------------- -------------- ------- ------- --------
 232 THOMAS SPINNER 4000 450 45000.00

--- 1 row(s) selected.

SQL>set param ?sal 20000.00;

SQL>set param ?job 300;

SQL>execute findemp;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ --------------- -------------- ------- ------- --------
 75 TIM WALKER 3000 300 32000.00
 89 PETER SMITH 3300 300 37000.40
...

--- 13 row(s) selected.

• Specify literal values in the USING clause of the EXECUTE statement for unnamed parameters
in the prepared statement:

SQL>prepare findemp from
+>select * from persnl.employee
+>where salary > ? and jobcode = ?;

--- SQL command prepared.

SQL>execute findemp using 40000.00,450;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ --------------- -------------- ------- ------- --------
 232 THOMAS SPINNER 4000 450 45000.00

--- 1 row(s) selected.

EXECUTE Statement 99

SQL>execute findemp using 20000.00, 300;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ --------------- -------------- ------- ------- --------
 75 TIM WALKER 3000 300 32000.00
 89 PETER SMITH 3300 300 37000.40
...

--- 13 row(s) selected.

• Use SET PARAM to assign a value to a parameter name and specify both the parameter name
and a literal value in the EXECUTE USING clause:

SQL>prepare findemp from
+>select * from persnl.employee
+>where salary > ? and jobcode = ?;

--- SQL command prepared.

SQL>set param ?Salary 40000.00;

SQL>execute findemp using ?Salary, 450;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ --------------- -------------- ------- ------- --------
232 THOMAS SPINNER 4000 450 45000.00

100 SQL Statements

EXPLAIN Statement
The EXPLAIN statement helps you to review query execution plans. You can use the EXPLAIN
statement anywhere you can execute other SQL statements (for example, SELECT). For more
information on the EXPLAIN function, see “EXPLAIN Function” (page 342).
EXPLAIN is a Trafodion SQL extension.

EXPLAIN [OPTIONS {'f'}] {FOR QID query-text | prepared-stmt-name}

Table 2 EXPLAIN Statement Options

PurposeOption TypeSyntax

Provides the simple, basic information contained in the query
execution plan. This information is formatted for readability
and limited to 79 characters (one line) per operator.

FormattedOPTIONS 'f'

Plans displayed by the EXPLAIN statement are ordered from top (root operator) to bottom (leaf
operators).

Syntax Description of EXPLAIN
f

formatted. See “Formatted [OPTIONS 'f'] Considerations” (page 102).
query-text

a DML statement such as SELECT * FROM T3.
prepared-stmt-name

an SQL identifier containing the name of a statement already prepared in this session. An SQL
identifier is case-insensitive (will be in uppercase) unless it is double-quoted. It must be
double-quoted if it contains blanks, lowercase letters, or special characters. It must start with
a letter. When you refer to the prepared query in a SELECT statement, you must use uppercase.

Considerations for EXPLAIN
• “Required Privileges” (page 101)

• “Obtaining EXPLAIN Plans While Queries Are Running” (page 101)

• “Case Considerations” (page 102)

• “Number Considerations” (page 102)

• “Formatted [OPTIONS 'f'] Considerations” (page 102)

Required Privileges
To issue an EXPLAIN statement, one of the following must be true:

• You are DB__ROOT.

• You own (that is, issued) the query specified in the EXPLAIN statement.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

Obtaining EXPLAIN Plans While Queries Are Running
Trafodion SQL provides the ability to capture an EXPLAIN plan for a query at any time while the
query is running with the FOR QID option. By default, this behavior is disabled for a Trafodion
database session.

EXPLAIN Statement 101

NOTE: Enable this feature before you start preparing and executing queries.

After the feature is enabled, use the FOR QID option in an EXPLAIN statement to get the query
execution plan of a running query.
The EXPLAIN function or statement returns the plan that was generated when the query was
prepared. EXPLAIN with the FOR QID option retrieves all the information from the original plan of
the executing query. The plan is available until the query finishes executing and is removed or
deallocated.

Case Considerations
In most cases, words in the commands can be in uppercase or lowercase. The options letter must
be single quoted and in lowercase.

Number Considerations
Costs are given in a generic unit of effort. They show relative costs of an operation.
When trailing decimal digits are zero, they are dropped. For example, 6.4200 would display as
6.42 and 5.0 would display as 5, without a decimal point.

Formatted [OPTIONS 'f'] Considerations
The formatted option is the simplest option. It provides essential, brief information about the plan
and shows the operators and their order within the query execution plan.
OPTIONS 'f' formats the EXPLAIN output into these fields:

Left child sequence numberLC

Right child sequence numberRC

The sequence number of the operator in the query planOP

The operator typeOPERATOR

Query optimizations that were appliedOPT

Additional information about the operatorDESCRIPTION

Estimated number of rows returned by the plan. CARDINALITY and
ROWS_OUT are the same.

CARD

This example uses OPTIONS 'f ':
>>explain options 'f' select * from region;

LC RC OP OPERATOR OPT DESCRIPTION CARD
---- ---- ---- -------------------- -------- -------------------- ---------

1 . 2 root 1.00E+002
. . 1 trafodion_scan REGION 1.00E+002

--- SQL operation complete.

To use the EXPLAIN statement with a prepared statement, first prepare the query. Then use the
EXPLAIN statement:
PREPARE q FROM SELECT * FROM REGION;

EXPLAIN options 'f' q;

102 SQL Statements

GET Statement
• “Syntax Description of GET”

• “Considerations for GET”

• “Examples of GET”
The GET statement displays the names of database objects, components, component privileges,
roles, or users that exist in the Trafodion instance.
GET is a Trafodion SQL extension.

GET option

option is:
 COMPONENT PRIVILEGES ON component-name [FOR auth-name]
 | COMPONENTS
 | FUNCTIONS FOR LIBRARY [[catalog-name.]schema-name.]library-name
 | FUNCTIONS [IN SCHEMA [catalog-name.]schema-name]
 | LIBRARIES [IN SCHEMA [catalog-name.]schema-name]
 | PROCEDURES FOR LIBRARY [[catalog-name.]schema-name.]library-name
 | PROCEDURES [IN SCHEMA [catalog-name.]schema-name]
 | ROLES [FOR USER database-username]
 | SCHEMAS [IN CATALOG catalog-name]

| SCHEMAS FOR [USER | ROLE] authorization-id
 | TABLES [IN SCHEMA [catalog-name.]schema-name]
 | USERS [FOR ROLE role-name]
 | VIEWS [IN SCHEMA [catalog-name.]schema-name]
 | VIEWS ON TABLE [[catalog-name.]schema-name.]table-name

Syntax Description of GET
COMPONENT PRIVILEGES ON component-name

displays the names of the component privileges available for the specified component.
COMPONENT PRIVILEGES ON component-name FOR auth-name

displays the component privileges that have been granted to the specified authorization name
for the specified component. The auth-name is either a registered database username or an
existing role name and can be a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

COMPONENTS
displays a list of all the existing components.

FUNCTIONS
displays the names of all the user-defined functions (UDFs) in the catalog and schema of the
current session. By default, the catalog is TRAFODION, and the schema is SEABASE.

FUNCTIONS FOR LIBRARY [[catalog-name.]schema-name.]library-name
displays the UDFs that reference the specified library.

FUNCTIONS IN SCHEMA [catalog-name.]schema-name
displays the names of all the UDFs in the specified schema.

LIBRARIES
displays the names of all the libraries in the catalog and schema of the current session. By
default, the catalog is TRAFODION, and the schema is SEABASE.

LIBRARIES IN SCHEMA [catalog-name.]schema-name
displays the libraries in the specified schema.

PROCEDURES
displays the names of all the procedures in the catalog and schema of the current session. By
default, the catalog is TRAFODION, and the schema is SEABASE.

GET Statement 103

PROCEDURES FOR LIBRARY [[catalog-name.]schema-name.]library-name
displays the procedures that reference the specified library.

PROCEDURES IN SCHEMA [catalog-name.]schema-name
displays the names of all the procedures in the specified schema.

ROLES
displays a list of all the existing roles.

ROLES FOR USER database-username

displays all the roles that have been granted to the specified database user. The
database-username can be a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

SCHEMAS
displays the names of all the schemas in the catalog of the current session. By default, the
catalog is TRAFODION.

SCHEMAS IN CATALOG catalog-name

displays the names of all the schemas in the specified catalog. For the catalog-name, you
can specify only TRAFODION.

SCHEMAS FOR [USER | ROLE] authorization-id
displays all the schemas managed (or owned) by a specified user or role. authorization-id
is the name of a user or role. You may specify either USER or ROLE for users or roles.

TABLES
displays the names of all the tables in the catalog and schema of the current session. By default,
the catalog is TRAFODION, and the schema is SEABASE.

TABLES IN SCHEMA [catalog-name.]schema-name
displays the names of all the tables in the specified schema.

USERS
displays a list of all the registered database users.

USERS FOR ROLE role-name

displays all the database users who have been granted the specified role. The role-name
can be a regular or delimited case-insensitive identifier. See “Case-Insensitive Delimited
Identifiers” (page 221).

VIEWS
displays the names of all the views in the catalog and schema of the current session. By default,
the catalog is TRAFODION, and the schema is SEABASE.

VIEWS IN SCHEMA [catalog-name.]schema-name
displays the names of all the views in the specified schema. For the catalog-name, you can
specify only TRAFODION.

VIEWS ON TABLE [[catalog-name.]schema-name.]table-name
displays the names of all the views that were created for the specified table. If you do not
qualify the table name with catalog and schema names, GET uses the catalog and schema of
the current session. For the catalog-name, you can specify only TRAFODION.

Considerations for GET

IMPORTANT: The GET COMPONENT PRIVILEGES, GET COMPONENTS, GET ROLES FOR USER,
and GET USERS FOR ROLE statements work only when authentication and authorization are
enabled in Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

The GET statement displays delimited object names in their internal format. For example, the GET
statement returns the delimited name "my ""table""" as my "table".

104 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

Required Privileges
To issue a GET statement, one of the following must be true:

• You are DB__ROOT.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

Examples of GET
• This GET statement displays the names of all the schemas in the catalog of the current session,

which happens to be the TRAFODION catalog:
GET SCHEMAS;

• This GET statement displays the names of all the schemas in the specified catalog, TRAFODION:
GET SCHEMAS IN CATALOG TRAFODION;

• This GET statement displays the names of schemas owned by DB__ROOT:
GET SCHEMAS FOR USER DB__ROOT;

• This GET statement displays the names of all the tables in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:
GET TABLES;

• This GET statement displays the names of all the tables in the specified schema, SEABASE2,
in the TRAFODION catalog:
GET TABLES IN SCHEMA SEABASE2;

• This GET statement displays the names of all the views in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:
GET VIEWS;

• This GET statement displays the names of all the views in the specified schema, SEABASE2,
the TRAFODION catalog:
GET VIEWS IN SCHEMA SEABASE2;

• This GET statement displays the names of all the views that were created for the specified
table, T, in the TRAFODION.SEABASE schema:
GET VIEWS ON TABLE T;

• This GET statement displays the names of the libraries in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:
GET LIBRARIES;

• This GET statement displays the names of the libraries in the TRAFODION._MD_ schema:
GET LIBRARIES IN SCHEMA "_MD_";

• This GET statement displays the names of procedures registered in the library,
TRAFODION._MD_.UDR_LIBRARY:
GET PROCEDURES FOR LIBRARY "_MD_".UDR_LIBRARY;

• This GET statement displays the names of procedures in the TRAFODION._MD_ schema:
GET PROCEDURES IN SCHEMA "_MD_";

• This GET statement displays the names of procedures in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:
GET PROCEDURES;

GET Statement 105

• This GET statement displays the names of user-defined functions (UDFs) in the catalog and
schema of the current session, which happens to be TRAFODION.SEABASE:
GET FUNCTIONS;

• This GET statement displays the names of UDFs in MYSCHEMA:
GET FUNCTIONS IN SCHEMA MYSCHEMA;

• This GET statement displays the names of UDFs created in the library,
TRAFODION.MYSCHEMA.MYUDFS:
GET FUNCTIONS FOR LIBRARY MYSCHEMA.MYUDFS;

• This GET statement displays a list of all the existing components:
get components;

• This GET statement displays the names of the component privileges available for the
SQL_OPERATIONS component:
get component privileges on sql_operations;

• This GET statement displays the component privileges that have been granted to the DB__ROOT
user for the SQL_OPERATIONS component:
get component privileges on sql_operations for db__root;

• This GET statement displays a list of all the existing roles:
get roles;

• This GET statement displays all the roles that have been granted to the DB__ROOT user:
get roles for user db__root;

• This GET statement displays a list of all the registered database users:
get users;

• This GET statement displays all the database users who have been granted the DB__ROOTROLE
role:
get users for role db__rootrole;

106 SQL Statements

GET HBASE OBJECTS Statement
• “Syntax Description of GET HBASE OBJECTS” (page 107)

• “Examples of GET HBASE OBJECTS”
The GET HBASE OBJECTS statement displays a list of HBase objects directly from HBase, not from
the Trafodion metadata, and it can be run in any SQL interface, such as the Trafodion Command
Interface (TrafCI). This command is equivalent to running a list command from an HBase shell,
but without having to start and connect to an HBase shell.
GET HBASE OBJECTS is a Trafodion SQL extension.

GET [USER | SYSTEM | EXTERNAL | ALL } HBASE OBJECTS

Syntax Description of GET HBASE OBJECTS
USER

displays a list of the Trafodion user objects.
SYSTEM

displays a list of the Trafodion system objects, such as metadata, repository, privileges, and
Distributed Transaction Manager (DTM) tables.

EXTERNAL
displays a list of non-Trafodion objects.

ALL
displays a list of all objects, including user, system, and external objects.

Examples of GET HBASE OBJECTS
• This GET HBASE OBJECTS statement displays the Trafodion user objects in HBase:

Trafodion Conversational Interface 1.1.0
(c) Copyright 2014 Hewlett-Packard Development Company, LP.
>>get user hbase objects;

TRAFODION.SCH.SB_HISTOGRAMS
TRAFODION.SCH.SB_HISTOGRAM_INTERVALS
TRAFODION.SCH.T006T1
TRAFODION.SCH.T006T2
TRAFODION.SCH.T006T3
TRAFODION.SCH.T006T4
TRAFODION.SCH.T006T5
TRAFODION.SCH.T006T6
TRAFODION.SCH.T006T7
TRAFODION.SCH.T006T8
TRAFODION.SCH.X1
TRAFODION.SCH.X2
TRAFODION.SCH.X3

--- SQL operation complete.

• This GET HBASE OBJECTS statement displays the Trafodion system objects in HBase:
>>get system hbase objects;

TRAFODION._DTM_.TLOG0_CONTROL_POINT
…
TRAFODION._DTM_.TLOG1_LOG_f
TRAFODION._MD_.AUTHS
TRAFODION._MD_.COLUMNS
TRAFODION._MD_.DEFAULTS
TRAFODION._MD_.INDEXES

GET HBASE OBJECTS Statement 107

TRAFODION._MD_.KEYS
TRAFODION._MD_.LIBRARIES
TRAFODION._MD_.LIBRARIES_USAGE
TRAFODION._MD_.OBJECTS
TRAFODION._MD_.OBJECTS_UNIQ_IDX
TRAFODION._MD_.REF_CONSTRAINTS
TRAFODION._MD_.ROUTINES
TRAFODION._MD_.SEQ_GEN
TRAFODION._MD_.TABLES
TRAFODION._MD_.TABLE_CONSTRAINTS
TRAFODION._MD_.TEXT
TRAFODION._MD_.UNIQUE_REF_CONSTR_USAGE
TRAFODION._MD_.VERSIONS
TRAFODION._MD_.VIEWS
TRAFODION._MD_.VIEWS_USAGE
TRAFODION._REPOS_.METRIC_QUERY_AGGR_TABLE
TRAFODION._REPOS_.METRIC_QUERY_TABLE
TRAFODION._REPOS_.METRIC_SESSION_TABLE
TRAFODION._REPOS_.METRIC_TEXT_TABLE

--- SQL operation complete.

• This GET HBASE OBJECTS statement displays the external, non-Trafodion objects in HBase:
>>get external hbase objects;

obj1
obj2

--- SQL operation complete.
>>

108 SQL Statements

GET VERSION OF METADATA Statement
• “Considerations for GET VERSION OF METADATA”

• “Examples of GET VERSION OF METADATA”
The GET VERSION OF METADATA statement displays the version of the metadata in the Trafodion
instance and indicates if the metadata is current.
GET VERSION OF METADATA is a Trafodion SQL extension.

GET VERSION OF METADATA

Considerations for GET VERSION OF METADATA
• If the metadata is compatible with the installed Trafodion software version, the GET VERSION

OF METADATA statement indicates that the metadata is current:
Current Version 3.0. Expected Version 3.0.
Metadata is current.

• If the metadata is incompatible with the installed Trafodion software version, the GET VERSION
OF METADATA statement indicates that you need to upgrade or reinitialize the metadata:
Current Version 2.3. Expected Version 3.0.
 Metadata need to be upgraded or reinitialized.

Examples of GET VERSION OF METADATA
• This GET VERSION OF METADATA statement displays the metadata version in a Trafodion

Release 1.0.0 instance:
get version of metadata;

 Current Version 3.0. Expected Version 3.0.
 Metadata is current.

--- SQL operation complete.

• This GET VERSION OF METADATA statement displays the metadata version in a Trafodion
Release 0.9.0 instance:
get version of metadata;

 Current Version 2.3. Expected Version 2.3.
 Metadata is current.

--- SQL operation complete.

• If the metadata is incompatible with the installed Trafodion software version, you will see this
output indicating that you need to upgrade or reinitialize the metadata:
get version of metadata;

 Current Version 2.3. Expected Version 3.0.
 Metadata need to be upgraded or reinitialized.

--- SQL operation complete.

GET VERSION OF METADATA Statement 109

GET VERSION OF SOFTWARE Statement
• “Considerations for GET VERSION OF SOFTWARE”

• “Examples of GET VERSION OF SOFTWARE”
The GET VERSION OF SOFTWARE statement displays the version of the Trafodion software that
is installed on the system and indicates if it is current.
GET VERSION OF SOFTWARE is a Trafodion SQL extension.

GET VERSION OF SOFTWARE

Considerations for GET VERSION OF SOFTWARE
• If the software on the system is current, the GET VERSION OF SOFTWARE statement displays

this output:
System Version 1.0.0. Expected Version 1.0.0.
 Software is current.

• In rare circumstances where something went wrong with the Trafodion software installation
and mismatched objects were installed, the GET VERSION OF SOFTWARE statement displays
this output:
System Version 0.9.1. Expected Version 1.0.0.
 Version of software being used is not compatible with version of software on the system.

Examples of GET VERSION OF SOFTWARE
• This GET VERSION OF SOFTWARE statement displays the software version for Trafodion

Release 1.0.0:
get version of software;

 System Version 1.0.0. Expected Version 1.0.0.
 Software is current.

--- SQL operation complete.

• This GET VERSION OF SOFTWARE statement displays the software version for Trafodion
Release 0.9.0:
get version of software;

 System Version 0.9.0. Expected Version 0.9.0.
 Software is current.

--- SQL operation complete.

• If something went wrong with the Trafodion software installation and if mismatched objects
were installed, you will see this output indicating that the software being used is incompatible
with the software on the system:
get version of software;

 System Version 0.9.1. Expected Version 1.0.0.
 Version of software being used is not compatible with version of software on the system.

--- SQL operation complete.

110 SQL Statements

GRANT Statement
• “Syntax Description of GRANT”

• “Considerations for GRANT”

• “Examples of GRANT”
The GRANT statement grants access privileges on an SQL object to specified users or roles.

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT {privilege [,privilege]... |ALL [PRIVILEGES]}
 ON [object-type] [schema.]object
 TO {grantee [,grantee]...}
 [WITH GRANT OPTION]
 [[GRANTED] BY grantor]

privilege is:
 SELECT
 | DELETE
 | INSERT
 | REFERENCES
 | UPDATE
 | EXECUTE
 | USAGE

object-type is:
 TABLE
 | PROCEDURE
 | LIBRARY
 | FUNCTION

grantee is:
auth-name

grantor is:
role-name

Syntax Description of GRANT
privilege [,privilege] ... | ALL [PRIVILEGES]

specifies the privileges to grant. You can specify these privileges for an object.

Can use the SELECT statement.SELECT

Can use the DELETE statement.DELETE

Can use the INSERT statement.INSERT

Can create constraints that reference the object.REFERENCES

Can use the UPDATE statement on table objects.UPDATE

Can execute a stored procedure using a CALL statement or can execute a user-defined function
(UDF).

EXECUTE

Can access a library using the CREATE PROCEDURE or CREATE FUNCTION statement. This
privilege provides you with read access to the library’s underlying library file.

USAGE

All the applicable privileges. When you specify ALL for a table or view, this includes the SELECT,
DELETE, INSERT, REFERENCES, and UPDATE privileges. When the object is a stored procedure

ALL

or user-defined function (UDF), only the EXECUTE privilege is applied. When the object is a
library, only the UPDATE and USAGE privileges are applied.

GRANT Statement 111

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

ON [object-type] [schema.]object
specifies an object on which to grant privileges. object-type can be:
• [TABLE] [schema.]object, where object is a table or view. See “Database Object

Names” (page 198).
• [PROCEDURE] [schema.]procedure-name, where procedure-name is the name of

a stored procedure in Java (SPJ) registered in the database.
• [LIBRARY] [schema.]library-name, where library-name is the name of a library

object in the database.
• [FUNCTION] [schema.]function-name, where function-name is the name of a

user-defined function (UDF) in the database.
TO {grantee [, grantee] ... }

specifies one or more auth-names to which you grant privileges.
auth-name

specifies the name of an authorization ID to which you grant privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, an existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221). If you grant a privilege to PUBLIC, the privilege
remains available to all users, unless it is later revoked from PUBLIC.

WITH GRANT OPTION
specifies that the auth-name to which a privilege is granted may in turn grant the same
privilege to other users or roles.

[GRANTED] BY grantor

allows you to grant privileges on behalf of a role. If not specified, the privileges will be granted
on your behalf as the current user/grantor.

role-name

specifies a role on whose behalf the GRANT operation is performed. To grant the privileges
on behalf of a role, you must be a member of the role, and the role must have the authority to
grant the privileges; that is, the role must have been granted the privileges WITH GRANT
OPTION.

Considerations for GRANT

Authorization and Availability Requirements
To grant a privilege on an object, you must have both that privilege and the right to grant that
privilege. Privileges can be granted directly to you or to one of the roles you have been granted.
You can grant a privilege on an object if you are the owner of the object (by which you are
implicitly granted all privileges on the object) or the owner of the schema containing the object,
or if you have been granted both the privilege and the WITH GRANT OPTION for the privilege.
If granting privileges on behalf of a role, you must specify the role in the [GRANTED] BY clause.
To grant the privileges on behalf of a role, you must be a member of the role, and the role must
have the authority to grant the privileges; that is, the role must have been granted the privileges
WITH GRANT OPTION.
If you lack authority to grant one or more of the specified privileges, SQL returns a warning (yet
does grant the specified privileges for which you do have authority to grant). If you lack authority
to grant any of the specified privileges, SQL returns an error.

Examples of GRANT
• To grant SELECT and DELETE privileges on a table to two specified users:

112 SQL Statements

GRANT SELECT, DELETE ON TABLE invent.partloc
 TO ajones, "MO.Neill@company.com";

• To grant SELECT privileges on a table to a user:
GRANT SELECT ON TABLE invent.partloc TO ajones;

GRANT Statement 113

GRANT COMPONENT PRIVILEGE Statement
• “Syntax Description of GRANT COMPONENT PRIVILEGE”

• “Considerations for GRANT COMPONENT PRIVILEGE”

• “Example of GRANT COMPONENT PRIVILEGE”
The GRANT COMPONENT PRIVILEGE statement grants one or more component privileges to a
user or role. See “Privileges” (page 247) and “Roles” (page 248).
GRANT COMPONENT PRIVILEGE is a Trafodion SQL extension.

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT COMPONENT PRIVILEGE {privilege-name [, privilege-name]...}
 ON component-name
 TO grantee
 [WITH GRANT OPTION] [[GRANTED] BY grantor]

grantee is:
auth-name

grantor is:
role-name

Syntax Description of GRANT COMPONENT PRIVILEGE
privilege-name

specifies one or more component privileges to grant. The comma-separated list can include
only privileges within the same component.

DescriptionComponent PrivilegeComponent

Privilege to alter database objectsALTERSQL_OPERATIONS

Privilege to alter librariesALTER_LIBRARY

Privilege to alter tablesALTER_TABLE

Privilege to alter viewsALTER_VIEW

Privilege to create database objectsCREATE

Privilege to create catalogs in the
database

CREATE_CATALOG

Privilege to create indexesCREATE_INDEX

Privilege to create libraries in the
database

CREATE_LIBRARY

Privilege to create stored procedures
in Java (SPJs), user-defined functions

CREATE_ROUTINE

(UDFs), table-mapping functions, and
other routines in the database

Privilege to create schemas in the
database

CREATE_SCHEMA

Privilege to create tables in the
database

CREATE_TABLE

Privilege to create views in the
database

CREATE_VIEW

Privilege to drop database objectsDROP

114 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

DescriptionComponent PrivilegeComponent

Privilege to drop catalogsDROP_CATALOG

Privilege to drop indexesDROP_INDEX

Privilege to drop librariesDROP_LIBRARY

Privilege to drop stored procedures in
Java (SPJs), user-defined functions

DROP_ROUTINE

(UDFs), table-mapping functions, and
other routines from the database

Privilege to drop schemasDROP_SCHEMA

Privilege to drop tablesDROP_TABLE

Privilege to drop viewsDROP_VIEW

Privilege to perform library-related
commands, such as creating and
dropping libraries

MANAGE_LIBRARY

Privilege to perform LOAD and
UNLOAD commands

MANAGE_LOAD

Privilege to create, alter, drop, grant,
and revoke roles

MANAGE_ROLES

Privilege to update and display
statistics

MANAGE_STATISTICS

Privilege to register or unregister
users, alter users, and grant or revoke
component privileges.

MANAGE_USERS

Privilege to cancel an executing
query.

QUERY_CANCEL

Privilege to run EXPLAIN, GET,
INVOKE, and SHOW commands. The

SHOW

SHOW privilege has been granted to
PUBLIC by default.

ON component-name

specifies a component name on which to grant component privileges. Currently, the only valid
component name is SQL_OPERATIONS.

TO grantee

specifies an auth-name to which you grant component privileges.
auth-name

specifies the name of an authorization ID to which you grant privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221). If you grant a privilege to PUBLIC, the privilege
remains available to all users, unless it is later revoked from PUBLIC.

WITH GRANT OPTION
specifies that the auth-name to which a component privilege is granted may in turn grant the
same component privilege to other users or roles.

[GRANTED] BY grantor

allows you to grant component privileges on behalf of a role. If not specified, the privileges
will be granted on your behalf as the current user/grantor.

GRANT COMPONENT PRIVILEGE Statement 115

role-name

specifies a role on whose behalf the GRANT COMPONENT PRIVILEGE operation is performed.
To grant the privileges on behalf of a role, you must be a member of the role, and the role
must have the authority to grant the privileges; that is, the role must have been granted the
privileges WITH GRANT OPTION.

Considerations for GRANT COMPONENT PRIVILEGE
• A user or role granted a component privilege WITH GRANT OPTION can grant the same

component privilege to other users or roles.
• If all of the component privileges have already been granted, SQL returns an error.

• If one or more component privileges has already been granted, SQL silently ignores the granted
privileges and proceeds with the grant operation.

Authorization and Availability Requirements
To grant a component privilege, you must have one of these privileges:
• User administrative privileges (that is, a user who has been granted the MANAGE_USERS

component privilege). Initially, DB__ROOT is the only database user who has been granted
the MANAGE_USERS component privilege.

• A user other than a user administrator who has the WITH GRANT OPTION for the component
privilege.

• A user who was granted a role that has the WITH GRANT OPTION privilege for the component
privilege.

Example of GRANT COMPONENT PRIVILEGE
Grant a component privilege, CREATE_TABLE, on a component, SQL_OPERATIONS, to SQLUSER1:

GRANT COMPONENT PRIVILEGE CREATE_TABLE ON SQL_OPERATIONS TO sqluser1;

116 SQL Statements

GRANT ROLE Statement
• “Syntax Description of GRANT ROLE”

• “Considerations for GRANT ROLE”

• “Example of GRANT ROLE”
The GRANT ROLE statement grants one or more roles to a user. See “Roles” (page 248).

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT ROLE {role-name [,role-name]...}
 TO grantee

grantee is:
database-username

Syntax Description of GRANT ROLE
role-name [,role-name] ...

specifies the existing roles to grant.
TO grantee

specifies the registered database username to whom to grant the roles.

Considerations for GRANT ROLE
• To grant roles to other grantees, you must own the roles or have user administrative privileges

for the roles. You have user administrative privileges for roles if you have been granted the
MANAGE_ROLES component privilege. Initially, DB__ROOT is the only database user who
has been granted the MANAGE_ROLES component privilege.

• In Trafodion Release 0.9, when you grant a role to a grantee, the effects on any active sessions
for the grantee are undefined, and users will need to disconnect such sessions and reconnect
to establish a new session with the updated set of privileges. Starting in Trafodion Release
1.0, when you grant a role to a user, the additional privileges are automatically propagated
to and detected by active sessions. There is no need for users to disconnect from and reconnect
to a session to see the updated set of privileges.

• If any errors occur in processing a GRANT ROLE statement that names multiple roles, then no
grants are done.

• If you attempt to grant a role but a grant with the same role and grantee already exists, SQL
ignores the request and returns a successful operation.

Example of GRANT ROLE
To grant multiple roles to a grantee:
GRANT ROLE clerks, sales TO jsmith;

GRANT ROLE Statement 117

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

INSERT Statement
• “Syntax Description of INSERT”

• “Considerations for INSERT”

• “Examples of INSERT”
The INSERT statement is a DML statement that inserts rows in a table or view.

INSERT INTO table [(target-col-list)] insert-source

target-col-list is:
colname [,colname]...

insert-source is:
query-expr [order-by-clause] [access-clause] | DEFAULT VALUES

Syntax Description of INSERT
table

names the user table or view in which to insert rows. table must be a base table or an
updatable view.

(target-col-list)

names the columns in the table or view in which to insert values. The data type of each target
column must be compatible with the data type of its corresponding source value. Within the
list, each target column must have the same position as its associated source value, whose
position is determined by the columns in the table derived from the evaluation of the query
expression (query-expr).
If you do not specify all of the columns in table in the target-col-list, column default
values are inserted into the columns that do not appear in the list. See “Column Default Settings”
(page 194).
If you do not specify target-col-list, row values from the source table are inserted into
all columns in table. The order of the column values in the source table must be the same
order as that of the columns specified in the CREATE TABLE for table. (This order is the same
as that of the columns listed in the result table of SHOWDDL table.)

insert-source

specifies the rows of values to be inserted into all columns of table or, optionally, into specified
columns of table.
query-expr

For the description of query-expr, order-by-clause, and access-clause, see the
“SELECT Statement” (page 138).

DEFAULT VALUES
is equivalent to a query-expr of the form VALUES (DEFAULT, ...). The value of each
DEFAULT is the default value defined in the column descriptor of colname, which is
contained in the table descriptor of table. Each default value is inserted into its column
to form a new row. If you specify DEFAULT VALUES, you cannot specify a column list. You
can use DEFAULT VALUES only when all columns in table have default values.

Considerations for INSERT

Authorization Requirements
INSERT requires authority to read and write to the table or view receiving the data and authority
to read tables or views specified in the query expression (or any of its subqueries) in the INSERT
statement.

118 SQL Statements

Transaction Initiation and Termination
The INSERT statement automatically initiates a transaction if no transaction is active. Alternatively,
you can explicitly initiate a transaction with the BEGIN WORK statement. After a transaction is
started, the SQL statements execute within that transaction until a COMMIT or ROLLBACK is
encountered or an error occurs. If AUTOCOMMIT is ON, the transaction terminates at the end of
the INSERT statement.

Self-Referencing INSERT and BEGIN WORK or AUTOCOMMIT OFF
A self-referencing INSERT statement is one that references, in the statement's insert-source,
the same table or view into which rows will be inserted (see “Examples of Self-Referencing Inserts”
(page 121)). A self-referencing INSERT statement will not execute correctly and an error is raised if
either BEGIN WORK or AUTOCOMMIT OFF is used unless the compiler's plan sorts the rows
before they are inserted. If you want to use a self-referencing INSERT statement, you should avoid
the use of BEGIN WORK or AUTOCOMMIT OFF. For information about AUTOCOMMIT, see the
“SET TRANSACTION Statement” (page 157).

Isolation Levels of Transactions and Access Options of Statements
The isolation level of an SQL transaction defines the degree to which the operations on data within
that transaction are affected by operations of concurrent transactions. When you specify access
options for the DML statements within a transaction, you override the isolation level of the containing
transaction. Each statement then executes with its individual access option.

Use of a VALUES Clause for the Source Query Expression
If the query expression consists of the VALUES keyword followed by rows of values, each row
consists of a list of value expressions or a row subquery (a subquery that returns a single row of
column values). A value in a row can also be a scalar subquery (a subquery that returns a single
row consisting of a single column value).
Within a VALUES clause, the operands of a value expression can be numeric, string, datetime, or
interval values; however, an operand cannot reference a column (except in the case of a scalar
or row subquery returning a value or values in its result table).

Requirements for Inserted Rows
Each row to be inserted must satisfy the constraints of the table or underlying base table of the
view. A table constraint is satisfied if the check condition is not false—it is either true or has an
unknown value.

Using Compatible Data Types
To insert a row, you must provide a value for each column in the table that has no default value.
The data types of the values in each row to be inserted must be compatible with the data types of
the corresponding target columns.
Inserting Character Values
Any character string data type is compatible with all other character string data types that have
the same character set. For fixed length, an inserted value shorter than the column length is padded
on the right with blank characters of the appropriate character set (for example, ISO88591 blanks
(HEX20). If the value is longer than the column length, string truncation of nonblank trailing
characters returns an error, and the truncated string is not inserted.
For variable length, a shorter inserted value is not padded. As is the case for fixed length, if the
value is longer than the column length, string truncation of nonblank trailing characters returns an
error, and the truncated string is not inserted.
Inserting Numeric Values

INSERT Statement 119

Any numeric data type is compatible with all other numeric data types. If you insert a value into
a numeric column that is not large enough, an overflow error occurs. If a value has more digits to
the right of the decimal point than specified by the scale for the column definition, the value is
truncated.
Inserting Interval Values
A value of interval data type is compatible with another value of interval data type only if the two
data types are both year-month or both day-time intervals.
Inserting Date and Time Values
Date, time, and timestamp are the three Trafodion SQL datetime data types. A value with a datetime
data type is compatible with another value with a datetime data type only if the values have the
same datetime fields.
Inserting Nulls
and inserting values with specific data types, you might want to insert nulls. To insert null, use the
keyword NULL. NULL only works with the VALUES clause. Use cast (null as type) for
select-list.

Examples of INSERT
• Insert a row into the CUSTOMER table without using a target-col-list:

INSERT INTO sales.customer
 VALUES (4777, 'ZYROTECHNIKS', '11211 40TH ST.',
 'BURLINGTON', 'MASS.', '01803', 'A2');

--- 1 row(s) inserted.

The column name list is not specified for this INSERT statement. This operation works because
the number of values listed in the VALUES clause is equal to the number of columns in the
CUSTOMER table, and the listed values appear in the same order as the columns specified
in the CREATE TABLE statement for the CUSTOMER table.
By issuing this SELECT statement, this specific order is displayed:
SELECT * FROM sales.customer
 WHERE custnum = 4777;

CUSTNUM CUSTNAME STREET ... POSTCODE CREDIT
------- ------------- -------------- -------- ------
 4777 ZYROTECHNIKS 11211 4OTH ST. ... 01803 A2

--- 1 row(s) selected.

• Insert a row into the CUSTOMER table using a target-col-list:
INSERT INTO sales.customer
 (custnum, custname, street, city, state, postcode)
 VALUES (1120, 'EXPERT MAILERS', '5769 N. 25TH PL',
 'PHOENIX', 'ARIZONA', '85016');

--- 1 row(s) inserted.

Unlike the previous example, the insert source of this statement does not contain a value for
the CREDIT column, which has a default value. As a result, this INSERT must include the column
name list.
This SELECT statement shows the default value 'C1' for CREDIT:
SELECT * FROM sales.customer
 WHERE custnum = 1120;

CUSTNUM CUSTNAME STREET POSTCODE CREDIT
------- -------------- ------------------ -------- ------
 1120 EXPERT MAILERS 5769 N. 25TH PL 85016 C1

120 SQL Statements

--- 1 row(s) selected.

• Insert multiple rows into the JOB table by using only one INSERT statement:

INSERT INTO persnl.job
 VALUES (100,'MANAGER'),
 (200,'PRODUCTION SUPV'),
 (250,'ASSEMBLER'),
 (300,'SALESREP'),
 (400,'SYSTEM ANALYST'),
 (420,'ENGINEER'),
 (450,'PROGRAMMER'),
 (500,'ACCOUNTANT'),
 (600,'ADMINISTRATOR'),
 (900,'SECRETARY');

--- 10 row(s) inserted.

• The PROJECT table consists of five columns using the data types numeric, varchar, date,
timestamp, and interval. Insert values by using these types:
INSERT INTO persnl.project
 VALUES (1000, 'SALT LAKE CITY', DATE '2007-10-02',
 TIMESTAMP '2007-12-21 08:15:00.00', INTERVAL '30' DAY);

--- 1 row(s) inserted.

• Suppose that CUSTLIST is a view of all columns of the CUSTOMER table except the credit
rating. Insert information from the SUPPLIER table into the CUSTOMER table through the
CUSTLIST view, and then update the credit rating:
INSERT INTO sales.custlist
 (SELECT * FROM invent.supplier
 WHERE suppnum = 10);

UPDATE sales.customer
 SET credit = 'A4'
 WHERE custnum = 10;

You could use this sequence in the following situation. Suppose that one of your suppliers has
become a customer. If you use the same number for both the customer and supplier numbers,
you can select the information from the SUPPLIER table for the new customer and insert it into
the CUSTOMER table through the CUSTLIST view (as shown in the example).
This operation works because the columns of the SUPPLIER table contain values that correspond
to the columns of the CUSTLIST view. Further, the credit rating column in the CUSTOMER table
is specified with a default value. If you want a credit rating that is different from the default,
you must update this column in the row of new customer data.

Examples of Self-Referencing Inserts

• This is an example of a self-referencing insert:
insert into table1 select pk+?, b, c from table1

• This is an example of a self-referencing insert where the target of the insert, table1, is also
used in a subquery of the insert-source:
insert into table1
 select a+16, b, c from table2 where table2.b not in
 (select b from table1 where a > 16)

The source table is not affected by the insert.

INSERT Statement 121

INVOKE Statement
• “Syntax Description of INVOKE ”

• “Considerations for INVOKE”

• “Example of INVOKE”
The INVOKE statement generates a record description that corresponds to a row in the specified
table, view, or index. The record description includes a data item for each column in the table,
view, or index, including the primary key but excluding the SYSKEY column. It includes the SYSKEY
column of a view only if the view explicitly listed the column in its definition.
INVOKE is a Trafodion SQL extension.

INVOKE table-name

Syntax Description of INVOKE
table-name

specifies the name of a table, view, or index for which to generate a record description. See
“Database Object Names” (page 198).

Considerations for INVOKE

Required Privileges
To issue an INVOKE statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the table.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

• You have the SELECT privilege on the target table.

Example of INVOKE
This command generates a record description of the table T:
SQL>invoke trafodion.seabase.t;

-- Definition of Trafodion table TRAFODION.SEABASE.T
-- Definition current Wed Mar 5 10:36:06 2014

 (
 A INT NO DEFAULT NOT NULL NOT DROPPABLE
)
 PRIMARY KEY (A ASC)

--- SQL operation complete.

122 SQL Statements

MERGE Statement
• “Syntax Description of MERGE ”

• “Considerations for MERGE ”

• “Example of MERGE ”
The MERGE statement:

• Updates a table if the row exists or inserts into a table if the row does not exist. This is upsert
functionality.

• Updates (merges) matching rows from one table to another.

MERGE INTO table [using-clause]
on-clause

 {[when-matched-clause]|[when-not-matched-clause]} ...

using-clause is:
 USING (select-query) AS derived-table-name [derived-column-names]

on-clause is:
 ON predicate

when-matched-clause is:
 WHEN MATCHED THEN UPDATE SET set-clause [WHERE predicate]
 WHEN MATCHED THEN DELETE

when-not-matched-clause is:
 WHEN NOT MATCHED THEN INSERT insert-values-list

insert-values-list is:
 [(column1, ..., columnN)] VALUES (value1, ..., valueN)

Syntax Description of MERGE
table

is the ANSI logical name for the table.
ON predicate

used to determine if a row is or is not present in the table. The ON predicate must be a predicate
on the clustering key of the table if the MERGE has a when-not-matched-clause. The
clustering key can be a single or multi-column key.
The ON predicate must select a unique row if the MERGE has a when-not-matched-clause.

Considerations for MERGE

Upsert Using Single Row
A MERGE statement allows you to specify a set of column values that should be updated if the row
is found, and another row to be inserted if the row is not found. The ON predicate must select
exactly one row that is to be updated if the MERGE statement has an INSERT clause.
In a MERGE statement, at least one of the clauses when-matched or when-not-matched must
be specified. Note the following:
• If a when-matched clause is present and the WHERE predicate in the UPDATE is satisfied,

the columns in the SET clause are updated.
• If a when-matched clause is present and the WHERE predicate in the UPDATE is not satisfied,

the columns in the SET clause are not updated.

MERGE Statement 123

• If a when-matched clause is present and the UPDATE has no WHERE predicate, the columns
in the SET clause are updated.

• If a when-not-matched clause is present and columns are explicitly specified in the INSERT
clause, the specified values for those columns are inserted. Missing columns are updated using
the default values for those columns.

This example updates column b to 20 if the row with key column a with value 10 is found. A new
row (10, 30) is inserted if the row is not found in table t.
MERGE INTO t ON a = 10
 WHEN MATCHED THEN UPDATE SET b = 20
 WHEN NOT MATCHED THEN INSERT VALUES (10, 30)

This example updates column b to 20 if column a with value 10 is found. If column a with value
10 is not found, nothing is done.
MERGE INTO t ON a = 10
 WHEN MATCHED THEN UPDATE SET b = 20

This example inserts values (10, 30) if column a with value 10 is not found. If column a with value
10 is found, nothing is done.
MERGE INTO t ON a = 10
 WHEN NOT MATCHED THEN INSERT VALUES (10, 30)

Conditional Upsert Using Single Row
In this example, the MERGE statement uses a single-row conditional upsert that inserts one row
(keycol, col, seqnum) value if a row with that keycol (parameter-specified) value is not yet
in table d. Otherwise, the MERGE statement updates that row's col and seqnum columns if that
row's seqnum is higher than the current (parameter-specified) sequence number. If the matching
row's seqnum column value is not higher than the current sequence number, then that matched
row is not updated.
MERGE INTO d ON keycol = ?
 WHEN MATCHED THEN UPDATE SET (col, seqnum) = (?, ?) WHERE seqnum < ?
 WHEN NOT MATCHED THEN INSERT (keycol, col, seqnum) VALUES (?, ?, ?)

The optional WHERE predicate in the when-matched-then-update clause is useful when the
update is wanted only if the given condition is satisfied. Consider this use case. Suppose object
X is represented as a row in table T. Also, suppose a stream of updates exists for object X. The
updates are marked by a sequence number at their source. However, the updates flow through a
network which does not guarantee first-in, first-out delivery. In fact, the updates may arrive
out-of-order to the database. In this case, the last update (the one with the current highest sequence
number) should always win in the database. The MERGE statement shown above can be used to
satisfy this use case:
• A stream of updates for table d exists that are sequenced by a sequence number seqnum at

their source
• The updates race through the network and may arrive in the database in any order, and

• You want to guarantee that the last update (the one with the highest seqnum) always wins in
the database.

Restrictions

• The MERGE statement does not use ESP parallelism.

• A merged table cannot be a view.

• Merge is not allowed if the table has constraints.

• The on-clause cannot contain a subquery. This statement is not allowed:
MERGE INTO t ON a = (SELECT a FROM t1) WHEN ...

124 SQL Statements

• The optional WHERE predicate in the when-matched clause cannot contain a subquery or an
aggregate function. These statements are not allowed:
MERGE INTO t ON a = 10
WHEN MATCHED THEN UPDATE SET b=4 WHERE b=(SELECT b FROM t1)
WHEN NOT MATCHED THEN INSERT VALUES (10,30);

MERGE INTO t ON a=10
WHEN MATCHED THEN UPDATE SET b=4 WHERE b=MAX(b)
WHEN NOT MATCHED THEN INSERT VALUES (10,30);

• The UPDATE SET clause in a MERGE statement cannot contain a subquery. This statement is
not allowed:
MERGE INTO t ON a = 1 WHEN MATCHED THEN UPDATE SET b = (SELECT a FROM t1)

• The insert-values-list clause in a MERGE statement cannot contain a subquery. This
statement is not allowed:
MERGE INTO t ON a = 1 WHEN NOT MATCHED THEN INSERT VALUES ((SELECT a FROM t1))

• Use of a non-unique on-clause for a MERGE update is allowed only if no INSERT clause
exists.
MERGE INTO t USING (SELECT a,b FROM t1) x ON t.a=x.a
 WHEN MATCHED THEN UPDATE SET b=x.b;

In this example, t.a=x.a is not a fully qualified unique primary key predicate.
• Use of a non-unique on-clause for a MERGE delete is allowed only if no INSERT clause

exists.
MERGE INTO t USING (SELECT a,b FROM t1) x ON t.a=x.a
 WHEN MATCHED THEN DELETE;

MERGE From One Table Into Another
The MERGE statement can be used to upsert all matching rows from the source table into the target
table. Each row from the source table is treated as the source of a single upsert statement. The
using-clause contains the select-query whose output is used as the source to the MERGE
statement.
The source select-query must be renamed using the AS clause.
MERGE INTO t ON
 USING (select-query) AS Z(X) ON col = Z.X
 WHEN MATCHED THEN . . .

For each row selected out of the select-query, the MERGE statement is evaluated. Values selected
are used in the on-clause to join with the column of the merged table. If the value is found, it is
updated. If it is not found, the insert is done. The restrictions are the same as those for “Upsert
Using Single Row” (page 123).

Example of MERGE
This query extracts derived columns a and b from the USING query as derived table z and use
each row to join to the merged table t based on the on-clause. For each matched row, column
b in table t is updated using column b in derived table z. For rows that are not matched, values
z.a and z.b are inserted.
MERGE INTO t USING
 (SELECT * FROM t1) z(a,b) on a = z.a
 WHEN MATCHED THEN UPDATE SET b = z.b
 WHEN NOT MATCHED THEN INSERT VALUES (z.a, z.b);

MERGE Statement 125

PREPARE Statement
• “Syntax Description of PREPARE”

• “Considerations for PREPARE”

• “Examples of PREPARE”
The PREPARE statement compiles an SQL statement for later use with the EXECUTE statement in the
same Trafodion Command Interface (TrafCI) session.
You can also use PREPARE to check the syntax of a statement without executing the statement in
the same TrafCI session.

PREPARE statement-name FROM statement

Syntax Description of PREPARE
statement-name

is an SQL identifier that specifies a name to be used for the prepared statement. See “Identifiers”
(page 221). The statement name should be a character string and not a numeric value. If you
specify the name of an existing prepared statement, the new statement overwrites the previous
one.

statement

specifies the SQL statement to prepare.

Considerations for PREPARE

Availability of a Prepared Statement
If a PREPARE statement fails, any subsequent attempt to run EXECUTE on the named statement fails.
Only the TrafCI session that executes the PREPARE can run EXECUTE on the prepared statement.
The prepared statement is available for running EXECUTE until you terminate the TrafCI session.
A statement must be compiled by PREPARE before you can run EXECUTE on it. However, after the
statement is compiled, you can run EXECUTE on the statement multiple times without recompiling
the statement.

Examples of PREPARE
• Prepare a SELECT statement, checking for syntax errors:

SQL>prepare empsal from
+>select salary from employee
+>where jobcode = 100;

*** ERROR[4082] Table, view or stored procedure NEO.INVENT.EMPLOYEE does not exist or is inaccessible.
*** ERROR[8822] The statement was not prepared.

SQL>

• Prepare a SELECT statement with an unnamed parameter (?) and later run EXECUTE on it:
SQL>prepare findsal from
+>select salary from persnl.employee
+>where jobcode = ?;

--- SQL command prepared.

SQL>execute findsal using 450;

SALARY

 32000.00
 33000.50
 40000.00

126 SQL Statements

 32000.00
 45000.00

--- 5 row(s) selected.

SQL>

• Prepare a SELECT statement with a named parameter (?param-name) and later run EXECUTE
on it:
SQL>prepare findsal from
+>select salary from persnl.employee
+>where jobcode = ?job;

--- SQL command prepared.

SQL>set param ?job 450

SQL>execute findsal;

SALARY

 32000.00
 33000.50
 40000.00
 32000.00
 45000.00

--- 5 row(s) selected.

SQL>

For more information, see the “EXECUTE Statement” (page 98).

PREPARE Statement 127

REGISTER USER Statement
• “Syntax Description of REGISTER USER”

• “Considerations for REGISTER USER”

• “Examples of REGISTER USER”
The REGISTER USER statement registers a user in the SQL database, associating the user's login
name with a database username.
REGISTER USER is a Trafodion SQL extension.

NOTE: The user's login name is also the name by which the user is defined in the directory
service, so the syntax description below refers to it as the directory-service username.

REGISTER USER directory-service-username [AS database-username]

Syntax Description of REGISTER USER
directory-service-username

is the name that identifies the user in the directory service. This is also the name the user specifies
when logging in to a Trafodion database. The directory-service-username is a regular
or delimited case-insensitive identifier. See “Case-Insensitive Delimited Identifiers” (page 221).

database-username

is a regular or delimited case-insensitive identifier that denotes the username as defined in the
database. The database username cannot be identical to a registered database username or
an existing role name. However, it can be the same as the directory-service username. If you
omit the AS database-username clause, the database username will be the same as the
directory-service username.

Considerations for REGISTER USER

Who Can Register a User
To register a user, you must have user administrative privileges. You have user administrative
privileges if you have been granted the MANAGE_USERS component privilege. Initially, DB__ROOT
is the only database user who has been granted the MANAGE_USERS component privilege.

Add the User to the Directory Before Registering the User
Add the user to the appropriate directory service before you register the user. Otherwise, REGISTER
USER will fail.

AS database-username Clause
Use the AS database-username clause to assign a database username that is different than
the username defined in the directory service. In particular, it is often convenient to assign a
database username that is shorter and easier to type than the directory-service username. For
example, if the user logs on as John.Allen.Doe.the.Second@mycompany.com, you might want to
assign the user a database username of JDoe.
Database usernames are authorization IDs. If you specify a name already assigned to another
user or to an existing role, the command will fail. For more information, see “Authorization IDs”
(page 193).

Reserved Names
PUBLIC, _SYSTEM, NONE, and database usernames beginning with DB__ are reserved. You
cannot register users with any such name.

128 SQL Statements

Username Length
Database usernames are limited to 128 characters.

Examples of REGISTER USER
• To register a user and assign a database username different than the user's login name:

REGISTER USER "jsmith@hp.com" AS jsmith;

• To register a user without specifying a database username, so the database username will
be the same as the user's login name:
REGISTER USER "jsmith@hp.com";

REGISTER USER Statement 129

REVOKE Statement
• “Syntax Description of REVOKE”

• “Considerations for REVOKE”

• “Examples of REVOKE”
The REVOKE statement revokes access privileges on an SQL object from specified users or roles.

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

REVOKE [GRANT OPTION FOR]
 {privilege [,privilege]...| ALL [PRIVILEGES]}
 ON [object-type] [schema.]object
 FROM {grantee [,grantee]...}
 [[GRANTED] BY grantor]
 [RESTRICT | CASCADE]

privilege is:
 SELECT
 | DELETE
 | INSERT
 | REFERENCES
 | UPDATE
 | EXECUTE
 | USAGE

object-type is:
 TABLE
 | PROCEDURE
 | LIBRARY
 | FUNCTION

grantee is:
auth-name

grantor is:
role-name

Syntax Description of REVOKE
GRANT OPTION FOR

specifies that the grantee’s authority to grant the specified privileges to other users or roles
(that is, WITH GRANT OPTION) be revoked. This is an optional clause. When this clause is
specified, only the ability to grant the privilege to another user is revoked.

privilege [, privilege] ... | ALL [PRIVILEGES]
specifies the privileges to revoke. You can specify these privileges for an object:

Revokes the ability to use the SELECT statement.SELECT

Revokes the ability to use the DELETE statement.DELETE

Revokes the ability to use the INSERT statement.INSERT

Revokes the ability to create constraints that reference the object.REFERENCES

Revokes the ability to use the UPDATE statement.UPDATE

Revokes the ability to execute a stored procedure using a CALL statement or revokes the ability
to execute a user-defined function (UDF).

EXECUTE

Revokes the ability to access a library using the CREATE PROCEDURE or CREATE FUNCTION
statement. Revokes read access to the library’s underlying library file.

USAGE

Revokes the ability to use all privileges that apply to the object type. When you specify ALL for
a table or view, this includes the SELECT, DELETE, INSERT, REFERENCES, and UPDATE

ALL

130 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

privileges. When the object is a stored procedure or user-defined function (UDF), this includes
the EXECUTE privilege. When the object is a library, this includes the UPDATE and USAGE
privileges.

ON [object-type] [schema.]object
specifies an object on which to grant privileges. object-type can be:
• [TABLE] [schema.]object, where object is a table or view. See “Database Object

Names” (page 198).
• [PROCEDURE] [schema.]procedure-name, where procedure-name is the name of

a stored procedure in Java (SPJ) registered in the database. See “Database Object Names”
(page 198).

• [LIBRARY] [schema.]library-name, where library-name is the name of a library
object in the database. See “Database Object Names” (page 198).

• [FUNCTION] [schema.]function-name, where function-name is the name of a
user-defined function in the database. See “Database Object Names” (page 198).

FROM {grantee [,grantee] ... }
specifies an auth-name from which you revoke privileges.

auth-name

specifies the name of an authorization ID from which you revoke privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

[GRANTED] BY grantor

allows you to revoke privileges on behalf of a role. If not specified, the privileges will be revoked
on your behalf as the current user/grantor.

role-name

specifies a role on whose behalf the GRANT operation was performed. To revoke the privileges
on behalf of a role, you must be a member of the role, and the role must have the authority to
revoke the privileges; that is, the role must have been granted the privileges WITH GRANT
OPTION.

[RESTRICT | CASCADE]
If you specify RESTRICT, the REVOKE operation fails if any privileges were granted or any
objects were created based upon the specified privileges.
If you specify CASCADE, any such dependent privileges and objects are removed as part of
the REVOKE operation.
The default value is RESTRICT.

Considerations for REVOKE

Authorization and Availability Requirements
You can revoke privileges for which you are the grantor, either through a direct grant or a grant
done on your behalf. If you are revoking privileges that were granted on behalf of a role, you must
be a member of the role, and you must specify the role in the [GRANTED] BY clause.
If one or more privileges have not been granted, SQL returns a warning.
When you specify the CASCADE option, all objects that were created based upon the privileges
being revoked are removed.

Examples of REVOKE
• To revoke the privilege to grant SELECT and DELETE privileges on a table from a user:

REVOKE Statement 131

REVOKE GRANT OPTION FOR SELECT, DELETE ON TABLE invent.partloc
 FROM jsmith;

• To revoke the privilege to grant SELECT and DELETE privileges on a table from a user and a
role:
REVOKE GRANT OPTION FOR SELECT, DELETE ON TABLE invent.partloc
 FROM jsmith, clerks;

• To revoke a user’s SELECT privileges on a table:
-- User administrator grants the SELECT privilege to JSMITH:
GRANT SELECT ON TABLE invent.partloc TO jsmith
 WITH GRANT OPTION;
-- JSMITH grants the SELECT privilege to AJONES:
GRANT SELECT ON TABLE invent.partloc TO ajones;
-- If the user administrator attempts to revoke the SELECT
-- privilege from JSMITH, this would fail because
-- of the privilege granted to AJONES based on the
-- privilege granted to JSMITH.
-- To successfully revoke the SELECT privilege from
-- JSMITH, the SELECT privilege granted to AJONES
-- must be revoked first. For this example:
-- 1. JSMITH revokes the SELECT privilege granted to AJONES:
REVOKE SELECT ON TABLE invent.partloc FROM ajones;
-- 2. User administrator revokes the SELECT privilege on the
-- table from JSMITH:
REVOKE SELECT ON TABLE invent.partloc FROM jsmith RESTRICT;
-- The REVOKE operation succeeds.
-- An easier way to make the REVOKE operation successful is
-- to use the CASCADE option:
REVOKE SELECT ON TABLE invent.partloc FROM jsmith CASCADE;
-- The REVOKE operation succeeds because the CASCADE option
-- causes all specified privileges, and all privileges that
-- were granted based upon the specified privileges, to be
-- removed.

• Administration in the shipping department decides that the CLERKS role should no longer be
able to grant privileges on the invent.partloc table. Fred has recently moved to another
department, so JSMITH revokes the SELECT privilege on the invent.partloc table from
Fred, who was granted the privilege by CLERKS. Then, JSMITH revokes the grant option from
CLERKS:
REVOKE SELECT on table invent.partloc FROM fred
GRANTED BY clerks;

REVOKE GRANT OPTION FOR SELECT ON TABLE invent.partloc FROM
clerks;

132 SQL Statements

REVOKE COMPONENT PRIVILEGE Statement
• “Syntax Description of REVOKE COMPONENT PRIVILEGE”

• “Considerations for REVOKE COMPONENT PRIVILEGE”

• “Example of REVOKE COMPONENT PRIVILEGE”
The REVOKE COMPONENT PRIVILEGE statement removes one or more component privileges from
a user or role. See “Privileges” (page 247) and “Roles” (page 248).
REVOKE COMPONENT PRIVILEGE is a Trafodion SQL extension.

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

REVOKE [GRANT OPTION FOR]
 COMPONENT PRIVILEGE {privilege-name[, privilege-name]...}
 ON component-name
 FROM grantee
 [[GRANTED] BY grantor]

grantee is:
auth-name

grantor is:
role-name

Syntax Description of REVOKE COMPONENT PRIVILEGE
GRANT OPTION FOR

specifies that the grantee’s authority to grant the specified component privileges to other users
or roles (that is, WITH GRANT OPTION) be revoked. This is an optional clause. When this
clause is specified, only the ability to grant the component privilege to another user is revoked.

privilege-name

specifies one or more component privileges to revoke. The comma-separated list can include
only privileges within the same component.

ON component-name

specifies a valid component name on which to revoke component privileges. Currently, the
only valid component name is SQL_OPERATIONS.

FROM grantee

specifies an auth-name from which you revoke the component privileges.
auth-name

specifies the name of an authorization ID from which you revoke privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

[GRANTED] BY grantor

allows you to revoke component privileges on behalf of a role. If not specified, the component
privileges will be revoked on your behalf as the current user/grantor.

role-name

specifies a role on whose behalf the GRANT COMPONENT PRIVILEGE operation was
performed. To revoke the privileges on behalf of a role, you must be a member of the role,
and the role must have the authority to revoke the privileges; that is, the role must have been
granted the privileges WITH GRANT OPTION.

REVOKE COMPONENT PRIVILEGE Statement 133

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

Considerations for REVOKE COMPONENT PRIVILEGE
• At revoke time, all privileges granted WITH GRANT OPTION are removed. That is, the revoke

behavior is CASCADE.
• If none of the component privileges has been granted, SQL returns an error.

• If one or more component privileges have not been granted, SQL silently ignores those
privileges and proceeds with the revoke operation.

• Component privileges must be revoked before a role can be dropped or a user unregistered.
If any privileges have been granted to a role or user, an error is returned when that role is
dropped or the user unregistered. For more information, see the “DROP ROLE Statement”
(page 93) and the “UNREGISTER USER Statement” (page 168).

Authorization and Availability Requirements
You can revoke component privileges for which you are the grantor, either through a direct grant
or a grant done on your behalf. If you are revoking privileges that were granted on behalf of a
role, you must be a member of the role, and you must specify the role in the [GRANTED] BY clause.

Example of REVOKE COMPONENT PRIVILEGE
Revoke a component privilege from SQLUSER1:
REVOKE COMPONENT PRIVILEGE CREATE_TABLE ON
SQL_OPERATIONS FROM sqluser1;

134 SQL Statements

REVOKE ROLE Statement
• “Syntax Description of REVOKE ROLE”

• “Considerations for REVOKE ROLE”

• “Examples of REVOKE ROLE”
The REVOKE ROLE statement removes one or more roles from a user. See “Roles” (page 248).

IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

REVOKE ROLE {role-name [,role-name]...}
 FROM grantee
 [RESTRICT | CASCADE]

grantee is:
database-username

Syntax Description of REVOKE ROLE
role-name [, role-name] ...

specifies the valid roles to revoke.
FROM grantee

specifies the registered database username from whom you revoke the roles.
[RESTRICT | CASCADE]

If you specify RESTRICT, the REVOKE ROLE operation fails if any privileges were granted to
the role or any objects were created based upon those privileges.
If you specify CASCADE, any dependent privileges are removed as part of the REVOKE ROLE
operation.
The default value is RESTRICT.

Considerations for REVOKE ROLE
• To revoke roles from users, you must own the roles or have user administrative privileges for

the roles. You have user administrative privileges for roles if have been granted the
MANAGE_ROLES component privilege. Initially, DB__ROOT is the only database user who
has been granted the MANAGE_ROLES component privilege.

• If RESTRICT (or nothing) is specified and if you want to revoke a role from a user that has
created objects based solely on role privileges, you must drop the objects before revoking the
role. However, if you specify CASCADE, the dependent objects are automatically dropped,
and the role is revoked.

• All of the specified roles must have been granted to the specified user. If any role has not
been granted to the user, the operation returns an error, and no roles are revoked.

• In Trafodion Release 0.9, when you revoke a role from a user that has active sessions, you
will need to disconnect the active sessions and reconnect for the reduction in privileges to take
full effect. Starting in Trafodion Release 1.0, when you revoke a role from a user, the reduction
in privileges is automatically propagated to and detected by active sessions. There is no need
for users to disconnect from and reconnect to a session to see the updated set of privileges.

• If the REVOKE ROLE names multiple roles and any errors occur in processing, no revokes are
performed.

REVOKE ROLE Statement 135

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

Examples of REVOKE ROLE
• To revoke multiple roles from a user:

REVOKE ROLE clerks, sales FROM jsmith;

• To revoke a role with dependent objects from a user:
-- CMILLER grants a role to AJONES:
GRANT ROLE sales TO ajones;
-- CMILLER grants a privilege to the role:
GRANT SELECT ON TABLE invent.partloc TO sales;
-- AJONES creates a view based upon the privilege granted
-- to the role granted to him:
CREATE VIEW invent.partlocview (partnum, loc_code)
 AS SELECT partnum, loc_code FROM invent.partloc;
-- If CMILLER attempts to revoke the role from AJONES,
-- this would fail because of the view created based
-- upon the privilege granted to the role granted to
-- AJONES.
-- CMILLER revokes the role from AJONES with the CASCADE
 option:
REVOKE ROLE sales from AJONES CASCADE;
-- The REVOKE ROLE operation succeeds, and all dependent
 object privileges are revoked.

136 SQL Statements

ROLLBACK WORK Statement
• “Syntax Description of ROLLBACK WORK”

• “Considerations for ROLLBACK WORK”

• “Example of ROLLBACK WORK”
The ROLLBACK WORK statement undoes all database modifications to objects made during the
current transaction and ends the transaction. See “Transaction Management” (page 25).

Syntax Description of ROLLBACK WORK

ROLLBACK [WORK]

WORK is an optional keyword that has no effect.
ROLLBACK WORK issued outside of an active transaction generates error 8609.

Considerations for ROLLBACK WORK

Begin and End a Transaction
BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a transaction.

Example of ROLLBACK WORK
Suppose that you add an order for two parts numbered 4130 to the ORDERS and ODETAIL tables.
When you update the PARTLOC table to decrement the quantity available, you discover no such
part number exists in the given location.
Use ROLLBACK WORK to terminate the transaction without committing the database changes:
BEGIN WORK;

INSERT INTO sales.orders
 VALUES (124, DATE '2007-04-10',
 DATE '2007-06-10', 75, 7654);

INSERT INTO sales.odetail
 VALUES (124, 4130, 25000, 2);

UPDATE invent.partloc
 SET qty_on_hand = qty_on_hand - 2
 WHERE partnum = 4130 AND loc_code = 'K43';

ROLLBACK WORK;

ROLLBACK WORK cancels the insert and update that occurred during the transaction.

ROLLBACK WORK Statement 137

SELECT Statement
• “Syntax Description of SELECT”

• “Considerations for SELECT”

• “Considerations for Select List”

• “Considerations for GROUP BY”

• “Considerations for ORDER BY”

• “Considerations for UNION”

• “Examples of SELECT”
The SELECT statement is a DML statement that retrieves values from tables, views, and derived
tables determined by the evaluation of query expressions, or joined tables.

sql-query is:
query-specification

 | query-expr-and-order

query-specification is:
SELECT ["[" ANY N "]" | "[" FIRST N "]"] [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 [WHERE search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname | colnum}]...]
 [HAVING search-condition]
 [access-clause]
 [mode-clause]

query-expr-and-order is:
query-expr [order-by-clause] [access-clause] [mode-clause]

query-expr is:
query-primary

 | query-expr UNION [ALL] query-primary

query-primary is:
simple-table | (query-expr)

simple-table is:
 VALUES (row-value-const) [,(row-value-const)]...
 | TABLE table
 | query-specification

row-value-const is:
row-subquery

 | {expression | NULL} [,{expression | NULL}]...

order-by-clause is:
 [ORDER BY {colname | colnum} [ASC[ENDING] | DESC[ENDING]]
 [,{colname | colnum} [ASC[ENDING] | DESC[ENDING]]]...]
 [access-clause]

access clause is:
 [FOR] access-option ACCESS

138 SQL Statements

access-option is:
 READ COMMITTED

[LIMIT num]

select-list is:
 * | select-sublist [,select-sublist]...

select-sublist is:
corr.* | [corr.]single-col [[AS]name] | col-expr [[AS] name]

table-ref is:
table [[AS] corr [(col-expr-list)]]

 | view [[AS] corr [(col-expr-list)]]
 | (query-expr) [AS] corr [(col-expr-list)]
 | (delete-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]
 | (update-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]
 | (insert-statement) [AS] corr [(col-expr-list)]
 | joined-table

joined-table is:
table-ref [join-type] JOIN table-ref join-spec

 | table-ref NATURAL [join-type] JOIN table-ref
 | table-ref CROSS JOIN table-ref
 | (joined-table)

join-type is:
 INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

join-spec is:
 ON search-condition

sampling-method is:
 RANDOM percent-size
 | FIRST rows-size
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]...]
 | PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]...]

percent-size is:
percent-result PERCENT [ROWS]

 | BALANCE WHEN condition
 THEN percent-result PERCENT [ROWS]
 [WHEN condition THEN percent-result PERCENT [ROWS]]...
 [ELSE percent-result PERCENT [ROWS]] END

rows-size is:
number-rows ROWS

 | BALANCE WHEN condition THEN number-rows ROWS
 [WHEN condition THEN number-rows ROWS]...
 [ELSE number-rows ROWS] END

transpose-set is:
transpose-item-list AS transpose-col-list

transpose-item-list is:
expression-list | (expression-list) [,(expression-list)]...

SELECT Statement 139

expression-list is:
expression [,expression]...

transpose-col-list is:
colname | (colname-list)

colname-list is:
colname [,colname]...

Syntax Description of SELECT
"[" ANY N "]" | "[" FIRST N "]"

specifies that N rows are to be returned (assuming the table has at least N rows and that the
qualification criteria specified in the WHERE clause, if any, would select at least N rows) and
you do not care which N rows are chosen (out of the qualified rows) to actually be returned.
You must enclose ANY N or FIRST N in square brackets ([]). The quotation marks ("") around
each square bracket in the syntax diagram indicate that the bracket is a required character
that you must type as shown (for example, [ANY 10] or [FIRST 5]). Do not include quotation
marks in ANY or FIRST clauses.
[FIRST N] is different from [ANY N] only if you use ORDER BY on any of the columns in
the select list to sort the result table of the SELECT statement. N is an unsigned numeric literal
with no scale. If N is greater than the number of rows in the table, all rows are returned. [ANY
N] and [FIRST N] are disallowed in nested SELECT statements and on either side of a
UNION operation.

ALL | DISTINCT
specifies whether to retrieve all rows whose columns are specified by the select-list (ALL)
or only rows that are not duplicates (DISTINCT). Nulls are considered equal for the purpose
of removing duplicates. The default is ALL.

select-list

specifies the columns or column expressions to select from the table references in the FROM
clause.
*

specifies all columns in a table, view, joined table, or derived table determined by the
evaluation of a query expression, as specified in the FROM clause.

corr.*
specifies all columns of specific table references by using the correlation name corr of
the table references, as specified in the FROM clause. See “Correlation Names” (page 196).

corr.single-col [[AS] name]
specifies one column of specific table references by using the correlation name of the table
reference, as specified in the FROM clause. See “Correlation Names” (page 196). By using
the AS clause, you can associate the column with a name. name is an SQL identifier. See
“Identifiers” (page 221).

single-col [[AS] name]
specifies a column. By using the AS clause, you can associate the column with a name.
name is an SQL identifier. See “Identifiers” (page 221).

col-expr [[AS] name]
specifies a derived column determined by the evaluation of an SQL value expression in
the list. By using the AS clause, you can associate a derived column, col-expr, with a
name. name is an SQL identifier. See “Identifiers” (page 221).

See the discussion of limitations in “Considerations for Select List” (page 148).

140 SQL Statements

FROM table-ref [,table-ref]...
specifies a list of tables, views, derived tables, or joined tables that determine the contents of
an intermediate result table from which Trafodion SQL returns the columns you specify in
select-list.
If you specify only one table-ref, the intermediate result table consists of rows derived from
that table reference. If you specify more than one table-ref, the intermediate result table is
the cross-product of result tables derived from the individual table references.
table [[AS] corr [(col-expr-list)]] | view [[AS] corr [(col-expr-list)]] |
(query-expr) [AS] corr [(col-expr-list)] | (delete-statement [RETURN
select-list]) [AS] corr [(col-expr-list)] | (update-statement [RETURN
select-list]) [AS] corr [(col-expr-list)] | (insert-statement) [AS] corr
[(col-expr-list)] | joined-table

specifies a table-ref as a single table, view, derived table determined by the evaluation
of a query expression, or a joined table.
You can specify this optional clause for a table or view. This clause is required for a derived
table:
[AS] corr [(col-expr-list)]

specifies a correlation name, corr, for the preceding table reference table-ref in
the FROM clause. See “Correlation Names” (page 196).

col-expr [[AS] name] [,col-expr [[AS] name]]...
specifies the items in col-expr-list, a list of derived columns. By using the AS
clause, you can associate a derived column, col-expr, with a name. name is an SQL
identifier. See “Identifiers” (page 221).

For the specification of a query expression, see the syntax diagram for query-expr
above.

(delete-statement [RETURN select-list]) [AS] corr [(col-expr-list)]
enables an application to read and delete rows with a single operation. For the syntax of
delete-statement, see the “DELETE Statement” (page 86).
RETURN select-list

specifies the columns or column expressions returned from the deleted row. The items
in the select-list can be of these forms:
[OLD.]*

specifies the row from the old table exposed by the embedded delete. The old table
refers to column values before the delete operation. NEW is not allowed.
An implicit OLD.* return list is assumed for a delete operation that does not specify
a return list.

col-expr [[AS] name]
specifies a derived column determined by the evaluation of an SQL value expression
in the list. Any column referred to in a value expression is from the row in the old
table exposed by the delete. The old table refers to column values before the delete
operation.
By using the AS clause, you can associate a derived column, col-expr, with a
name. name is an SQL identifier. See “Identifiers” (page 221).

[AS] corr [(col-expr-list)]
specifies a correlation name, corr, and an optional column list for the preceding items
in the select list RETURN select-list. See “Correlation Names” (page 196).

SELECT Statement 141

(update-statement [RETURN select-list]) [AS] corr [(col-expr-list)]
enables an application to read and update rows with a single operation. For the syntax
of update-statement, see the “UPDATE Statement” (page 169).
RETURN select-list

specifies the columns or column expressions returned from the updated row. The items
in the select-list can be of these forms:
[OLD.| NEW.]*

specifies the row from the old or new table exposed by the update. The old table
refers to column values before the update operation; the new table refers to column
values after the update operation. If a column has not been updated, the new value
is equivalent to the old value.
An implicit NEW.* return list is assumed for an update operation that does not
specify a return list.

col-expr [[AS] name]
specifies a derived column determined by the evaluation of an SQL value expression
in the list. Any column referred to in a value expression can be specified as being
from the row in the old table exposed by the update or can be specified as being
from the row in the new table exposed by the update.
For example: RETURN old.empno,old.salary,new.salary, (new.salary
- old.salary).
By using the AS clause, you can associate a derived column, col-expr, with a
name. name is an SQL identifier. See “Identifiers” (page 221).

[AS] corr [(col-expr-list)]
specifies a correlation name, corr, and an optional column list for the preceding items
in the select list RETURN select-list. See “Correlation Names” (page 196).
For example:
RETURN old.empno,old.salary,new.salary,
 (new.salary - old.salary)
AS emp (empno, oldsalary, newsalary, increase).

(insert-statement) [AS] corr [(col-expr-list)]
For the syntax of insert-statement, see the “INSERT Statement” (page 118).
[AS] corr [(col-expr-list)]

specifies a correlation name, corr, and an optional column list. See “Correlation
Names” (page 196).

joined-table

A joined-table can be specified as:
table-ref [join-type] JOIN table-ref join-spec
| table-ref NATURAL [join-type] JOIN table-ref
| table-ref CROSS JOIN table-ref
| (joined-table)
join-type is: INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

is a joined table. You specify the join-type by using the CROSS, INNER, OUTER, LEFT,
RIGHT, and FULL keywords. If you omit the optional OUTER keyword and use LEFT, RIGHT,
or FULL in a join, Trafodion SQL assumes the join is an outer join.
If you specify a CROSS join as the join-type, you cannot specify a NATURAL join or a
join-spec.
If you specify an INNER, LEFT, RIGHT, or FULL join as the join-type and you do not
specify a NATURAL join, you must use an ON clause as the join-spec, as follows:
Subqueries are not allowed in the join predicate of FULL OUTER JOIN.

142 SQL Statements

ON search-condition

specifies a search-condition for the join. Each column reference in
search-condition must be a column that exists in either of the two result tables
derived from the table references to the left and right of the JOIN keyword. A join of
two rows in the result tables occurs if the condition is satisfied for those rows.

The type of join and the join specification if used determine which rows are joined from
the two table references, as follows:
table-ref CROSS JOIN table-ref

joins each row of the left table-ref with each row of the right table-ref.
table-ref NATURAL JOIN table-ref

joins rows only where the values of all columns that have the same name in both tables
match. This option is equivalent to NATURAL INNER.

table-ref NATURAL LEFT JOIN table-ref

joins rows where the values of all columns that have the same name in both tables
match, plus rows from the left table-ref that do not meet this condition.

table-ref NATURAL RIGHT JOIN table-ref

joins rows where the values of all columns that have the same name in both tables
match, plus rows from the right table-ref that do not meet this condition.

table-ref NATURAL FULL JOIN table-ref

joins rows where the values of all columns that have the same name in both tables
match, plus rows from either side that do not meet this condition, filling in NULLs for
missing values.

table-ref JOIN table-ref join-spec

joins only rows that satisfy the condition in the join-spec clause. This option is
equivalent to INNER JOIN ... ON.

table-ref LEFT JOIN table-ref join-spec

joins rows that satisfy the condition in the join-spec clause, plus rows from the left
table-ref that do not satisfy the condition.

table-ref RIGHT JOIN table-ref join-spec

joins rows that satisfy the condition in the join-spec clause, plus rows from the right
table-ref that do not satisfy the condition.

table-ref FULL OUTER JOIN table-ref join-spec

combines the results of both left and right outer joins. These joins show records from
both tables and fill in NULLs for missing matches on either side

simple-table

A simple-table can be specified as:
 VALUES (row-value-const) [,(row-value-const)]...
| TABLE table
| query-specification

A simple-table can be a table value constructor. It starts with the VALUES keyword followed
by a sequence of row value constructors, each of which is enclosed in parentheses. A
row-value-const is a list of expressions (or NULL) or a row subquery (a subquery that
returns a single row of column values). An operand of an expression cannot reference a column
(except when the operand is a scalar subquery returning a single column value in its result
table).
The use of NULL as a row-value-const element is a Trafodion SQL extension.
A simple-table can be specified by using the TABLE keyword followed by a table name,
which is equivalent to the query specification SELECT * FROM table.

SELECT Statement 143

A simple-table can be a query-specification—that is, a SELECT statement consisting
of SELECT ... FROM ... with optionally the WHERE, SAMPLE, TRANSPOSE, SEQUENCE BY,
GROUP BY, and HAVING clauses.

WHERE search-condition

specifies a search-condition for selecting rows. See “Search Condition” (page 250). The
WHERE clause cannot contain an aggregate (set) function.
The search-condition is applied to each row of the result table derived from the table
reference in the FROM clause or, in the case of multiple table references, the cross-product of
result tables derived from the individual table references.
Each column you specify in search-condition is typically a column in this intermediate
result table. In the case of nested subqueries used to provide comparison values, the column
can also be an outer reference. See“Subquery” (page 252).
To comply with ANSI standards, Trafodion SQL does not move aggregate predicates from the
WHERE clause to a HAVING clause and does not move non-aggregate predicates from the
HAVING clause to the WHERE clause.

SAMPLE sampling-method

specifies the sampling method used to select a subset of the intermediate result table of a
SELECT statement. Each of the methods uses a sampling size. The three sampling
methods—random, first, and periodic—are specified as:
RANDOM percent-size

directs Trafodion SQL to choose rows randomly (each row having an unbiased probability
of being chosen) without replacement from the result table. The sampling size is determined
by using a percent of the result table.

FIRST rows-size [SORT BY colname [,colname]...]
directs Trafodion SQL to choose the first rows-size rows from the sorted result table. The
sampling size is determined by using the specified number of rows.

PERIODIC rows-size EVERY number-rows ROWS [SORT BY colname [,colname]...]
directs Trafodion SQL to choose the first rows from each block (period) of contiguous sorted
rows. The sampling size is determined by using the specified number of rows chosen from
each block.

SAMPLE is a Trafodion SQL extension. See “SAMPLE Clause” (page 261).
TRANSPOSE transpose-set[transpose-set]... [KEY BY key-colname]

specifies the transpose-sets and an optional key clause within a TRANSPOSE clause. You
can use multiple TRANSPOSE clauses in a SELECT statement.
transpose-item-list AS transpose-col-list

specifies a transpose-set. You can use multiple transpose sets within a TRANSPOSE
clause. The TRANSPOSE clause generates, for each row of the source table derived from
the table reference or references in the FROM clause, a row for each item in each
transpose-item-list of all the transpose sets.
The result table of a TRANSPOSE clause has all the columns of the source table plus a value
column or columns, as specified in each transpose-col-list of all the transpose sets,
and an optional key column key-colname.

KEY BY key-colname

optionally specifies an optional key column key-colname. It identifies which expression
the value in the transpose column list corresponds to by its position in the
transpose-item-list. key-colname is an SQL identifier. The data type is exact
numeric, and the value is NOT NULL.

TRANSPOSE is a Trafodion SQL extension. See “TRANSPOSE Clause” (page 271).

144 SQL Statements

SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]] [,colname [ASC[ENDING] |
DESC[ENDING]]]...

specifies the order in which to sort the rows of the intermediate result table for calculating
sequence functions. You must include a SEQUENCE BY clause if you include a sequence
function in select-list. Otherwise, Trafodion SQL returns an error. Further, you cannot
include a SEQUENCE BY clause if no sequence function is in select-list.
colname

names a column in select-list or a column in a table reference in the FROM clause
of the SELECT statement. colname is optionally qualified by a table, view, or correlation
name; for example, CUSTOMER.CITY.

ASC | DESC
specifies the sort order. The default is ASC. When Trafodion SQL orders an intermediate
result table on a column that can contain null, nulls are considered equal to one another
but greater than all other nonnull values.

GROUP BY [col-expr] {colname | colnum} [,{colname | colnum}]...]
specifies grouping columns that define a set of groups for the result table of the SELECT
statement. The expression in the GROUP BY clause must be exactly the same as the expression
in the select list. These columns must appear in the list of columns in the table references in the
FROM clause of the SELECT statement.
If you include a GROUP BY clause, the columns you refer to in the select-list must be
grouping columns or arguments of an aggregate (or set) function.
The grouping columns define a set of groups in which each group consists of rows with identical
values in the specified columns. The column names can be qualified by a table or view name
or a correlation name; for example, CUSTOMER.CITY.
For example, if you specify AGE, the result table contains one group of rows with AGE equal
to 40 and one group of rows with AGE equal to 50. If you specify AGE and then JOB, the
result table contains one group for each age and, within each age group, subgroups for each
job code.
You can specify GROUP BY using ordinals to refer to the relative position within the SELECT
list. For example, GROUP BY 3, 2, 1.
For grouping purposes, all nulls are considered equal to one another. The result table of a
GROUP BY clause can have only one null group.
See “Considerations for GROUP BY” (page 148).

HAVING search-condition

specifies a search-condition to apply to each group of the grouped table resulting from
the preceding GROUP BY clause in the SELECT statement.
To comply with ANSI standards, Trafodion SQL does not move aggregate predicates from the
WHERE clause to a HAVING clause and does not move non-aggregate predicates from the
HAVING clause to the WHERE clause.
If no GROUP BY clause exists, the search-condition is applied to the entire table (which
consists of one group) resulting from the WHERE clause (or the FROM clause if no WHERE
clause exists).
In search-condition, you can specify any column as the argument of an aggregate (or
set) function; for example, AVG (SALARY). An aggregate function is applied to each group in
the grouped table.
A column that is not an argument of an aggregate function must be a grouping column. When
you refer to a grouping column, you are referring to a single value because each row in the
group contains the same value in the grouping column.
See “Search Condition” (page 250).

SELECT Statement 145

[FOR] access-option ACCESS
specifies the access-option when accessing data specified by the SELECT statement or by
a table reference in the FROM clause derived from the evaluation of a query expression that
is a SELECT statement. See “Data Consistency and Access Options” (page 25).
READ COMMITTED

specifies that any data accessed must be from committed rows.
UNION [ALL] select-stmt

specifies a set union operation between the result table of a SELECT statement and the result
table of another SELECT statement.
The result of the union operation is a table that consists of rows belonging to either of the two
contributing tables. If you specify UNION ALL, the table contains all the rows retrieved by each
SELECT statement. Otherwise, duplicate rows are removed.
The select lists in the two SELECT statements of a union operation must have the same number
of columns, and columns in corresponding positions within the lists must have compatible data
types. The select lists must not be preceded by [ANY N] or [FIRST N].
The number of columns in the result table of the union operation is the same as the number of
columns in each select list. The column names in the result table of the union are the same as
the corresponding names in the select list of the left SELECT statement. A column resulting from
the union of expressions or constants has the name (EXPR).
See “Considerations for UNION” (page 149).

ORDER BY {colname | colnum} [ASC[ENDING] | DESC[ENDING]] [,{colname | colnum}
[ASC[ENDING] | DESC[ENDING]]]...

specifies the order in which to sort the rows of the final result table.
colname

names a column in select-list or a column in a table reference in the FROM clause
of the SELECT statement. colname is optionally qualified by a table, view, or correlation
name; for example, CUSTOMER.CITY. If a column has been aliased to another name you
must use the alias name.

colnum

specifies a column by its position in select-list. Use colnum to refer to unnamed
columns, such as derived columns.

ASC | DESC
specifies the sort order. The default is ASC. For ordering a result table on a column that
can contain null, nulls are considered equal to one another but greater than all other nonnull
values.

See “Considerations for ORDER BY” (page 148).
LIMIT num

limits the number of rows returned by the query with no limit applied if num is null or less than
zero. The LIMIT clause is executed after the ORDER BY clause to support TopN queries.

Considerations for SELECT

Authorization Requirements
SELECT requires authority to read all views and tables referred to in the statement, including the
underlying tables of views referred to in the statement.

Use of Views With SELECT
When a view is referenced in a SELECT statement, the specification that defines the view is combined
with the statement. The combination can cause the SELECT statement to be invalid. If you receive

146 SQL Statements

an error message that indicates a problem but the SELECT statement seems to be valid, check the
view definition.
For example, suppose that the view named AVESAL includes column A defined as AVG (X). The
SELECT statement that contains MAX (A) in its select list is invalid because the select list actually
contains MAX (AVG (X)), and an aggregate function cannot have an argument that includes another
aggregate function.

Join Limits

NOTE: We recommend that you limit the number of tables in a join to a maximum of 64, which
includes base tables of views referenced in joins. Queries with joins that involve a larger number
of tables are not guaranteed to compile.

Object Names in SELECT
You can use fully qualified names only in the FROM clause of a SELECT statement.

AS and ORDER BY Conflicts
When you use the AS verb to rename a column in a SELECT statement, and the ORDER BY clause
uses the original column name, the query fails. If a column has been aliased to another name, you
must use the alias name. The ANSI standard does not support this type of query.

Restrictions on Embedded Inserts

• An embedded INSERT cannot be used in a join.

• An embedded INSERT cannot appear in a subquery.

• An embedded INSERT statement cannot have a subquery in the WHERE clause.

• An INSERT statement cannot contain an embedded INSERT statement.

• A union between embedded INSERT expressions is not supported.

• Declaring a cursor on an embedded INSERT statement is not supported.

DISTINCT Aggregate Functions
An aggregate function can accept an argument specified as DISTINCT, which eliminates duplicate
values before the aggregate function is applied. For a given grouping, multiple DISTINCT aggregates
are allowed and can be used with non distinct aggregates. A restriction exists that DISTINCT
STDDEV and VARIANCE cannot be used with multiple DISTINCT aggregates.

Limitations of DISTINCT Aggregates

• No limit exists to the number of distinct aggregates.

• Distinct STDDEV and distinct VARIANCE are not supported with multiple distinct aggregates.
For example, this statement will result in an error.
SELECT sum(distinct a), stddev(distinct b) from T group by d;

Examples of Multiple Distinct Aggregates

• This statement contains distinct aggregates:
SELECT sum(distinct a), count(distinct b), avg(distinct c)
 from T group by d;

• This statement does not contain multiple distincts. Because each distinct aggregate is on the
same column (a), this is treated as one distinct value.

SELECT Statement 147

SELECT sum(distinct a), count(distinct a), avg(distinct a)
 from T group by d;

• This statement shows that multiple distinct aggregates can be used with non distinct aggregates:
SELECT sum(distinct a), avg(distinct b), sum(c)
 from T group by d;

Considerations for Select List
• The * and corr.* forms of a select-list specification are convenient. However, such

specifications make the order of columns in the SELECT result table dependent on the order
of columns in the current definition of the referenced tables or views.

• A col-expr is a single column name or a derived column. A derived column is an SQL value
expression; its operands can be numeric, string, datetime, or interval literals, columns, functions
(including aggregate functions) defined on columns, scalar subqueries, CASE expressions, or
CAST expressions. Any single columns named in col-expr must be from tables or views
specified in the FROM clause. For a list of aggregate functions, see “Aggregate (Set) Functions”
(page 278).

• If col-expr is a single column name, that column of the SELECT result table is a named
column. All other columns are unnamed columns in the result table (and have the (EXPR)
heading) unless you use the AS clause to specify a name for a derived column.

Considerations for GROUP BY
• If you include a GROUP BY clause, the columns you refer to in the select-list must be

either grouping columns or arguments of an aggregate (or set) function. For example, if AGE
is not a grouping column, you can refer to AGE only as the argument of a function, such as
AVG (AGE).

• The expression in the GROUP BY clause must be exactly the same as the expression in the
select list. An error will be returned if it is not. It cannot contain aggregate functions or
subqueries.

• If the value of col-expr is a numeric constant, it refers to the position of the select list item
and is treated as the current GROUP BY using the ordinal feature.

• You can specify GROUP BY using ordinals to refer to the relative position within the SELECT
list. For example, GROUP BY 3, 2, 1.

• If you do not include a GROUP BY clause but you specify an aggregate function in the
select-list, all rows of the result table form the one and only group. The result of AVG,
for example, is a single value for the entire table.

Considerations for ORDER BY
When you specify an ORDER BY clause and its ordering columns, consider:

• ORDER BY is allowed only in the outer level of a query or in the SELECT part of an
INSERT/SELECT statement. It is not allowed inside nested SELECT expressions, such as
subqueries.

• If you specify DISTINCT, the ordering column must be in select-list.

• If you specify a GROUP BY clause, the ordering column must also be a grouping column.

148 SQL Statements

• If an ORDER BY clause applies to a union of SELECT statements, the ordering column must be
explicitly referenced, and not within an aggregate function or an expression, in the
select-list of the leftmost SELECT statement.

• SQL does not guarantee a specific or consistent order of rows unless you specify an ORDER
BY clause. ORDER BY can reduce performance, however, so use it only if you require a specific
order.

Considerations for UNION
Suppose that the contributing SELECT statements are named SELECT1 and SELECT2, the contributing
tables resulting from the SELECT statements are named TABLE1 and TABLE2, and the table resulting
from the UNION operation is named RESULT.

Characteristics of the UNION Columns
For columns in TABLE1 and TABLE2 that contribute to the RESULT table:

• If both columns contain character strings, the corresponding column in RESULT contains a
character string whose length is equal to the greater of the two contributing columns.

• If both columns contain variable-length character strings, RESULT contains a variable-length
character string whose length is equal to the greater of the two contributing columns.

• If both columns are of exact numeric data types, RESULT contains an exact numeric value
whose precision and scale are equal to the greater of the two contributing columns.

• If both columns are of approximate numeric data types, RESULT contains an approximate
numeric value whose precision is equal to the greater of the two contributing columns.

• If both columns are of datetime data type (DATE, TIME, or TIMESTAMP), the corresponding
column in RESULT has the same data type.

• If both columns are INTERVAL data type and both columns are year-month or day-time, RESULT
contains an INTERVAL value whose range of fields is the most significant start field to the least
significant end field of the INTERVAL fields in the contributing columns. (The year-month fields
are YEAR and MONTH. The day-time fields are DAY, HOUR, MINUTE, and SECOND.)
For example, suppose that the column in TABLE1 has the data type INTERVAL HOUR TO
MINUTE, and the column in TABLE2 has the data type INTERVAL DAY TO HOUR. The data
type of the column resulting from the union operation is INTERVAL DAY TO MINUTE.

• If both columns are described with NOT NULL, the corresponding column of RESULT cannot
be null. Otherwise, the column can be null.

ORDER BY Clause and the UNION Operator
In a query containing a UNION operator, the ORDER BY clause defines an ordering on the result
of the union. In this case, the SELECT statement cannot have an individual ORDER BY clause.
You can specify an ORDER BY clause only as the last clause following the final SELECT statement
(SELECT2 in this example). The ORDER BY clause in RESULT specifies the ordinal position of the
sort column either by using an integer or by using the column name from the select list of SELECT1.
This SELECT statement shows correct use of the ORDER BY clause:
SELECT A FROM T1 UNION SELECT B FROM T2 ORDER BY A

This SELECT statement is incorrect because the ORDER BY clause does not follow the final SELECT
statement:
SELECT A FROM T1 ORDER BY A UNION SELECT B FROM T2

This SELECT statement is also incorrect:
SELECT A FROM T1 UNION (SELECT B FROM T2 ORDER BY A)

SELECT Statement 149

Because the subquery (SELECT B FROM T2...) is processed first, the ORDER BY clause does not
follow the final SELECT.

GROUP BY Clause, HAVING Clause, and the UNION Operator
In a query containing a UNION operator, the GROUP BY or HAVING clause is associated with
the SELECT statement it is a part of (unlike the ORDER BY clause, which can be associated with
the result of a union operation). The groups are visible in the result table of the particular SELECT
statement. The GROUP BY and HAVING clauses cannot be used to form groups in the result of a
union operation.

UNION ALL and Associativity
The UNION ALL operation is left associative, meaning that these two queries return the same result:
(SELECT * FROM TABLE1 UNION ALL
 SELECT * FROM TABLE2) UNION ALL SELECT * FROM TABLE3;

SELECT * FROM TABLE1 UNION ALL
 (SELECT * FROM TABLE2 UNION ALL SELECT * FROM TABLE3);

If both the UNION ALL and UNION operators are present in the query, the order of evaluation is
always from left to right. A parenthesized union of SELECT statements is evaluated first, from left
to right, followed by the remaining union of SELECT statements.

Examples of SELECT
• Retrieve information from the EMPLOYEE table for employees with a job code greater than

500 and who are in departments with numbers less than or equal to 3000, displaying the
results in ascending order by job code:
SELECT jobcode, deptnum, first_name, last_name, salary
FROM persnl.employee
WHERE jobcode > 500 AND deptnum <= 3000
ORDER BY jobcode;

JOBCODE DEPTNUM FIRST_NAME LAST_NAME SALARY
------- ------- --------------- ----------- ----------
 600 1500 JONATHAN MITCHELL 32000.00
 600 1500 JIMMY SCHNEIDER 26000.00
 900 2500 MIRIAM KING 18000.00
 900 1000 SUE CRAMER 19000.00
 . . .

• Display selected rows grouped by job code in ascending order:
SELECT jobcode, AVG(salary)
FROM persnl.employee
WHERE jobcode > 500 AND deptnum <= 3000
GROUP BY jobcode
ORDER BY jobcode;

JOBCODE EXPR
------- ----------------------
 600 29000.00
 900 25100.00

--- 2 row(s) selected.

This select list contains only grouping columns and aggregate functions. Each row of the output
summarizes the selected data within one group.

• Select data from more than one table by specifying the table names in the FROM clause and
specifying the condition for selecting rows of the result in the WHERE clause:

SELECT jobdesc, first_name, last_name, salary

150 SQL Statements

FROM persnl.employee E, persnl.job J
WHERE E.jobcode = J.jobcode AND
 E.jobcode IN (900, 300, 420);

JOBDESC FIRST_NAME LAST_NAME SALARY
------------ ------------ --------------- -----------
SALESREP TIM WALKER 32000.00
SALESREP HERBERT KARAJAN 29000.00
...
ENGINEER MARK FOLEY 33000.00
ENGINEER MARIA JOSEF 18000.10
...
SECRETARY BILL WINN 32000.00
SECRETARY DINAH CLARK 37000.00
...

--- 27 row(s) selected.

This type of condition is sometimes called a join predicate. The query first joins the EMPLOYEE
and JOB tables by combining each row of the EMPLOYEE table with each row of the JOB
table; the intermediate result is the Cartesian product of the two tables.
This join predicate specifies that any row (in the intermediate result) with equal job codes is
included in the result table. The WHERE condition further specifies that the job code must be
900, 300, or 420. All other rows are eliminated.
The four logical steps that determine the intermediate and final results of the previous query
are:
1. Join the tables.

JOB TableEMPLOYEE Table

JOBDESCJOBCODESALARYJOBCODE ...EMPNUM ...

2. Drop rows with unequal job codes.

JOB TableEMPLOYEE Table

JOBDESCJOBCODESALARYJOBCODE ...EMPNUM ...

MANAGER1001755001001

.

SALESREP3003200030075

.

SECRETARY90028000900178

.

ENGINEER42033000420207

.

SALESREP30039500300568

3. Drop rows with job codes not equal to 900, 300, or 420.

JOB TableEMPLOYEE Table

JOBDESCJOBCODESALARYJOBCODE ...EMPNUM ...

SALESREP3003200030075

SELECT Statement 151

JOB TableEMPLOYEE Table

.

SECRETARY90028000900178

.

ENGINEER42033000420207

.

SALESREP30039500300568

4. Process the select list, leaving only four columns.

SALARYLAST_NAMEFIRST_NAMEJOBDESC

32000WALKERTIMSALESREP

.

28000CHOUJOHNSECRETARY

.

33000FOLEYMARKENGINEER

.

39500CRINERJESSICASALESREP

The final result is shown in the output:

JOBDESC FIRST_NAME LAST_NAME SALARY
------------ ------------ --------------- -----------
SALESREP TIM WALKER 32000.00
...
SECRETARY JOHN CHOU 28000.00
...

• Select from three tables, group the rows by job code and (within job code) by department
number, and order the groups by the maximum salary of each group:

SELECT E.jobcode, E.deptnum, MIN (salary), MAX (salary)
FROM persnl.employee E,
 persnl.dept D, persnl.job J
WHERE E.deptnum = D.deptnum AND E.jobcode = J.jobcode
 AND E.jobcode IN (900, 300, 420)
GROUP BY E.jobcode, E.deptnum
ORDER BY 4;

JOBCODE DEPTNUM (EXPR) (EXPR)
------- ------- ----------- -----------
 900 1500 17000.00 17000.00
 900 2500 18000.00 18000.00
 ...
 300 3000 19000.00 32000.00
 900 2000 32000.00 32000.00
 ...
 300 3200 22000.00 33000.10
 420 4000 18000.10 36000.00
 ...

--- 16 row(s) selected.

152 SQL Statements

Only job codes 300, 420, and 900 are selected. The minimum and maximum salary for the
same job in each department are computed, and the rows are ordered by maximum salary.

• Select from two tables that have been joined by using an INNER JOIN on matching part
numbers:

SELECT OD.*, P.*
FROM sales.odetail OD INNER JOIN sales.parts P
ON OD.partnum = P.partnum;

Order/Num Part/Num Unit/Price Qty/Ord Part/Num Part Description PRICE Qty/Avail
---------- -------- ------------ ---------- --------
------------------ ------------ -----------
 400410 212 2450.00 12 212
PCSILVER, 20 MB 2500.00 3525

 500450 212 2500.00 8 212
PCSILVER, 20 MB 2500.00 3525

 100210 244 3500.00 3 244
PCGOLD, 30 MB 3000.00 4426

 800660 244 3000.00 6 244
PCGOLD, 30 MB 3000.00 4426

...

--- 72 row(s) selected.

• Select from three tables and display them in employee number order. Two tables are joined
by using a LEFT JOIN on matching department numbers, then an additional table is joined on
matching jobcodes:

SELECT empnum, first_name, last_name, deptname, location, jobdesc
 FROM employee e LEFT JOIN dept d ON e.deptnum = d.deptnum
 LEFT JOIN job j ON e.jobcode = j.jobcode
 ORDER BY empnum;

• Suppose that the JOB_CORPORATE table has been created from the JOB table by using the
CREATE LIKE statement. Form the union of these two tables:

SELECT * FROM job UNION SELECT * FROM job_corporate;

JOBCODE JOBDESC
------- ------------------
 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
 300 SALESREP
 400 SYSTEM ANALYST
 420 ENGINEER
 450 PROGRAMMER
 500 ACCOUNTANT
 600 ADMINISTRATOR
 900 SECRETARY
 100 CORP MANAGER
 300 CORP SALESREP
 400 CORP SYSTEM ANALYS
 500 CORP ACCOUNTANT
 600 CORP ADMINISTRATOR
 900 CORP SECRETARY

--- 16 row(s) selected.

• A FULL OUTER JOIN combines the results of both left and right outer joins. These joins show
records from both tables and fill in NULLs for missing matches on either side:

SELECT Statement 153

SELECT *
FROM employee
 FULL OUTER JOIN
 department
 ON employee.DepartmentID = department.DepartmentID;

LastName DepartmentID DepartmentName DepartmentID
------- ------------ -------------- ------------
Smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 Clerical 34
Jasper 36 NULL NULL
Steinberg 33 Engineering 33
Rafferty 31 Sales 31
NULL NULL Marketing 35

• Present two ways to select the same data submitted by customers from California.
The first way:

SELECT OD.ordernum, SUM (qty_ordered * price)
FROM sales.parts P, sales.odetail OD
WHERE OD.partnum = P.partnum AND OD.ordernum IN
 (SELECT O.ordernum
 FROM sales.orders O, sales.customer C
 WHERE O.custnum = C.custnum AND state = 'CALIFORNIA')
GROUP BY OD.ordernum;

ORDERNUM (EXPR)
---------- ---------------------
 200490 1030.00
 300350 71025.00
 300380 28560.00
--- 3 row(s) selected.

The second way:

SELECT OD.ordernum, SUM (qty_ordered * price)
FROM sales.parts P, sales.odetail OD
WHERE OD.partnum = P.partnum AND OD.ordernum IN
 (SELECT O.ordernum
 FROM sales.orders O
 WHERE custnum IN
 (SELECT custnum
 FROM sales.customer
 WHERE state = 'CALIFORNIA'))
GROUP BY OD.ordernum;

ORDERNUM (EXPR)
---------- ---------------------
 200490 1030.00
 300350 71025.00
 300380 28560.00
--- 3 row(s) selected.

The price for the total quantity ordered is computed for each order number.

• Show employees, their salaries, and the percentage of the total payroll that their salaries
represent. Note the subquery as part of the expression in the select list:
SELECT empnum, first_name, last_name, salary,
CAST(salary * 100 / (SELECT SUM(salary) FROM persnl.employee)
 AS NUMERIC(4,2))
FROM persnl.employee
ORDER BY salary, empnum;

154 SQL Statements

Employee/Number First Name Last Name salary (EXPR)
--------------- --------------- -------------------- ----------- -------
 209 SUSAN CHAPMAN 17000.00 .61
 235 MIRIAM KING 18000.00 .65
 224 MARIA JOSEF 18000.10 .65
...
 23 JERRY HOWARD 137000.10 4.94
 32 THOMAS RUDLOFF 138000.40 4.98
 1 ROGER GREEN 175500.00 6.33
...

--- 62 row(s) selected.

• Examples of using expressions in the GROUP BY clause:
SELECT a+1 FROM t GROUP BY a+1;

SELECT cast(a AS int) FROM t GROUP BY cast(a AS int);

SELECT a+1 FROM t GROUP BY 1;

• Examples of unsupported expressions in the GROUP BY clause:
SELECT sum(a) FROM t GROUP BY sum(a);

SELECT (SELECT a FROM t1) FROM t GROUP BY (SELECT a FROM t1);

SELECT a+1 FROM t GROUP BY 1+a;

SELECT Statement 155

SET SCHEMA Statement
• “Syntax Description of SET SCHEMA”

• “Considerations for SET SCHEMA”

• “Example of SET SCHEMA”
The SET SCHEMA statement sets the default logical schema for unqualified object names for the
current SQL session.

SET SCHEMA default-schema-name

Syntax Description of SET SCHEMA
default-schema-name

specifies the name of a schema. See “Schemas” (page 249).
default-schema-name is an SQL identifier. For example, you can use MYSCHEMA or
myschema or a delimited identifier "My_Schema". See “Identifiers” (page 221).

Considerations for SET SCHEMA
The default schema you specify with SET SCHEMA remains in effect until the end of the session or
until you execute another SET SCHEMA statement. If you do not set a schema name for the session
using SET SCHEMA, the default schema is SEABASE, which exists in the TRAFODION catalog.
For information on how to create a schema, see “Creating and Dropping Schemas” (page 249).

Example of SET SCHEMA
Set the default schema name:
SET SCHEMA myschema;

156 SQL Statements

SET TRANSACTION Statement
• “Syntax Description of SET TRANSACTION”

• “Considerations for SET TRANSACTION”

• “Examples of SET TRANSACTION”
The SET TRANSACTION statement sets the autocommit attribute for transactions. It stays in effect
until the end of the session or until the next SET TRANSACTION statement, whichever comes first.
Therefore, the SET TRANSACTION statement can set the autocommit attribute of all subsequent
transactions in the session.

SET TRANSACTION autocommit-option

autocommit-option is:
 AUTOCOMMIT [ON] | AUTOCOMMIT OFF

Syntax Description of SET TRANSACTION
autocommit-option

specifies whether Trafodion SQL commits or rolls back automatically at the end of statement
execution. This option applies to any statement for which the system initiates a transaction.
If this option is set to ON, Trafodion SQL automatically commits any changes or rolls back any
changes made to the database at the end of statement execution. AUTOCOMMIT is on by
default at the start of a session.
If this option is set to OFF, the current transaction remains active until the end of the session
unless you explicitly commit or rollback the transaction. AUTOCOMMIT is a Trafodion SQL
extension; you cannot use in it with any other option.
Using the AUTOCOMMIT option in a SET TRANSACTION statement does not reset other
transaction attributes that may have been specified in a previous SET TRANSACTION statement.
Similarly, a SET TRANSACTION statement that does not specify the AUTOCOMMIT attribute
does not reset this attribute.

Considerations for SET TRANSACTION

Implicit Transactions
Most DML statements are transaction initiating—the system automatically initiates a transaction
when the statement begins executing.
The exceptions (statements that are not transaction initiating) are:

• COMMIT, FETCH, ROLLBACK, and SET TRANSACTION

• EXECUTE, which is transaction initiating only if the associated statement is transaction-initiating

Explicit Transactions
You can issue an explicit BEGIN WORK even if the autocommit option is on. The autocommit
option is temporarily disabled until you explicitly issue COMMIT or ROLLBACK.

Examples of SET TRANSACTION
The following SET TRANSACTION statement turns off autocommit so that the current transaction
remains active until the end of the session unless you explicitly commit or rollback the transaction.
Trafodion SQL does not automatically commit or roll back any changes made to the database at
the end of statement execution. Instead, Trafodion SQL commits all the changes when you issue
the COMMIT WORK statement.

SET TRANSACTION Statement 157

SET TRANSACTION AUTOCOMMIT OFF;
--- SQL operation complete.

BEGIN WORK;
--- SQL operation complete.

DELETE FROM persnl.employee
 WHERE empnum = 23;
--- 1 row(s) deleted.

INSERT INTO persnl.employee
 (empnum, first_name, last_name, deptnum, salary)
 VALUES (50, 'JERRY','HOWARD', 1000, 137000.00);
--- 1 row(s) inserted.

UPDATE persnl.dept
 SET manager = 50
 WHERE deptnum = 1000;
--- 1 row(s) updated.

COMMIT WORK;
--- SQL operation complete.

158 SQL Statements

SHOWCONTROL Statement
The SHOWCONTROL statement displays the default attributes in effect.
SHOWCONTROL is a Trafodion SQL extension.

SHOWCONTROL {ALL | [QUERY] DEFAULT [attribute-name[, MATCH {FULL | PARTIAL }]]}

Syntax Description of SHOWCONTROL
ALL

displays all the hard-coded default attributes that have been set for the Trafodion instance.
[QUERY] DEFAULT

displays the CONTROL QUERY DEFAULT statements in effect for the session. For more
information, see the“CONTROL QUERY DEFAULT Statement” (page 49)

attribute-name[, MATCH {FULL | PARTIAL }]
displays only the defaults that match, either fully or partially, the attribute used in CONTROL
QUERY DEFAULT statements. The match is not case-sensitive. For descriptions of these attributes,
see “Control Query Default (CQD) Attributes” (page 466).
MATCH FULL specifies that attribute-name must be the same as the attribute name used
in a CONTROL QUERY DEFAULT statement. MATCH PARTIAL specifies that attribute-name
must be included in the attribute name used in a CONTROL QUERY DEFAULT statement. The
default is MATCH PARTIAL.
If attribute-name is a reserved word, such as MIN, MAX, or TIME, you must capitalize
attribute-name and delimit it within double quotes (“). The only exceptions to this rule are
the reserved words CATALOG and SCHEMA, which you can either capitalize and delimit
within double quotes or specify without quotation marks.

Example of SHOWCONTROL
Issue multiple CONTROL QUERY DEFAULT statements followed by a SHOWCONTROL DEFAULT
command:
CONTROL QUERY DEFAULT CACHE_HISTOGRAMS_REFRESH_INTERVAL '7200';

--- SQL operation complete.

CONTROL QUERY DEFAULT HIST_NO_STATS_REFRESH_INTERVAL '7200';

--- SQL operation complete.

SHOWCONTROL DEFAULT;

CONTROL QUERY DEFAULT
 CACHE_HISTOGRAMS_REFRESH_INTERVAL 7200
 HIST_NO_STATS_REFRESH_INTERVAL 7200

--- SQL operation complete.

SHOWCONTROL Statement 159

SHOWDDL Statement
• “Syntax Description of SHOWDDL”

• “Considerations for SHOWDDL”

• “Examples of SHOWDDL”
The SHOWDDL statement describes the DDL syntax used to create an object as it exists in the
metadata, or it returns a description of a user, role, or component in the form of a GRANT statement.
SHOWDDL is a Trafodion SQL extension.

SHOWDDL showddl-spec

showddl-spec
 [TABLE | LIBRARY | PROCEDURE] [schema-name.]object-name[, PRIVILEGES]
 | COMPONENT component-name
 | USER database-username
 | ROLE role-name[, GRANTEES]

Syntax Description of SHOWDDL
[schema-name.]object-name

specifies the ANSI name of an existing table, view, library, or procedure. See “Database
Object Names” (page 198). If object-name is not fully qualified, SHOWDDL uses the default
schema for the session.

PRIVILEGES
describes the PRIVILEGES associated with the object. If specified, privileges are displayed for
an object in the form of GRANT statements.

component-name

specifies an existing component. Currently, the only valid component name is
SQL_OPERATIONS.

database-username

specifies a registered database username.
role-name

specifies an existing role.
GRANTEES

displays all users who have been granted the role in the form of GRANT ROLE statements. This
is an optional clause.

Considerations for SHOWDDL
• SHOWDDL can differ from the original DDL used to create an object.

• SHOWDDL can be used within TrafCI.

• SHOWDDL [TABLE | LIBRARY | PROCEDURE] displays the following information:

A constraint may be disabled.◦
◦ A table may be offline.

◦ An active DDL lock may exist on an object.

• SHOWDDL USER displays user information as a REGISTER USER statement.

• SHOWDDL ROLE displays the role information as a CREATE ROLE statement.

160 SQL Statements

Required Privileges
To issue a SHOWDDL statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the database object.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

• You have the SELECT privilege on the target object.

Differences Between SHOWDDL Output and Original DDL

• All column constraints (NOT NULL, PRIMARY KEY, and CHECK) are transformed into table
constraints. All NOT NULL constraints are consolidated into a single check constraint.

• Check constraints are moved out of the CREATE TABLE statement and encapsulated in a
separate ALTER TABLE ADD CONSTRAINT statement.

• SHOWDDL generates ALTER TABLE ADD COLUMN statements for each column that was
added to the table.

• All ANSI names in the output are qualified with the schema name.

• SHOWDDL displays constraint names even though they might not have been specified during
the creation of the constraint.

• SHOWDDL always generates a Java signature for the SPJ.

PRIVILEGES Option
The PRIVILEGES option includes the GRANT statements as they apply to the option. Each privilege
is specified in separate GRANT statements even if they were granted in a single statement.

Examples of SHOWDDL
• This SHOWDDL statement displays the statement that created the specified table in the database

and the privileges granted on that table:
SQL>showddl tab41;

CREATE TABLE TRAFODION.SCH41.TAB41
 (
 A INT DEFAULT NULL
 , B INT DEFAULT NULL
)
;

-- GRANT DELETE, INSERT, SELECT, UPDATE, REFERENCES ON TRAFODION."SCH41"."TAB41" TO PAULLOW41 WITH GRANT
 OPTION;

--- SQL operation complete.

• This SHOWDDL statement displays the statement that registered the specified user in the
database:
SQL>showddl user sqluser_admin;

REGISTER USER "SQLUSER_ADMIN";

--- SQL operation complete.

• This SHOWDDL statement displays the statement that created the specified role in the database
and the users who have been granted this role:
SQL>showddl role db__rootrole;

CREATE ROLE "DB__ROOTROLE";

SHOWDDL Statement 161

 -- GRANT ROLE "DB__ROOTROLE" TO "DB__ROOT" WITH ADMIN OPTION;

--- SQL operation complete.

162 SQL Statements

SHOWDDL SCHEMA Statement
• “Syntax Description for SHOWDDL SCHEMA”

• “Considerations for SHOWDDL SCHEMA”

• “Example of SHOWDDL SCHEMA”
The SHOWDDL SCHEMA statement displays the DDL syntax used to create a schema as it exists
in the metadata and shows the authorization ID that owns the schema.
SHOWDDL SCHEMA is a Trafodion SQL extension.

SHOWDDL SCHEMA [catalog-name.]schema-name

Syntax Description for SHOWDDL SCHEMA
[catalog-name.]schema-name

specifies the ANSI name of an existing catalog and schema. If schema-name is not fully
qualified, SHOWDDL uses the default catalog for the session, TRAFODION. For more
information, see “Database Object Names” (page 198).

Considerations for SHOWDDL SCHEMA
If not specified, the catalog is the current default catalog, TRAFODION.

Required Privileges
To issue a SHOWDDL SCHEMA statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the schema.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

Example of SHOWDDL SCHEMA
This SHOWDDL SCHEMA statement displays the DDL syntax used to create the schema,
MYSCHEMA, as it exists in the metadata and shows the authorization ID that owns the schema:
SHOWDDL SCHEMA MYSCHEMA;

CREATE PRIVATE SCHEMA "TRAFODION"."MYSCHEMA" AUTHORIZATION "DB__ROOT";

--- SQL operation complete.

SHOWDDL SCHEMA Statement 163

SHOWSTATS Statement
• “Syntax Description of SHOWSTATS”

• “Considerations for SHOWSTATS”

• “Examples of SHOWSTATS”
The SHOWSTATS statement displays the histogram statistics for one or more groups of columns
within a table. These statistics are used to devise optimized access plans.
SHOWSTATS is a Trafodion SQL extension.

SHOWSTATS FOR TABLE table-name ON group-list [DETAIL]

group-list is:

column-list[, column-list]...
 | EVERY COLUMN[, column-list]...
 | EVERY KEY[, column-list]...
 | EXISTING COLUMN[S][, column-list]...

column-list for a single-column group is:

column-name
 | (column-name)
 | column-name TO column-name
 | (column-name) TO (column-name)
 | column-name TO (column-name)
 | (column-name) TO column-name

column-list for a multicolumn group is:

 (column-name, column-name[, column-name]...)

Syntax Description of SHOWSTATS
table-name

is the ANSI name of the table for which statistics are to be displayed.
ON group-list

specifies one or more groups of columns, group-list, for which to display histogram statistics.
group-list is: column-list [, column-list]... | EVERY COLUMN [,
column-list]... | EVERY KEY [, column-list]... | EXISTING COLUMN[S]
[, column-list]...

specifies the ways in which group-list can be defined. The column list represents both
a single-column group and a multicolumn group.

EVERY COLUMN

indicates that histogram statistics are to be displayed for each individual column of table
and any multicolumns that make up the primary key and indexes. For columns that do not
have histograms, this option returns No histogram data for column(s)--->.

EVERY KEY

indicates that histogram statistics are to be displayed for columns that make up the primary
key and indexes.

EXISTING COLUMN[S]

indicates that histogram statistics are to be displayed only for columns of table that actually
have histograms. This option yields a more concise report because columns with no
histogram data are omitted. This option includes any existing multicolumn histograms.

DETAIL

displays statistics for corresponding histogram intervals and other details.

164 SQL Statements

If you do not select the DETAIL keyword, the default display lists the basic histogram
information, including the histogram ID, number of intervals, total rows, total UEC, and the
column names. The detailed display additionally includes the low value and high value as
well as interval data.

column-list for a single-column group is: column-name | (column-name) |
column-name TO column-name | (column-name) TO (column-name) |
column-name TO (column-name) | (column-name) TO column-name

specifies the ways in which the column-name can be defined for single-column groups.
A range of columns specified using the TO keyword causes all columns in that range to be
included, defined by their order of declaration in the table.

column-list for a multicolumn group is: (column-name, column-name [,
column-name]...)

specifies the ways in which the column-name can be defined for multicolumn groups. For
example, (abc, def) indicates the multicolumn histogram consisting of columns abc
and def, not two single-column histograms.

For more information about the column list syntax and specifying columns, see the “UPDATE
STATISTICS Statement” (page 186).

Considerations for SHOWSTATS

Required Privileges
To issue a SHOWSTATS statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the database object.

• You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

• You have the SELECT privilege on the target object.

• You have the MANAGE_STATISTICS component privilege for the SQL_OPERATIONS
component.

Examples of SHOWSTATS
• This example displays histogram statistics for table A using the EVERY KEY keyword. In addition,

the DETAIL keyword is selected:
SHOWSTATS FOR TABLE A ON EVERY KEY DETAIL;

• This example displays statistics for table CAT.SCH.A and selects all columns from abc through
def:
SHOWSTATS FOR TABLE CAT.SCH.A ON ABC TO DEF;

• This example displays statistics for table A. The list of column names contained within
parenthesis refers to a multicolumn group:
SHOWSTATS FOR TABLE A ON (ABC,DEF);

• This example displays statistics for table A using the EXISTING COLUMNS keyword. In addition,
the DETAIL keyword is selected:
SHOWSTATS FOR TABLE A ON EXISTING COLUMNS DETAIL;

Default output example:
>>SHOWSTATS FOR TABLE A ON EXISTING COLUMNS;

Histogram data for Table CAT.SCH.A
Table ID: 341261536378386

SHOWSTATS Statement 165

 Hist ID # Ints Rowcount UEC Colname(s)
========== ====== =========== ==============================
 623327638 1 11 10 ABC, DEF, GHI
 623327633 10 11 10 ABC
 623327628 9 11 9 DEF
 623327623 10 11 10 GHI

--- SQL operation complete.
>>SHOWSTATS FOR TABLE A ON ABC;

Histogram data for Table CAT.SCH.A
Table ID: 341261536378386

 Hist ID # Ints Rowcount UEC Colname(s)
========= ====== =========== =============================
 623327633 10 11 10 ABC

--- SQL operation complete.

>>SHOWSTATS FOR TABLE A ON DEF DETAIL;

Detailed Histogram data for Table CAT.SCH.A
Table ID: 341261536378386

Hist ID: 623327628
Column(s): DEF
Total Rows: 11
Total UEC: 9
Low Value: (1)
High Value: (199)
Intervals: 9

Number Rowcount UEC Boundary
====== =========== ==============================

 0 0 0 (1)
 1 1 1 (1)
 2 3 1 (2)
 3 1 1 (4)
 4 1 1 (11)
 5 1 1 (12)
 6 1 1 (14)
 7 1 1 (99)
 8 1 1 (123)
 9 1 1 (199)

--- SQL operation complete.

166 SQL Statements

TABLE Statement
• “Considerations for TABLE”

• “Example of TABLE”
The TABLE statement is equivalent to the query specification SELECT * FROM table.

TABLE table

table

names the user table or view.

Considerations for TABLE

Relationship to SELECT Statement
The result of the TABLE statement is one form of a simple-table, which refers to the definition of a
table reference within a SELECT statement. See the “SELECT Statement” (page 138).

Example of TABLE
This TABLE statement returns the same result as SELECT * FROM job:
TABLE job;

Job/Code Job Description
-------- --------------------
 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
 300 SALESREP
 400 SYSTEM ANALYST
 420 ENGINEER
 450 PROGRAMMER
 500 ACCOUNTANT
 600 ADMINISTRATOR
 900 SECRETARY

--- 10 row(s) selected.

TABLE Statement 167

UNREGISTER USER Statement
• “Syntax Description of UNREGISTER USER”

• “Considerations for UNREGISTER USER”

• “Example of UNREGISTER USER”
The UNREGISTER USER statement removes a database username from the SQL database. The user
can no longer log on to the database.
UNREGISTER USER is a Trafodion SQL extension.

UNREGISTER USER database-username [RESTRICT | CASCADE]

Syntax Description of UNREGISTER USER
database-username

is the name of a currently registered database user. database-username is a regular or
delimited case-insensitive identifier. See “Case-Insensitive Delimited Identifiers” (page 221).

[RESTRICT | CASCADE]
If you specify RESTRICT, the UNREGISTER USER operation fails if there are any objects or
schemas in the database owned by the user or any privileges or roles granted to the user.
If you specify CASCADE, all objects and schemas owned by the user are dropped, and all
privileges and roles granted to the user are revoked as part of the UNREGISTER USER operation.
The default value is RESTRICT.

Considerations for UNREGISTER USER
• To unregister a user, you must have user administrative privileges. You have user administrative

privileges if you have been granted the MANAGE_USERS component privilege. Initially,
DB__ROOT is the only database user who has been granted the MANAGE_USERS component
privilege.

• You cannot unregister any username beginning with DB__. Role names beginning with DB__
are reserved by Trafodion.

• UNREGISTER USER fails if you specify RESTRICT (or nothing) and if the user owns any objects
or schemas or if the user has been granted any privileges or roles.

Example of UNREGISTER USER
To unregister a user:
UNREGISTER USER "jsmith@hp.com";

168 SQL Statements

UPDATE Statement
• “Syntax Description of UPDATE”

• “Considerations for UPDATE”

• “Examples of UPDATE”
The UPDATE statement is a DML statement that updates data in a row or rows in a table or updatable
view. Updating rows in a view updates the rows in the table on which the view is based.

Searched UPDATE is:

UPDATE table

 { set-clause-type1 | set-clause-type2 }

set-clause-type1 is:
 SET set-clause[, set-clause]..

set-clause is:
column-name = {expression | NULL}

set-clause-type2 is:
 SET (column1, ..., columnN) = {(value1, ..., valueN) | (query-expr)}

 [WHERE search-condition]
 [[FOR] access-option ACCESS]

access-option is:
 READ COMMITTED

Syntax Description of UPDATE
table

names the user table or view to update. table must be a base table or an updatable view.
To refer to a table or view, use the ANSI logical name.
See “Database Object Names” (page 198).

set-clause-type1

This type of SET clause associates a value with a specific column in the table being updated.
For each set-clause, the value of the specified target column-name is replaced by the
value of the update source expression (or NULL). The data type of each target column must
be compatible with the data type of its source value.
column-name

names a column in table to update. You cannot qualify or repeat a column name. You
cannot update the value of a column that is part of the primary key.

expression

is an SQL value expression that specifies a value for the column. The expression cannot
contain an aggregate function defined on a column. The data type of expression must
be compatible with the data type of column-name.
If expression refers to columns being updated, Trafodion SQL uses the original values
to evaluate the expression and determine the new value.
See “Expressions” (page 211).

NULL
can also specify the value of the update source.

set-clause-type2

This type of SET clause allows multiple columns to be specified on the left side of the assignment
operator. These columns are updated using multiple values specified on the right side of the

UPDATE Statement 169

assignment operator. The right side of the assignment operator could be simple values or a
subquery.
column1, ..., columnN

names columns in table to update. You cannot qualify or repeat a column name. You
cannot update the value of a column that is part of the primary key.

value1, ..., valueN
are values specified on the right side of the assignment operator for the columns specified
on the left side of the assignment operator. The data type of each value must be compatible
with the data type of the corresponding column on the left side of the assignment operator.

query-expr

is a SELECT subquery. Only one subquery can be specified on the right side of a SET
clause. The subquery cannot refer to the table being updated. For the syntax and description
of query-expr, see the “SELECT Statement” (page 138).

WHERE search-condition

specifies a search-condition that selects rows to update. Within the search-condition,
columns being compared are also being updated in the table or view. See “Search Condition”
(page 250).
If you do not specify a search-condition, all rows in the table or view are updated.
Do not use an UPDATE statement with a WHERE clause that contains a SELECT for the same
table. Reading from and inserting into, updating in, or deleting from the same table generates
an error. Use a positioned (WHERE CURRENT OF) UPDATE instead. See “MERGE Statement”
(page 123).

[FOR] access-option ACCESS
specifies the access-option required for data used in the evaluation of a search condition.
See “Data Consistency and Access Options” (page 25).
READ COMMITTED

specifies that any data used in the evaluation of the search condition must be from committed
rows.

Considerations for UPDATE

Performance
An UPDATE of primary key columns could perform poorly when compared to an UPDATE of non-key
columns. This is because the UPDATE operation involves moving records in disk by deleting all the
records in the before-image and then inserting the records in the after-image back into the table.

Authorization Requirements
UPDATE requires authority to read and write to the table or view being updated and authority to
read any table or view specified in subqueries used in the search condition. A column of a view
can be updated if its underlying column in the base table can be updated.

Transaction Initiation and Termination
The UPDATE statement automatically initiates a transaction if no active transaction exists. Otherwise,
you can explicitly initiate a transaction with the BEGIN WORK statement. When a transaction is
started, the SQL statements execute within that transaction until a COMMIT or ROLLBACK is
encountered or an error occurs.

Isolation Levels of Transactions and Access Options of Statements
The isolation level of a Trafodion SQL transaction defines the degree to which the operations on
data within that transaction are affected by operations of concurrent transactions. When you specify

170 SQL Statements

access options for the DML statements within a transaction, you override the isolation level of the
containing transaction. Each statement then executes with its individual access option.

Conflicting Updates in Concurrent Applications
If you are using the READ COMMITTED isolation level within a transaction, your application can
read different committed values for the same data at different times. Further, two concurrent
applications can update (possibly in error) the same column in the same row.

Requirements for Data in Row
Each row to be updated must satisfy the constraints of the table or underlying base table of the
view. No column updates can occur unless all of these constraints are satisfied. (A table constraint
is satisfied if the check condition is not false—that is, it is either true or has an unknown value.)
In addition, a candidate row from a view created with the WITH CHECK OPTION must satisfy the
view selection criteria. The selection criteria are specified in the WHERE clause of the AS
query-expr clause in the CREATE VIEW statement.

Reporting of Updates
When an UPDATE completes successfully, Trafodion SQL reports the number of times rows were
updated during the operation.
Under certain conditions, updating a table with indexes can cause Trafodion SQL to update the
same row more than once, causing the number of reported updates to be higher than the actual
number of changed rows. However, both the data in the table and the number of reported updates
are correct. This behavior occurs when all of these conditions are true:

• The optimizer chooses an alternate index as the access path.

• The index columns specified in WHERE search-condition are not changed by the update.

• Another column within the same index is updated to a higher value (if that column is stored
in ascending order), or a lower value (if that column is stored in descending order).

When these conditions occur, the order of the index entries ensures that Trafodion SQL will
encounter the same row (satisfying the same search-condition) at a later time during the
processing of the table. The row is then updated again by using the same value or values.
For example, suppose that the index of MYTABLE consists of columns A and B, and the UPDATE
statement is specified:
UPDATE MYTABLE
SET B = 20
WHERE A > 10;

If the contents of columns A and B are 11 and 12 respectively before the UPDATE, after the UPDATE
Trafodion SQL will encounter the same row indexed by the values 11 and 20.

Updating Character Values
For a fixed-length character column, an update value shorter than the column length is padded
with single-byte ASCII blanks (HEX20) to fill the column. If the update value is longer than the
column length, string truncation of non blank trailing characters returns an error, and the column
is not updated.
For a variable-length character column, an update value is not padded; its length is the length of
the value specified. As is the case for fixed length, if the update value is longer than the column
length, string truncation of non blank trailing characters returns an error, and the column is not
updated.

UPDATE Statement 171

SET Clause Restrictions and Error Cases
The SET clause has the following restrictions:

• The number of columns on the left side of each assignment operator should match the number
of values or SELECT list elements on the right side. The following examples are not allowed:
UPDATE t SET (a,b)=(10,20,30)
UPDATE t set (b,c)=(SELECT r,t,s FROM x)

• If multi-column update syntax is specified and the right side contains a subquery, only one
element, the subquery, is not allowed.
UPDATE t SET (a,b)=(10, (SELECT a FROM t1))

• More than one subquery is not allowed if multiple-column syntax is used.
UPDATE t SET (a,b)=(SELECT x,y FROM z), (c,d)=(SELECT x,y FROM a))

• If a subquery is used, it must return at most one row.

Examples of UPDATE
• Update a single row of the ORDERS table that contains information about order number

200300 and change the delivery date:
UPDATE sales.orders
SET deliv_date = DATE '2008-05-02'
WHERE ordernum = 200300;

• Update several rows of the CUSTOMER table:
UPDATE sales.customer
SET credit = 'A1'
WHERE custnum IN (21, 3333, 324);

• Update all rows of the CUSTOMER table to the default credit 'C1':
UPDATE sales.customer
SET credit = 'C1';

• Update the salary of each employee working for all departments located in Chicago:
UPDATE persnl.employee
SET salary = salary * 1.1
WHERE deptnum IN
 (SELECT deptnum FROM persnl.dept
 WHERE location = 'CHICAGO');

The subquery is evaluated for each row of the DEPT table and returns department numbers
for departments located in Chicago.

• This is an example of a self-referencing UPDATE statement, where the table being updated is
scanned in a subquery:
UPDATE table3 SET b = b + 2000 WHERE a, b =
(SELECT a, b FROM table3 WHERE b > 200);

172 SQL Statements

UPSERT Statement
• “Syntax Description of UPSERT”

• “Examples of UPSERT”
The UPSERT statement either updates a table if the row exists or inserts into a table if the row does
not exist.
UPSERT is a Trafodion SQL extension.

UPSERT [USING LOAD] INTO table [(target-col-list)] {query-expr | values-clause}

target-col-list is:
column-name[, column-name]...

values-clause is:
 VALUES (expression[, expression]...)

Syntax Description of UPSERT
USING LOAD

allows the UPSERT to occur without a transaction. Use this clause when inserting data into an
empty table. If you do not specify this clause, the UPSERT occurs within a transaction.

table

names the user table in which to insert or update rows. table must be a base table.
(target-col-list)

names the columns in the table in which to insert or update values. The data type of each target
column must be compatible with the data type of its corresponding source value. Within the
list, each target column must have the same position as its associated source value, whose
position is determined by the columns in the table derived from the evaluation of the query
expression (query-expr).
If you do not specify all of the columns in the target table in the target-col-list, column
default values are inserted into or updated in the columns that do not appear in the list. See
“Column Default Settings” (page 194).
If you do not specify target-col-list, row values from the source table are inserted into
or updated in all columns in table. The order of the column values in the source table must be
the same order as that of the columns specified in the CREATE TABLE for table. (This order
is the same as that of the columns listed in the result table of SHOWDDL table.)
column-name

names a column in the target table in which to either insert or update data. You cannot
qualify or repeat a column name.

query-expr

is a SELECT subquery that returns data to be inserted into or updated in the target table. The
subquery cannot refer to the table being operated on. For the syntax and description of
query-expr, see the “SELECT Statement” (page 138).

VALUES (expression[, expression]...)
specifies an SQL value expression or a set of expressions that specify values to be inserted into
or updated in the target table. The data type of expression must be compatible with the
data type of the corresponding column in the target table. See “Expressions” (page 211).

Examples of UPSERT
• This UPSERT statement either inserts or updates the part number and price in the PARTS table

using the part number and unit price from the ODETAIL table where the part number is 244:

UPSERT Statement 173

UPSERT INTO sales.parts (partnum, price) SELECT partnum, unit_price
 FROM sales.odetail WHERE partnum = 244;

• This UPSERT statement either inserts or updates rows in the EMPLOYEE table using the results
of querying the EMPLOYEE_EUROPE table:
UPSERT INTO persnl.employee SELECT * FROM persnl.employee_europe;

• This UPSERT statement either inserts or updates a row in the DEPT table using the specified
values:
UPSERT INTO persnl.dept VALUES (3500,'CHINA SALES',111,3000,'HONG KONG');

• This UPSERT statement either inserts or updates a row in the DEPT table using the specified
values:
UPSERT INTO persnl.dept (deptnum, deptname, manager)
 VALUES (3600,‘JAPAN SALES’, 996);

174 SQL Statements

VALUES Statement
• “Considerations for VALUES”

• “Examples of VALUES”
The VALUES statements starts with the VALUES keyword followed by a sequence of row value
constructors, each of which is enclosed in parenthesis. It displays the results of the evaluation of
the expressions and the results of row subqueries within the row value constructors.

VALUES (row-value-const) [, (row-value-const)]...

row-value-const is:
row-subquery

 | {expression | NULL} [,{expression | NULL}...

row-value-const

specifies a list of expressions (or NULL) or a row subquery (a subquery that returns a single
row of column values). An operand of an expression cannot reference a column (except when
the operand is a scalar subquery returning a single column value in its result table).
The results of the evaluation of the expressions and the results of the row subqueries in the row
value constructors must have compatible data types.

Considerations for VALUES

Relationship to SELECT Statement
The result of the VALUES statement is one form of a simple-table, which is part of the definition
of a table reference within a SELECT statement. See the “SELECT Statement” (page 138).

Relationship to INSERT Statement
For a VALUES clause that is the direct source of an INSERT statement, Trafodion SQL also allows
the keyword DEFAULT in a VALUES clause, just like NULL is allowed. For more information, see
the “INSERT Statement” (page 118).

Examples of VALUES
• This VALUES statement displays two rows with simple constants:

VALUES (1,2,3), (4,5,6);

(EXPR) (EXPR) (EXPR)
------ ------ -----
 1 2 3
 4 5 6

--- 2 row(s) selected.

• This VALUES statement displays the results of the expressions and the row subquery in the lists:
VALUES (1+2, 3+4), (5, (select count (*) from t));

(EXPR) (EXPR)
------ ----------------- ------
 3 7
 5 2

--- 2 row(s) selected.

VALUES Statement 175

3 SQL Utilities
A utility is a tool that runs within Trafodion SQL and performs tasks. This section describes the
Trafodion SQL utilities:

Uses the Trafodion Bulk Loader to load data from a source
table, either a Trafodion table or a Hive table, into a target
Trafodion table.

“LOAD Statement” (page 177)

Loads indexes.“POPULATE INDEX Utility” (page 180)

Purges data from tables and indexes.“PURGEDATA Utility” (page 182)

Unloads data from Trafodion tables into an HDFS location
that you specify.

“UNLOAD Statement” (page 183)

Updates the histogram statistics for one or more groups of
columns within a table. These statistics are used to devise
optimized access plans.

“UPDATE STATISTICS Statement” (page 186)

NOTE: Trafodion SQL utilities are entered interactively or from script files using a client-based
tool, such as the Trafodion Command Interface (TrafCI). To install and configure a client application
that enables you to connect to and issue SQL utilities, see the Trafodion Client Installation Guide.

176 SQL Utilities

LOAD Statement
• “Syntax Description of LOAD”

• “Considerations for LOAD”

• “Example of LOAD”
The LOAD statement uses the Trafodion Bulk Loader to load data from a source table, either a
Trafodion table or a Hive table, into a target Trafodion table. The Trafodion Bulk Loader prepares
and loads HFiles directly in the region servers and bypasses the write path and the cost associated
with it. The write path begins at a client, moves to a region server, and ends when data eventually
is written to an HBase data file called an HFile.
The Trafodion bulk load process takes place in two phases:

• Preparation phase: In this phase, Trafodion reads the data from the source files in Hive or
HDFS, partitions the data based on the target table's partitioning scheme, sorts the data, and
then generates KeyValue pairs that will populate the HFiles. Trafodion also encodes the data
for faster storage and retrieval.

• Loading-the-files-into-HBase phase: This phase uses the LoadIncrementalHFiles (also known as
the computebulkload tool) and load the generated HFiles into the region servers.

LOAD is a Trafodion SQL extension.

LOAD [WITH option[[,] option]...] INTO target-table SELECT ... FROM source-table

option is:
 TRUNCATE TABLE
 | NO RECOVERY
 | NO POPULATE INDEXES
 | NO DUPLICATE CHECK
 | NO OUTPUT
 | INDEX TABLE ONLY
 | UPSERT USING LOAD

Syntax Description of LOAD
target-table

is the name of the target Trafodion table where the data will be loaded. See “Database Object
Names” (page 198).

source-table

is the name of either a Trafodion table or a Hive table that has the source data. Hive tables
can be accessed in Trafodion using the HIVE.HIVE schema (for example, hive.hive.orders).
The Hive table needs to already exist in Hive before Trafodion can access it. If you want to
load data that is already in an HDFS folder, then you need to create an external Hive table
with the right fields and pointing to the HDFS folder containing the data. You can also specify
a WHERE clause on the source data as a filter.

[WITH option[[,] option]...]
is a set of options that you can specify for the load operation. You can specify one or more of
these options:
TRUNCATE TABLE

causes the Bulk Loader to truncate the target table before starting the load operation. By
default, the Bulk Loader does not truncate the target table before loading data.

NO RECOVERY
specifies that the Bulk Loader not use HBase snapshots for recovery. By default, the Bulk
Loader handles recovery using the HBase snapshots mechanism.

LOAD Statement 177

NO POPULATE INDEXES
specifies that the Bulk Loader not handle index maintenance or populate the indexes. By
default, the Bulk Loader handles index maintenance, disabling indexes before starting the
load operation and populating them after the load operation is complete.

NO DUPLICATE CHECK
causes the Bulk Loader to ignore duplicates in the source data. By default, the Bulk Loader
checks if there are duplicates in the source data and generates an error when it detects
duplicates.

NO OUTPUT
prevents the LOAD statement from displaying status messages. By default, the LOAD
statement prints status messages listing the steps that the Bulk Loader is executing.

INDEX TABLE ONLY
specifies that the target table, which is an index, be populated with data from the parent
table.

UPSERT USING LOAD
specifies that the data be inserted into the target table using rowset inserts without a
transaction.

Considerations for LOAD

Required Privileges
To issue a LOAD statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the target table.

• You have these privileges:

SELECT and INSERT privileges on the target table◦
◦ DELETE privilege on the target table if TRUNCATE TABLE is specified

• You have the MANAGE_LOAD component privilege for the SQL_OPERATIONS component.

Configuration Before Running LOAD
Before running the LOAD statement, make sure that you have configured the staging folder, source
table, and HBase according to these guidelines.

Staging Folder for HFiles
The Bulk Loader uses an HDFS folder as a staging area for the HFiles before calling HBase APIs
to merge them into the Trafodion table. By default, Trafodion uses /bulkload/ as the staging
folder. This folder must be owned by the same user as the one under which Trafodion runs. Trafodion
also must have full permissions on this folder. The HBase user (that is, the user under which HBase
runs) must have read/write access to this folder.
Example:
drwxr-xr-x - trafodion trafodion 0 2014-07-07 09:49 /bulkload.

Hive Source Table
To load data stored in HDFS, you will need to create a Hive table with the right fields and types
pointing to the HDFS folder containing the data before you start the load.

178 SQL Utilities

HBase Snapshots
If you do not specify the NO RECOVERY OPTION in the LOAD statement, the Bulk Loader uses
HBase snapshots as a mechanism for recovery. Snapshots are a lightweight operation where some
metadata is copied. (Data is not copied.) A snapshot is taken before the load starts and is removed
after the load completes successfully. If something goes wrong and it is possible to recover, the
snapshot is used to restore the table to its initial state before the load started. To use this recovery
mechanism, HBase needs to be configured to allow snapshots.

Example of LOAD
• For customer demographics data residing in /hive/tpcds/customer_demographics,

create an external Hive table using the following Hive SQL:
create external table customer_demographics
(
 cd_demo_sk int,
 cd_gender string,
 cd_marital_status string,
 cd_education_status string,
 cd_purchase_estimate int,
 cd_credit_rating string,
 cd_dep_count int,
 cd_dep_employed_count int,
 cd_dep_college_count int
)
row format delimited fields terminated by '|'
location '/hive/tpcds/customer_demographics';

• The Trafodion table where you want to load the data is defined using this DDL:
create table customer_demographics_salt
(
 cd_demo_sk int not null,
 cd_gender char(1),
 cd_marital_status char(1),
 cd_education_status char(20),
 cd_purchase_estimate int,
 cd_credit_rating char(10),
 cd_dep_count int,
 cd_dep_employed_count int,
 cd_dep_college_count int,
 primary key (cd_demo_sk)
)
salt using 4 partitions on (cd_demo_sk);

• This example shows how the LOAD statement loads the customer_demographics_salt table
from the Hive table, hive.hive.customer_demographics:
>>load into customer_demographics_salt
+>select * from hive.hive.customer_demographics where cd_demo_sk <= 5000;
Task: LOAD Status: Started Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
Task: DISABLE INDEX Status: Started Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
Task: DISABLE INDEX Status: Ended Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
Task: PREPARATION Status: Started Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
 Rows Processed: 5000
Task: PREPARATION Status: Ended ET: 00:00:03.199
Task: COMPLETION Status: Started Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
Task: COMPLETION Status: Ended ET: 00:00:00.331
Task: POPULATE INDEX Status: Started Object: TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS_SALT
Task: POPULATE INDEX Status: Ended ET: 00:00:05.262

LOAD Statement 179

POPULATE INDEX Utility
• “Syntax Description of POPULATE INDEX”

• “Considerations for POPULATE INDEX”

• “Examples of POPULATE INDEX”
The POPULATE INDEX utility performs a fast INSERT of data into an index from the parent table.
You can execute this utility in a client-based tool like TrafCI.

POPULATE INDEX index ON table [index-option]

index-option is:
 ONLINE | OFFLINE

Syntax Description of POPULATE INDEX
index

is an SQL identifier that specifies the simple name for the index. You cannot qualify index
with its schema name. Indexes have their own namespace within a schema, so an index name
might be the same as a table or constraint name. However, no two indexes in a schema can
have the same name.

table

is the name of the table for which to populate the index. See “Database Object Names”
(page 198).

ONLINE
specifies that the populate operation should be done online. That is, ONLINE allows read and
write DML access on the base table while the populate operation occurs. Additionally, ONLINE
reads the audit trail to replay updates to the base table during the populate phase. If a lot of
audit is generated and you perform many CREATE INDEX operations, we recommend that you
avoid ONLINE operations because they can add more contention to the audit trail. The default
is ONLINE.

OFFLINE
specifies that the populate should be done offline. OFFLINE allows only read DML access to
the base table. The base table is unavailable for write operations at this time. OFFLINE must
be specified explicitly. SELECT is allowed.

Considerations for POPULATE INDEX
When POPULATE INDEX is executed, the following steps occur:

• The POPULATE INDEX operation runs in many transactions.

• The actual data load operation is run outside of a transaction.
If a failure occurs, the rollback is faster because it does not have to process a lot of audit. Also, if
a failure occurs, the index remains empty, unaudited, and not attached to the base table (offline).

• When an offline POPULATE INDEX is being executed, the base table is accessible for read
DML operations. When an online POPULATE INDEX is being executed, the base table is
accessible for read and write DML operations during that time period, except during the
commit phase at the very end.

• If the POPULATE INDEX operation fails unexpectedly, you may need to drop the index again
and re-create and repopulate.

• Online POPULATE INDEX reads the audit trail to replay updates by allowing read/write
access. If you plan to create many indexes in parallel or if you have a high level of activity
on the audit trail, you should consider using the OFFLINE option.

180 SQL Utilities

Errors can occur if the source base table or target index cannot be accessed, or if the load fails
due to some resource problem or problem in the file system.

Required Privileges
To perform a POPULATE INDEX operation, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the table.

• You have the SELECT and INSERT (or ALL) privileges on the associated table.

Examples of POPULATE INDEX
• This example loads the specified index from the specified table:

POPULATE INDEX myindex ON myschema.mytable;

• This example loads the specified index from the specified table, which uses the default schema:
POPULATE INDEX index2 ON table2;

POPULATE INDEX Utility 181

PURGEDATA Utility
• “Syntax Description of PURGEDATA”

• “Considerations for PURGEDATA”

• “Example of PURGEDATA”
The PURGEDATA utility performs a fast DELETE of data from a table and its related indexes. You
can execute this utility in a client-based tool like TrafCI.

PURGEDATA object

Syntax Description of PURGEDATA
object

is the name of the table from which to purge the data. See “Database Object Names” (page 198).

Considerations for PURGEDATA
• The object can be a table name.

• Errors are returned if table cannot be accessed or if a resource or file-system problem causes
the delete to fail.

• PURGEDATA is not supported for volatile tables.

Required Privileges
To perform a PURGEDATA operation, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the table.

• You have the SELECT and DELETE (or ALL) privileges on the associated table.

Availability
PURGEDATA marks the table OFFLINE and sets the corrupt bit while processing. If PURGEDATA
fails before it completes, the table and its dependent indexes will be unavailable, and you must
run PURGEDATA again to complete the operation and remove the data. Error 8551 with an
accompanying file system error 59 or error 1071 is returned in this case.

Example of PURGEDATA
This example purges the data in the specified table. If the table has indexes, their data is also
purged.
PURGEDATA myschema.mytable;

182 SQL Utilities

UNLOAD Statement
• “Syntax Description of UNLOAD”

• “Considerations for UNLOAD”

• “Example of UNLOAD”
The UNLOAD statement unloads data from Trafodion tables into an HDFS location that you specify.
Extracted data can be either compressed or uncompressed based on what you choose.
UNLOAD is a Trafodion SQL extension.

UNLOAD [WITH option[option]...] INTO 'target-location' SELECT ... FROM source-table ...

option is:
 DELIMITER { 'delimiter-string' | delimiter-ascii-value }
 | RECORD_SEPARATOR { 'separator-literal' | separator-ascii-value }
 | NULL_STRING 'string-literal'
 | PURGEDATA FROM TARGET
 | COMPRESSION GZIP
 | MERGE FILE merged_file-path [OVERWRITE]
 | NO OUTPUT
 | { NEW | EXISTING } SNAPSHOT HAVING SUFFIX 'string'

Syntax Description of UNLOAD
'target-location'

is the full pathname of the target HDFS folder where the extracted data will be written. Enclose
the name of folder in single quotes. Specify the folder name as a full pathname and not as a
relative path. You must have write permissions on the target HDFS folder. If you run UNLOAD
in parallel, multiple files will be produced under the target-location. The number of files
created will equal the number of ESPs.

SELECT ... FROM source-table ...
is either a simple query or a complex one that contains GROUP BY, JOIN, or UNION clauses.
source-table is the name of a Trafodion table that has the source data. See “Database
Object Names” (page 198).

[WITH option[option]...]
is a set of options that you can specify for the unload operation. If you specify an option more
than once, Trafodion returns an error with SQLCODE -4489. You can specify one or more of
these options:
DELIMITER { 'delimiter-string' | delimiter-ascii-value }

specifies the delimiter as either a delimiter string or an ASCII value. If you do not specify
this option, Trafodion uses the character “|” as the delimiter.
delimiter-string can be any ASCII or Unicode string. You can also specify the
delimiter as an ASCII value. Valid values range from 1 to 255. Specify the value in decimal
notation; hexadecimal or octal notation are currently not supported. If you are using an
ASCII value, the delimiter can be only one character wide. Do not use quotes when
specifying an ASCII value for the delimiter.

RECORD_SEPARATOR { 'separator-literal' | separator-ascii-value }
specifies the character that will be used to separate consecutive records or rows in the
output file. You can specify either a literal or an ASCII value for the separator. The default
value is a newline character.
separator-literal can be any ASCII or Unicode character. You can also specify the
separator as an ASCII value. Valid values range from 1 to 255. Specify the value in decimal
notation; hexadecimal or octal notation are currently not supported. If you are using an
ASCII value, the separator can be only one character wide. Do not use quotes when
specifying an ASCII value for the separator.

UNLOAD Statement 183

NULL_STRING 'string-literal'
specifies the string that will be used to indicate a NULL value. The default value is the empty
string ''.

PURGEDATA FROM TARGET
causes files in the target HDFS folder to be deleted before the unload operation.

COMPRESSION GZIP
uses gzip compression in the extract node, writing the data to disk in this compressed
format. GZIP is currently the only supported type of compression. If you do not specify this
option, the extracted data will be uncompressed.

MERGE FILE merged_file-path [OVERWRITE]
merges the unloaded files into one single file in the specified merged-file-path. If you
specify compression, the unloaded data will be in compressed format, and the merged file
will also be in compressed format. If you specify the optional OVERWRITE keyword, the
file is overwritten if it already exists; otherwise, Trafodion raises an error if the file already
exists.

NO OUTPUT
prevents the UNLOAD statement from displaying status messages. By default, the UNLOAD
statement prints status messages listing the steps that the Bulk Unloader is executing.

{ NEW | EXISTING } SNAPSHOT HAVING SUFFIX 'string'
initiates an HBase snapshot scan during the unload operation. During a snapshot scan,
the Bulk Unloader will get a list of the Trafodion tables from the query explain plan and
will create and verify snapshots for the tables. Specify a suffix string, 'string', which
will be appended to each table name.

Considerations for UNLOAD
• You must have write permissions on the target HDFS folder.

• If a WITH option is specified more than once, Trafodion returns an error with SQLCODE
-4489.

Required Privileges
To issue an UNLOAD statement, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the target table.

• You have the SELECT privilege on the target table.

• You have the MANAGE_LOAD component privilege for the SQL_OPERATIONS component.

Example of UNLOAD
This example shows how the UNLOAD statement extracts data from a Trafodion table,
TRAFODION.HBASE.CUSTOMER_DEMOGRAPHICS, into an HDFS folder, /bulkload/
customer_demographics:
>>UNLOAD
+>WITH PURGEDATA FROM TARGET
+>MERGE FILE 'merged_customer_demogs.gz' OVERWRITE
+>COMPRESSION GZIP
+>INTO '/bulkload/customer_demographics'
+>select * from trafodion.hbase.customer_demographics
+><<+ cardinality 10e10 >>;
Task: UNLOAD Status: Started
Task: EMPTY TARGET Status: Started
Task: EMPTY TARGET Status: Ended ET: 00:00:00.014

184 SQL Utilities

Task: EXTRACT Status: Started
 Rows Processed: 200000
Task: EXTRACT Status: Ended ET: 00:00:04.743
Task: MERGE FILES Status: Started
Task: MERGE FILES Status: Ended ET: 00:00:00.063

--- 200000 row(s) unloaded.

UNLOAD Statement 185

UPDATE STATISTICS Statement
• “Syntax Description of UPDATE STATISTICS”

• “Considerations for UPDATE STATISTICS”

• “Examples of UPDATE STATISTICS”
The UPDATE STATISTICS statement updates the histogram statistics for one or more groups of
columns within a table. These statistics are used to devise optimized access plans.
UPDATE STATISTICS is a Trafodion SQL extension.

UPDATE STATISTICS FOR TABLE table [CLEAR | on-clause]

on-clause is:
 ON column-group-list CLEAR
 | ON column-group-list [histogram-option]...

column-group-list is:
column-list [,column-list]...

 | EVERY COLUMN [,column-list]...
 | EVERY KEY [,column-list]...
 | EXISTING COLUMN[S] [,column-list]...
 | NECESSARY COLUMN[S] [,column-list]...

column-list for a single-column group is:
column-name

 | (column-name)
 | column-name TO column-name
 | (column-name) TO (column-name)
 | column-name TO (column-name)
 | (column-name) TO column-name

column-list for a multicolumn group is:
 (column-name, column-name [,column-name]...)

histogram-option is:
 GENERATE n INTERVALS
 | SAMPLE [sample-option]

sample-option is:
 [r ROWS]
 | RANDOM percent PERCENT
 | PERIODIC size ROWS EVERY period ROWS

Syntax Description of UPDATE STATISTICS
table

names the table for which statistics are to be updated. To refer to a table, use the ANSI logical
name.
See “Database Object Names” (page 198).

CLEAR
deletes some or all histograms for the table table. Use this option when new applications no
longer use certain histogram statistics.
If you do not specify column-group-list, all histograms for table are deleted.
If you specify column-group-list, only columns in the group list are deleted.

ON column-group-list

specifies one or more groups of columns for which to generate histogram statistics with the
option of clearing the histogram statistics. You must use the ON clause to generate statistics
stored in histogram tables.

186 SQL Utilities

column-list

specifies how column-group-list can be defined. The column list represents both a
single-column group and a multi-column group.
Single-column group:
column-name | (column-name) | column-name TO column-name | (column-name)
TO (column-name)

specifies how you can specify individual columns or a group of individual columns.
To generate statistics for individual columns, list each column. You can list each single
column name within or without parentheses.

Multi-column group:
(column-name, column-name [,column-name]...)

specifies a multi-column group.
To generate multi-column statistics, group a set of columns within parentheses, as shown.
You cannot specify the name of a column more than once in the same group of columns.

One histogram is generated for each unique column group. Duplicate groups, meaning
any permutation of the same group of columns, are ignored and processing continues.
When you run UPDATE STATISTICS again for the same user table, the new data for that
table replaces the data previously generated and stored in the table’s histogram tables.
Histograms of column groups not specified in the ON clause remain unchanged in histogram
tables.
For more information about specifying columns, see “Generating and Clearing Statistics
for Columns” (page 190).

EVERY COLUMN
The EVERY COLUMN keyword indicates that histogram statistics are to be generated for
each individual column of table and any multicolumns that make up the primary key and
indexes. For example, table has columns A, B, C, D defined, where A, B, C compose
the primary key. In this case, the ON EVERY COLUMN option generates a single column
histogram for columns A, B, C, D, and two multi-column histograms of (A, B, C) and (A,
B).
The EVERY COLUMN option does what EVERY KEY does, with additional statistics on the
individual columns.

EVERY KEY
The EVERY KEY keyword indicates that histogram statistics are to be generated for columns
that make up the primary key and indexes. For example, table has columns A, B, C, D
defined. If the primary key comprises columns A, B, statistics are generated for (A, B), A
and B. If the primary key comprises columns A, B, C, statistics are generated for (A,B,C),
(A,B), A, B, C. If the primary key comprises columns A, B, C, D, statistics are generated
for (A, B, C, D), (A, B, C), (A, B), and A, B, C, D.

EXISTING COLUMN[S]
The EXISTING COLUMN keyword indicates that all existing histograms of the table are to
be updated. Statistics must be previously captured to establish existing columns.

NECESSARY COLUMN[S]
The NECESSARY COLUMN[S] keyword generates statistics for histograms that the optimizer
has requested but do not exist. Update statistics automation must be enabled for NECESSARY
COLUMN[S] to generate statistics. To enable automation, see “Automating Update Statistics”
(page 190).

UPDATE STATISTICS Statement 187

histogram-option

GENERATE n INTERVALS
The GENERATE n INTERVALS option for UPDATE STATISTICS accepts values between
1 and 10,000. Keep in mind that increasing the number of intervals per histograms
may have a negative impact on compile time.
Increasing the number of intervals can be used for columns with small set of possible
values and large variance of the frequency of these values. For example, consider a
column ‘CITY’ in table SALES, which stores the city code where the item was sold,
where number of cities in the sales data is 1538. Setting the number of intervals to a
number greater or equal to the number of cities (that is, setting the number of intervals
to 1600) guarantees that the generated histogram captures the number of rows for
each city. If the specified value n exceeds the number of unique values in the column,
the system generates only as many intervals as the number of unique values.

SAMPLE [sample-option]
is a clause that specifies that sampling is to be used to gather a subset of the data from
the table. UPDATE STATISTICS stores the sample results and generates histograms.
If you specify the SAMPLE clause without additional options, the result depends on the
number of rows in the table. If the table contains no more than 10,000 rows, the entire
table will be read (no sampling). If the number of rows is greater than 10,000 but less
than 1 million, 10,000 rows are randomly sampled from the table. If there are more
than 1 million rows in the table, a random row sample is used to read 1 percent of the
rows in the table, with a maximum of 1 million rows sampled.

TIP: As a guideline, the default sample of 1 percent of the rows in the table, with a
maximum of 1 million rows, provides good statistics for the optimizer to generate good
plans.

If you do not specify the SAMPLE clause, if the table has fewer rows than specified, or
if the sample size is greater than the system limit, Trafodion SQL reads all rows from
table.
See “SAMPLE Clause” (page 261).
sample-option

r rows

A row sample is used to read r rows from the table. The value r must be an integer
that is greater than zero (r > 0).
RANDOM percent PERCENT
directs Trafodion SQL to choose rows randomly from the table. The value percent
must be a value between zero and 100 (0 < percent <= 100). In addition, only
the first four digits to the right of the decimal point are significant. For example,
value 0.00001 is considered to be 0.0000, Value 1.23456 is considered to be
1.2345.
PERIODIC size ROWS EVERY period ROW
directs Trafodion SQL to choose the first size number of rows from each period
of rows. The value size must be an integer that is greater than zero and less than
or equal to the value period. (0 < size <= period). The size of the period is
defined by the number of rows specified for period. The value period must be
an integer that is greater than zero (period > 0).

188 SQL Utilities

Considerations for UPDATE STATISTICS

Using Statistics
Use UPDATE STATISTICS to collect and save statistics on columns. The SQL compiler uses histogram
statistics to determine the selectivity of predicates, indexes, and tables. Because selectivity directly
influences the cost of access plans, regular collection of statistics increases the likelihood that
Trafodion SQL chooses efficient access plans.
While UPDATE STATISTICS is running on a table, the table is active and available for query access.
When a user table is changed, either by changing its data significantly or its definition, re-execute
the UPDATE STATISTICS statement for the table.

Histogram Statistics
Histogram statistics are used by the compiler to produce the best plan for a given SQL query.
When histograms are not available, default assumptions are made by the compiler and the resultant
plan might not perform well. Histograms that reflect the latest data in a table are optimal.
The compiler does not need histogram statistics for every column of a table. For example, if a
column is only in the select list, its histogram statistics will be irrelevant. A histogram statistic is
useful when a column appears in:

• A predicate

• A GROUP BY column

• An ORDER BY clause

• A HAVING clause

• Or similar clause
In addition to single-column histogram statistics, the compiler needs multi-column histogram statistics,
such as when group by column-5, column-3, column-19 appears in a query. Then,
histogram statistics for the combination (column-5, column-3, column-19) are needed.

Required Privileges
To perform an UPDATE STATISTICS operation, one of the following must be true:

• You are DB__ROOT.

• You are the owner of the target table.

• You have the MANAGE_STATISTICS component privilege for the SQL_OPERATIONS
component.

Locking
UPDATE STATISTICS momentarily locks the definition of the user table during the operation but not
the user table itself. The UPDATE STATISTICS statement uses READ UNCOMMITTED isolation level
for the user table.

Transactions
Do not start a transaction before executing UPDATE STATISTICS. UPDATE STATISTICS runs multiple
transactions of its own, as needed. Starting your own transaction in which UPDATE STATISTICS
runs could cause the transaction auto abort time to be exceeded during processing.

UPDATE STATISTICS Statement 189

Generating and Clearing Statistics for Columns
To generate statistics for particular columns, name each column, or name the first and last columns
of a sequence of columns in the table. For example, suppose that a table has consecutive columns
CITY, STATE, ZIP. This list gives a few examples of possible options you can specify:

Multicolumn GroupSingle-Column Group Within
Parentheses

Single-Column Group

ON (CITY, STATE) or ON
(CITY,STATE,ZIP)

ON (CITY),(STATE),(ZIP)ON CITY, STATE, ZIP

ON (CITY) TO (ZIP)ON CITY TO ZIP

ON (ZIP) TO (CITY)ON ZIP TO CITY

ON (CITY), (STATE) TO (ZIP)ON CITY, STATE TO ZIP

ON (CITY) TO (STATE), (ZIP)ON CITY TO STATE, ZIP

The TO specification is useful when a table has many columns, and you want histograms on a
subset of columns. Do not confuse (CITY) TO (ZIP) with (CITY, STATE, ZIP), which refers to a
multi-column histogram.
You can clear statistics in any combination of columns you specify, not necessarily with the
column-group-list you used to create statistics. However, those statistics will remain until you
clear them.

Column Lists and Access Plans
Generate statistics for columns most often used in data access plans for a table—that is, the primary
key, indexes defined on the table, and any other columns frequently referenced in predicates in
WHERE or GROUP BY clauses of queries issued on the table. Use the EVERY COLUMN option to
generate histograms for every individual column or multicolumns that make up the primary key
and indexes.
The EVERY KEY option generates histograms that make up the primary key and indexes.
If you often perform a GROUP BY over specific columns in a table, use multi-column lists in the
UPDATE STATISTICS statement (consisting of the columns in the GROUP BY clause) to generate
histogram statistics that enable the optimizer to choose a better plan. Similarly, when a query joins
two tables by two or more columns, multi-column lists (consisting of the columns being joined) help
the optimizer choose a better plan.

Automating Update Statistics
To enable update statistics automation, set the Control Query Default (CQD) attribute,
USTAT_AUTOMATION_INTERVAL, in a session where you will run update statistics operations.
For example:
control query default USTAT_AUTOMATION_INTERVAL '1440';

The value of USTAT_AUTOMATION_INTERVAL is intended to be an automation interval (in minutes),
but, in Trafodion Release 1.0, this value does not act as a timing interval. Instead, any value greater
than zero enables update statistics automation.
After enabling update statistics automation, prepare each of the queries that you want to optimize.
For example:
prepare s from select...;

The PREPARE statement causes the Trafodion SQL compiler to compile and optimize a query without
executing it. When preparing queries with update statistic automation enabled, any histograms
needed by the optimizer that are not present will cause those columns to be marked as needing
histograms.

190 SQL Utilities

Next, run this UPDATE STATISTICS statement against each table, using ON NECESSARY
COLUMN[S] to generate the needed histograms:
update statistics for table table-name on necessary columns sample;

Examples of UPDATE STATISTICS
• This example generates four histograms for the columns jobcode, empnum, deptnum, and

(empnum, deptnum) for the table EMPLOYEE. Depending on the table’s size and data
distribution, each histogram should contain ten intervals.
UPDATE STATISTICS FOR TABLE employee
 ON (jobcode),(empnum, deptnum)
 GENERATE 10 INTERVALS;

--- SQL operation complete.

• This example generates histogram statistics using the ON EVERY COLUMN option for the
table DEPT. This statement performs a full scan, and Trafodion SQL determines the default
number of intervals.
UPDATE STATISTICS FOR TABLE dept
 ON EVERY COLUMN;

--- SQL operation complete.

• Suppose that a construction company has an ADDRESS table of potential sites and a
DEMOLITION_SITES table that contains some of the columns of the ADDRESS table. The
primary key is ZIP. Join these two tables on two of the columns in common:
SELECT COUNT(AD.number), AD.street,
 AD.city, AD.zip, AD.state
 FROM address AD, demolition_sites DS
 WHERE AD.zip = DS.zip AND AD.type = DS.type
 GROUP BY AD.street, AD.city, AD.zip, AD.state;

To generate statistics specific to this query, enter these statements:
UPDATE STATISTICS FOR TABLE address
 ON (street), (city), (state), (zip, type);

UPDATE STATISTICS FOR TABLE demolition_sites
 ON (zip, type);

• This example removes all histograms for table DEMOLITION_SITES:
UPDATE STATISTICS FOR TABLE demolition_sites CLEAR;

• This example selectively removes the histogram for column STREET in table ADDRESS:
UPDATE STATISTICS FOR TABLE address ON street CLEAR;

UPDATE STATISTICS Statement 191

4 SQL Language Elements
Trafodion SQL language elements, which include data types, expressions, functions, identifiers,
literals, and predicates, occur within the syntax of SQL statements. The statement and command
topics support the syntactical and semantic descriptions of the language elements in this section.
This section describes:

• “Authorization IDs”

• “Character Sets”

• “Columns”

• “Constraints”

• “Correlation Names”

• “Database Objects”

• “Database Object Names”

• “Data Types”

• “Expressions”

• “Identifiers”

• “Indexes”

• “Keys”

• “Literals”

• “Null”

• “Predicates”

• “Roles”

• “Privileges”

• “Schemas”

• “Search Condition”

• “Subquery”

• “Tables”

• “Views”

192 SQL Language Elements

Authorization IDs
An authorization ID is used for an authorization operation. Authorization is the process of validating
that a database user has permission to perform a specified SQL operation. Externally, the
authorization ID is a regular or delimited case-insensitive identifier that can have a maximum of
128 characters. See “Case-Insensitive Delimited Identifiers” (page 221). Internally, the authorization
ID is associated with a 32-bit number that the database generates and uses for efficient access
and storage.
All authorization IDs share the same namespace. An authorization ID can be a database username
or a role name. Therefore, a database user and a role cannot share the same name.
An authorization ID can be the PUBLIC authorization ID, which represents all present and future
authorization IDs. An authorization ID cannot be _SYSTEM, which is the implicit grantor of privileges
to the creator of objects.

Character Sets
You can specify ISO88591 or UTF8 for a character column definition. The use of UTF8 permits
you to store characters from many different languages.

Columns
A column is a vertical component of a table and is the relational representation of a field in a
record. A column contains one data value for each row of the table.
A column value is the smallest unit of data that can be selected from or updated in a table. Each
column has a name that is an SQL identifier and is unique within the table or view that contains
the column.

Column References
A qualified column name, or column reference, is a column name qualified by the name of the
table or view to which the column belongs, or by a correlation name.
If a query refers to columns that have the same name but belong to different tables, you must use
a qualified column name to refer to the columns within the query. You must also refer to a column
by a qualified column name if you join a table with itself within a query to compare one row of
the table with other rows in the same table.
The syntax of a column reference or qualified column name is:
{table-name | view-name | correlation-name}.column-name

If you define a correlation name for a table in the FROM clause of a statement, you must use that
correlation name if you need to qualify the column name within the statement.
If you do not define an explicit correlation name in the FROM clause, you can qualify the column
name with the name of the table or view that contains the column. See “Correlation Names”
(page 196).

Derived Column Names
A derived column is an SQL value expression that appears as an item in the select list of a SELECT
statement. An explicit name for a derived column is an SQL identifier associated with the derived
column. The syntax of a derived column name is:
column-expression [[AS] column-name]

The column expression can simply be a column reference. The expression is optionally followed
by the AS keyword and the name of the derived column.
If you do not assign a name to derived columns, the headings for unnamed columns in query result
tables appear as (EXPR). Use the AS clause to assign names that are meaningful to you, which is
important if you have more than one derived column in your select list.

Authorization IDs 193

Examples of Derived Column Names
These two examples show how to use names for derived columns.
The first example shows (EXPR) as the column heading of the SELECT result table:
SELECT AVG (salary)
FROM persnl.employee;
(EXPR)

 49441.52

--- 1 row(s) selected.

The second example shows AVERAGE SALARY as the column heading:
SELECT AVG (salary) AS "AVERAGE SALARY"
FROM persnl.employee;
"AVERAGE SALARY"

 49441.52

--- 1 row(s) selected.

Column Default Settings
You can define specific default settings for columns when the table is created. The CREATE TABLE
statement defines the default settings for columns within tables. The default setting for a column is
the value inserted in a row when an INSERT statement omits a value for a particular column.

194 SQL Language Elements

Constraints
An SQL constraint is an object that protects the integrity of data in a table by specifying a condition
that all the values in a particular column or set of columns of the table must satisfy.
Trafodion SQL enforces these constraints on SQL tables:

Column or table constraint specifying a condition must be
satisfied for each row in the table.

CHECK

Column or table constraint that specifies a referential
constraint for the table, declaring that a column or set of

FOREIGN KEY

columns (called a foreign key) in a table can contain only
values that match those in a column or set of columns in the
table specified in the REFERENCES clause.

Column constraint specifying the column cannot contain
nulls.

NOT NULL

Column or table constraint specifying the column or set of
columns as the primary key for the table.

PRIMARY KEY

Column or table constraint that specifies that the column or
set of columns cannot contain more than one occurrence
of the same value or set of values.

UNIQUE

Creating or Adding Constraints on SQL Tables
To create constraints on an SQL table when you create the table, use the NOT NULL, UNIQUE,
CHECK, FOREIGN KEY, or PRIMARY KEY clause of the CREATE TABLE statement.
For more information on Trafodion SQL commands, see “CREATE TABLE Statement” (page 69)
and “ALTER TABLE Statement” (page 36).

Constraint Names
When you create a constraint, you can specify a name for it or allow a name to be generated by
Trafodion SQL. You can optionally specify both column and table constraint names. Constraint
names are ANSI logical names. See “Database Object Names” (page 198). Constraint names are
in the same namespace as tables and views, so a constraint name cannot have the same name
as a table or view.
The name you specify can be fully qualified or not. If you specify the schema parts of the name,
they must match those parts of the affected table and must be unique among table, view, and
constraint names in that schema. If you omit the schema portion of the name you specify, Trafodion
SQL expands the name by using the schema for the table.
If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the name
for the constraint and qualifies it with the schema of the table. The identifier consists of the table
name concatenated with a system-generated unique identifier.

Constraints 195

Correlation Names
A correlation name is a name you can associate with a table reference that is a table, view, or
subquery in a SELECT statement to:

• Distinguish a table or view from another table or view referred to in a statement

• Distinguish different uses of the same table

• Make the query shorter
A correlation name can be explicit or implicit.

Explicit Correlation Names
An explicit correlation name for a table reference is an SQL identifier associated with the table
reference in the FROM clause of a SELECT statement. See “Identifiers” (page 221). The correlation
name must be unique within the FROM clause. For more information about the FROM clause, table
references, and correlation names, see “SELECT Statement” (page 138).
The syntax of a correlation name for the different forms of a table reference within a FROM clause
is the same:
{table | view | (query-expression)} [AS]correlation-name

A table or view is optionally followed by the AS keyword and the correlation name. A derived
table, resulting from the evaluation of a query expression, must be followed by the AS keyword
and the correlation name. An explicit correlation name is known only to the statement in which
you define it. You can use the same identifier as a correlation name in another statement.

Implicit Correlation Names
A table or view reference that has no explicit correlation name has an implicit correlation name.
The implicit correlation name is the table or view name qualified with the schema names.
You cannot use an implicit correlation name for a reference that has an explicit correlation name
within the statement.

Examples of Correlation Names
This query refers to two tables, ORDERS and CUSTOMER, that contain columns named CUSTNUM.
In the WHERE clause, one column reference is qualified by an implicit correlation name (ORDERS)
and the other by an explicit correlation name (C):
SELECT ordernum, custname
FROM orders, customer c
WHERE orders.custnum = c.custnum
 AND orders.custnum = 543;

196 SQL Language Elements

Database Objects
A database object is an SQL entity that exists in a namespace. SQL statements can access Trafodion
SQL database objects. The subsections listed below describe these Trafodion SQL database objects.
“Constraints”
“Indexes”
“Tables”
“Views”

Ownership
In Trafodion SQL, the creator of an object owns the object defined in the schema and has all
privileges on the object. In addition, you can use the GRANT and REVOKE statements to grant
access privileges for a table or view to specified users.
For more information, see the “GRANT Statement” (page 111) and “REVOKE Statement” (page 130).
For information on privileges on tables and views, see “CREATE TABLE Statement” (page 69) and
“CREATE VIEW Statement” (page 81).

Database Objects 197

Database Object Names
• “Logical Names for SQL Objects”

• “SQL Object Namespaces”
DML statements can refer to Trafodion SQL database objects. To refer to a database object in a
statement, use an appropriate database object name. For information on the types of database
objects see “Database Objects” (page 197).

Logical Names for SQL Objects
You may refer to an SQL table, view, constraint, library, function, or procedure by using a one-part,
two-part, or three-part logical name, also called an ANSI name:
catalog-name.schema-name.object-name

In this three-part name, catalog-name is the name of the catalog, which is TRAFODION for
Trafodion SQL objects that map to HBase tables. schema-name is the name of the schema, and
object-name is the simple name of the table, view, constraint, library, function, or procedure.
Each of the parts is an SQL identifier. See “Identifiers” (page 221).
Trafodion SQL automatically qualifies an object name with a schema name unless you explicitly
specify schema names with the object name. If you do not set a schema name for the session using
a SET SCHEMA statement, the default schema is SEABASE, which exists in the TRAFODION catalog.
See “SET SCHEMA Statement” (page 156). A one-part name object-name is qualified implicitly
with the default schema.
You can qualify a column name in a Trafodion SQL statement by using a three-part, two-part, or
one-part object name, or a correlation name.

SQL Object Namespaces
Trafodion SQL objects are organized in a hierarchical manner. Database objects exist in schemas,
which are themselves contained in a catalog called TRAFODION. A catalog is a collection of
schemas. Schema names must be unique within the catalog.
Multiple objects with the same name can exist provided that each belongs to a different namespace.
Trafodion SQL supports these namespaces:

• Index

• Functions and procedures

• Library

• Schema label

• Table value object (table, view, constraint)
Objects in one schema can refer to objects in a different schema. Objects of a given namespace
are required to have unique names within a given schema.

198 SQL Language Elements

Data Types
Trafodion SQL data types are character, datetime, interval, or numeric (exact or approximate):

Fixed-length and variable-length character data types.“Character String Data Types” (page 204)

DATE, TIME, and TIMESTAMP data types.“Datetime Data Types” (page 205)

Year-month intervals (years and months) and day-time
intervals (days, hours, minutes, seconds, and fractions of
a second).

“Interval Data Types” (page 207)

Exact and approximate numeric data types.“Numeric Data Types ” (page 209)

Each column in a table is associated with a data type. You can use the CAST expression to convert
data to the data type that you specify. For more information, see “CAST Expression” (page 299).
The following table summarizes the Trafodion SQL data types:

Size or Range (1)DescriptionSQL DesignationType

1 to 32707 characters (2)Fixed-length character dataCHAR[ACTER]Fixed-length
character

1 to 32707 bytes (3) (7)Fixed-length character data in
predefined national character
set

NCHAR

1 to 32707 characters (3) (7)Fixed-length character data in
predefined national character
set

NATIONAL CHAR[ACTER]

1 to 32703 characters (4)Variable-length ASCII
character string

VARCHARVariable-length
character

1 to 32703 characters (4)Variable-length ASCII
character string

CHAR[ACTER] VARYING

1 to 32703 bytes (4) (8)Variable-length ASCII
character string

NCHAR VARYING

1 to 32703 characters (4) (8)Variable-length ASCII
character string

NATIONAL CHAR[ACTER]
VARYING

1 to 128 digits; stored:
1 to 4 digits in 2 bytes

Binary number with optional
scale; signed or unsigned for
1 to 9 digits

NUMERIC (1,scale) to
NUMERIC (128,scale)

Numeric

5 to 9 digits in 4 bytes
10 to 128 digits in 8-64 bytes,
depending on precision

0 to 65535 unsigned, -32768 to
+32767 signed; stored in 2 bytes

Binary integer; signed or
unsigned

SMALLINT

0 to 4294967295 unsigned,
-2147483648 to +2147483647
signed; stored in 4 bytes

Binary integer; signed or
unsigned

INTEGER

-2**63 to +(2**63)-1; stored in 8
bytes

Binary integer; signed onlyLARGEINT

Stored as multiple chunks of 16-bit
integers, with a minimum storage
length of 8 bytes.

Binary integer; signed or
unsigned

NUMERIC (precision 19 to
128)

Numeric
(extended
numeric
precision)

+/- 2.2250738585072014e-308
through

Floating point number;
precision designates from 1
through 52 bits of precision

FLOAT[(precision)]Floating point
number

+/-1.7976931348623157e+308;
stored in 8 bytes

Data Types 199

Size or Range (1)DescriptionSQL DesignationType

+/- 1.17549435e-38 through +/
3.40282347e+38; stored in 4
bytes

Floating point number (32
bits)

REAL

+/- 2.2250738585072014e-308
through

Floating-point numbers (64
bits) with 1 through 52 bits of

DOUBLE PRECISION

+/-1.7976931348623157e+308;
stored in 8 byte

precision (52 bits of binary
precision and 11 bits of
exponent)

1 to 18 digits. Byte length equals
the number of digits. Sign is stored
as the first bit of the leftmost byte.

Decimal number with optional
scale; stored as ASCII
characters; signed or

DECIMAL (1,scale) to
DECIMAL (18,scale)

Decimal number

unsigned for 1 to 9 digits;
signed required for 10 or
more digits

YEAR 0001-9999Point in time, using the
Gregorian calendar and a 24

Date-Time
MONTH 1-12

hour clock system. The five
DAY 1-31supported designations are

listed below. DAY constrained by MONTH and
YEAR
HOUR 0-23
MINUTE 0-59
SECOND 0-59
FRACTION(n) 0-999999
in which n is the number of
significant digits, from 1 to 6
(default is 6; minimum is 1;
maximum is 6). Actual database
storage is incremental, as follows:
YEAR in 2 bytes
MONTH in 1 byte
DAY in 1 byte
HOUR in 1 byte
MINUTE in 1 byte
SECOND in 1 byte
FRACTION in 4 bytes

Format as YYYY-MM-DD; actual
database storage size is 4 bytes

DateDATE

Format as HH:MM:SS; actual
database storage size is 3 bytes

Time of day, 24 hour clock,
no time precision

TIME

Format as HH:MM:SS.FFFFFF;
actual database storage size is 7
bytes

Time of day, 24 hour clock,
with time precision

TIME (with time precision)

Format as YYYY-MM-DD
HH:MM:SS; actual database
storage size is 7 bytes

Point in time, no time
precision

TIMESTAMP

Format as YYYY-MM-DD
HH:MM:SS.FFFFFF; actual database
storage size is 11 bytes

Point in time, with time
precision

TIMESTAMP (with time
precision)

YEAR no constraint(6)Duration of time; value is in
the YEAR/MONTH range or

INTERVALInterval
MONTH 0-11

the DAY/HOUR/MINUTE/
SECOND/FRACTION range DAY no constraint

200 SQL Language Elements

Size or Range (1)DescriptionSQL DesignationType

HOUR 0-23
MINUTE 0-59
SECOND 0-59
FRACTION(n) 0-999999
in which n is the number of
significant digits (default is 6;
minimum is 1; maximum is 6);
stored in 2, 4, or 8 bytes depending
on number of digits

scale is the number of digits to the right of the decimal.
precision specifies the allowed number of decimal digits.
(1) The size of a column that allows null values is 2 bytes larger than the size for the defined data type.
(2) The maximum row size is 32708 bytes, but the actual row size is less than that because of bytes used by null
indicators, varchar column length indicators, and actual data encoding.
(3) Storage size is the same as that required by CHAR data type but store only half as many characters depending
on character set selection.
(4) Storage size is reduced by 4 bytes for storage of the varying character length.
(5) The maximum number of digits in an INTERVAL value is 18, including the digits in all INTERVAL fields of the value.
Any INTERVAL field that is a starting field can have up to 18 digits minus the number of other digits in the INTERVAL
value.
(6) The maximum is 32707 if the national character set was specified at installation time to be ISO88591. The maximum
is 16353 if the national character set was specified at installation time as UTF8.
(7) The maximum is 32703 if the national character set was specified at installation time to be ISO88591. The maximum
is 16351 if the national character set was specified at installation time as UTF8.

Comparable and Compatible Data Types
Two data types are comparable if a value of one data type can be compared to a value of the
other data type.
Two data types are compatible if a value of one data type can be assigned to a column of the
other data type, and if columns of the two data types can be combined using arithmetic operations.
Compatible data types are also comparable.
Assignment and comparison are the basic operations of Trafodion SQL. Assignment operations
are performed during the execution of INSERT and UPDATE statements. Comparison operations
are performed during the execution of statements that include predicates, aggregate (or set)
functions, and GROUP BY, HAVING, and ORDER BY clauses.
The basic rule for both assignment and comparison is that the operands have compatible data
types. Data types with different character sets cannot be compared without converting one character
set to the other. However, the SQL compiler will usually generate the necessary code to do this
conversion automatically.

Character Data Types
Values of fixed and variable length character data types of the same character set are all character
strings and are all mutually comparable and mutually assignable.
When two strings are compared, the comparison is made with a temporary copy of the shorter
string that has been padded on the right with blanks to have the same length as the longer string.

Datetime Data Types
Values of type datetime are mutually comparable and mutually assignable only if the types have
the same datetime fields. A DATE, TIME, or TIMESTAMP value can be compared with another
value only if the other value has the same data type.

Data Types 201

All comparisons are chronological. For example, this predicate is true:
TIMESTAMP '2008-09-28 00:00:00' >
 TIMESTAMP '2008-06-26 00:00:00'

Interval Data Types
Values of type INTERVAL are mutually comparable and mutually assignable only if the types are
either both year-month intervals or both day-time intervals.
For example, this predicate is true:
INTERVAL '02-01' YEAR TO MONTH > INTERVAL '00-01' YEAR TO MONTH

The field components of the INTERVAL do not have to be the same. For example, this predicate is
also true:
INTERVAL '02-01' YEAR TO MONTH > INTERVAL '01' YEAR

Numeric Data Types
Values of the approximate data types FLOAT, REAL, and DOUBLE PRECISION, and values of the
exact data types NUMERIC, DECIMAL, INTEGER, SMALLINT, and LARGEINT, are all numbers and
are all mutually comparable and mutually assignable.
When an approximate data type value is assigned to a column with exact data type, rounding
might occur, and the fractional part might be truncated. When an exact data type value is assigned
to a column with approximate data type, the result might not be identical to the original number.
When two numbers are compared, the comparison is made with a temporary copy of one of the
numbers, according to defined rules of conversion. For example, if one number is INTEGER and
the other is DECIMAL, the comparison is made with a temporary copy of the integer converted to
a decimal.

Extended Numeric Precision
Trafodion SQL provides support for extended numeric precision data type. Extended numeric
precision is an extension to the NUMERIC(x,y) data type where no theoretical limit exists on
precision. It is a software data type, which means that the underlying hardware does not support
it and all computations are performed by software. Computations using this data type may not
match the performance of other hardware supported data types.

Considerations for Extended NUMERIC Precision Data Type

Consider these points and limitations for extended NUMERIC precision data type:
• May cost more than other data type options.

• Is a software data type.

• Cannot be compared to data types that are supported by hardware.

• If your application requires extended NUMERIC precision arithmetic expressions, specify the
required precision in the table DDL or as explicit extended precision type casts of your select
list items. The default system behavior is to treat user-specified extended precision expressions
as extended precision values. Conversely, non-user-specified (that is, temporary, intermediate)
extended precision expressions may lose precision. In the following example, the precision
appears to lose one digit because the system treats the sum of two NUMERIC(18,4) type
columns as NUMERIC(18,4). NUMERIC(18) is the longest non-extended precision numeric
type. NUMERIC(19) is the shortest extended precision numeric type. The system actually
computes the sum of 2 NUMERIC(18,4) columns as an extended precision NUMERIC(19,4)
sum. But because no user-specified extended precision columns exist, the system casts the sum
back to the user-specified type of NUMERIC(18,4).
CREATE TABLE T(a NUMERIC(18,4), B NUMERIC(18,4));

INSERT INTO T VALUES (1.1234, 2.1234);

202 SQL Language Elements

>> SELECT A+B FROM T;

(EXPR)

 3.246

If this behavior is not acceptable, you can use one of these options:

◦ Specify the column type as NUMERIC(19,4). For example, CREATE TABLE T(A
NUMERIC(19,4), B NUMERIC(19,4)); or

◦ Cast the sum as NUMERIC(19,4). For example, SELECT CAST(A+B AS
NUMERIC(19,4)) FROM T; or

◦ Use an extended precision literal in the expression. For example, SELECT
A+B*1.00000000000000000000 FROM T;.

Note the result for the previous example when changing to NUMERIC(19,4):
SELECT CAST(A+B AS NUMERIC(19,4)) FROM T;

(EXPR)

 3.2468

When displaying output results in the command interface of a client-based tool, casting a
select list item to an extended precision numeric type is acceptable. However, when retrieving
an extended precision select list item into an application program's host variable, you must
first convert the extended precision numeric type into a string data type. For example:
SELECT CAST(CAST(A+B AS NUMERIC(19,4)) AS CHAR(24)) FROM T;

(EXPR)

 3.2468

NOTE: An application program can convert an externalized extended precision value in
string form into a numeric value it can handle. But, an application program cannot correctly
interpret an extended precision value in internal form.

Rules for Extended NUMERIC Precision Data Type

These rules apply:
• No limit on maximum precision.

• Supported in all DDL and DML statements where regular NUMERIC data type is supported.

• Allowed as part of key columns for hash partitioned tables only.

• NUMERIC type with precision 10 through 18.

UNSIGNED is supported as extended NUMERIC precision data type◦
◦ SIGNED is supported as 64-bit integer

• CAST function allows conversion between regular NUMERIC and extended NUMERIC precision
data type.

• Parameters in SQL queries support extended NUMERIC precision data type.

Example of Extended NUMERIC Precision Data Type
>>CREATE TABLE t(n NUMERIC(128,30));

--- SQL operation complete.

Data Types 203

>>SHOWDDL TABLE t;

CREATE TABLE SCH.T
 (
 N NUMERIC(128, 30) DEFAULT NULL
)
 ;

--- SQL operation complete.
>>

Character String Data Types
Trafodion SQL includes both fixed-length character data and variable-length character data. You
cannot compare character data to numeric, datetime, or interval data.
character-type is:
 CHAR[ACTER] [(length [CHARACTERS])] [char-set] [UPSHIFT] [[NOT]CASESPECIFIC]
 | CHAR[ACTER] VARYING(length) [CHARACTERS][char-set] [UPSHIFT] [[NOT]CASESPECIFIC]
 | VARCHAR(length) [CHARACTERS] [char-set] [UPSHIFT] [[NOT]CASESPECIFIC]
 | NCHAR [(length)] [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]
 | NCHAR VARYING (length) [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]
 | NATIONAL CHAR[ACTER] [(length)] [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]
 | NATIONAL CHAR[ACTER] VARYING (length) [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]

char-set is
 CHARACTER SET char-set-name

CHAR, NCHAR, and NATIONAL CHAR are fixed-length character types. CHAR VARYING,
VARCHAR, NCHAR VARYING and NATIONAL CHAR VARYING are varying-length character
types.
length

is a positive integer that specifies the number of characters allowed in the column. You must
specify a value for length.

char-set-name

is the character set name, which can be ISO88591 or UTF8.
CHAR[ACTER] [(length [CHARACTERS])] [char-set] [UPSHIFT] [[NOT]CASESPECIFIC]

specifies a column with fixed-length character data.
CHAR[ACTER] VARYING (length) [CHARACTERS] [char-set] [UPSHIFT] [[NOT]CASESPECIFIC]

specifies a column with varying-length character data. VARYING specifies that the number of
characters stored in the column can be fewer than the length.
Values in a column declared as VARYING can be logically and physically shorter than the
maximum length, but the maximum internal size of a VARYING column is actually four bytes
larger than the size required for an equivalent column that is not VARYING.

VARCHAR (length) [char-set] [UPSHIFT] [[NOT]CASESPECIFIC]
specifies a column with varying-length character data.
VARCHAR is equivalent to data type CHAR[ACTER] VARYING.

NCHAR [(length)] [UPSHIFT] [[NOT]CASESPECIFIC], NATIONAL CHAR[ACTER] [(length)]
[UPSHIFT] [[NOT]CASESPECIFIC]

specifies a column with data in the predefined national character set.
NCHAR VARYING [(length)] [UPSHIFT] [[NOT]CASESPECIFIC], NATIONAL CHAR[ACTER]
VARYING (length) [UPSHIFT] [[NOT]CASESPECIFIC]

specifies a column with varying-length data in the predefined national character set.

204 SQL Language Elements

Considerations for Character String Data Types
Difference Between CHAR and VARCHAR
You can specify a fixed-length character column as CHAR(n), where n is the number of characters
you want to store. However, if you store five characters into a column specified as CHAR(10), ten
characters are stored where the rightmost five characters are blank.
If you do not want to have blanks added to your character string, you can specify a variable-length
character column as VARCHAR(n), where n is the maximum number of characters you want to
store. If you store five characters in a column specified as VARCHAR(10), only the five characters
are stored logically—without blank padding.

NCHAR Columns in SQL Tables
In Trafodion SQL, the NCHAR type specification is equivalent to:

• NATIONAL CHARACTER

• NATIONAL CHAR

• CHAR ... CHARACTER SET ..., where the character set is the character set for NCHAR
Similarly, you can use NCHAR VARYING, NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, and VARCHAR ... CHARACTER SET ... , where the character set is the character set
for NCHAR. The character set for NCHAR is determined when Trafodion SQL is installed.

Datetime Data Types
A value of datetime data type represents a point in time according to the Gregorian calendar and
a 24-hour clock in local civil time (LCT). A datetime item can represent a date, a time, or a date
and time.
When a numeric value is added to or subtracted from a date type, the numeric value is automatically
CASTed to an INTERVAL DAY value. When a numeric value is added to or subtracted from a time
type or a timestamp type, the numeric value is automatically CASTed to an INTERVAL SECOND
value. For information on CAST, see “CAST Expression” (page 299).
Trafodion SQL accepts dates, such as October 5 to 14, 1582, that were omitted from the Gregorian
calendar. This functionality is a Trafodion SQL extension.
The range of times that a datetime value can represent is:
January 1, 1 A.D., 00:00:00.000000 (low value) December 31, 9999, 23:59:59.999999 (high
value)
Trafodion SQL has three datetime data types:
datetime-type is:
 DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]

DATE
specifies a datetime column that contains a date in the external form yyyy-mm-dd and stored
in four bytes.

TIME [(time-precision)]
specifies a datetime column that, without the optional time-precision, contains a time in the
external form hh:mm:ss and is stored in three bytes. time-precision is an unsigned integer
that specifies the number of digits in the fractional seconds and is stored in four bytes. The
default for time-precision is 0, and the maximum is 6.

TIMESTAMP [(timestamp-precision)]
specifies a datetime column that, without the optional timestamp-precision, contains a
timestamp in the external form yyyy-mm-dd hh:mm:ss and is stored in seven bytes.
timestamp-precision is an unsigned integer that specifies the number of digits in the

Data Types 205

fractional seconds and is stored in four bytes. The default for timestamp-precision is 6,
and the maximum is 6.

Considerations for Datetime Data Types

Datetime Ranges
The range of values for the individual fields in a DATE, TIME, or TIMESTAMP column is specified
as:

Year, from 0001 to 9999yyyy

Month, from 01 to 12mm

Day, from 01 to 31dd

Hour, from 00 to 23hh

Minute, from 00 to 59mm

Second, from 00 to 59ss

Microsecond, from 000000 to 999999msssss

When you specify datetime_value (FORMAT ‘string’) in the DML statement and the
specified format is ‘mm/dd/yyyy’,’MM/DD/YYYY’, or ‘yyyy/mm/dd’ or ‘yyyy-mm-dd’, the datetime
type is automatically cast.

206 SQL Language Elements

Interval Data Types
Values of interval data type represent durations of time in year-month units (years and months) or
in day-time units (days, hours, minutes, seconds, and fractions of a second).
interval-type is:
INTERVAL[-] { start-field TO end-field | single-field }

start-field is:
 {YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

end-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
 [(fractional-precision)]

single-field is:
start-field | SECOND [(leading-precision,

fractional-precision)]

INTERVAL[-] { start-field TO end-field | single-field }
specifies a column that represents a duration of time as a year-month or day-time range or a
single-field. The optional sign indicates if this is a positive or negative integer. If you omit the
sign, it defaults to positive.
If the interval is specified as a range, the start-field and end-field must be in one of
these categories:
{YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

specifies the start-field. A start-field can have a leading-precision up to
18 digits (the maximum depends on the number of fields in the interval). The
leading-precision is the number of digits allowed in the start-field. The default
for leading-precision is 2.

YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-precision)]
specifies the end-field. If the end-field is SECOND, it can have a
fractional-precision up to 6 digits. The fractional-precision is the number
of digits of precision after the decimal point. The default for fractional-precision
is 6.

start-field | SECOND [(leading-precision, fractional-precision)]
specifies the single-field. If the single-field is SECOND, the
leading-precision is the number of digits of precision before the decimal point, and
the fractional-precision is the number of digits of precision after the decimal point.
The default for leading-precision is 2, and the default for fractional-precision
is 6. The maximum for leading-precision is 18, and the maximum for
fractional-precision is 6.

Data Types 207

Considerations for Interval Data Types
Adding or Subtracting Imprecise Interval Values
Adding or subtracting an interval that is any multiple of a MONTH, a YEAR, or a combination of
these may result in a runtime error. For example, adding 1 MONTH to January 31, 2009 will
result in an error because February 31 does not exist and it is not clear whether the user would
want rounding back to February 28, 2009, rounding up to March 1, 2009 or perhaps treating
the interval 1 MONTH as if it were 30 days resulting in an answer of March 2, 2009. Similarly,
subtracting 1 YEAR from February 29, 2008 will result in an error. See the descriptions for the
“ADD_MONTHS Function” (page 287), “DATE_ADD Function” (page 320), “DATE_SUB Function”
(page 321), and “DATEADD Function” (page 322) for ways to add or subtract such intervals without
getting errors at runtime.
Interval Leading Precision
The maximum for the leading-precision depends on the number of fields in the interval and
on the fractional-precision. The maximum is computed as:
max-leading-precision = 18 - fractional-precision - 2 * (N - 1)

where N is the number of fields in the interval.
For example, the maximum number of digits for the leading-precision in a column with data
type INTERVAL YEAR TO MONTH is computed as: 18 – 0 – 2 * (2 – 1) = 16
Interval Ranges
Within the definition of an interval range (other than a single field), the start-field and
end-field can be any of the specified fields with these restrictions:

• An interval range is either year-month or day-time—that is, if the start-field is YEAR, the
end-field is MONTH; if the start-field is DAY, HOUR, or MINUTE, the end-field
is also a time field.

• The start-field must precede the end-field within the hierarchy: YEAR, MONTH, DAY,
HOUR, MINUTE, and SECOND.

Signed Intervals
To include a quoted string in a signed interval data type, the sign must be outside the quoted string.
It can be before the entire literal or immediately before the duration enclosed in quotes.
For example, for the interval “minus (5 years 5 months) these formats are valid:
INTERVAL - '05-05'YEAR TO MONTH
- INTERVAL '05-05' YEAR TO MONTH

Overflow Conditions
When you insert a fractional value into an INTERVAL data type field, if the fractional value is 0
(zero) it does not cause an overflow. Inserting value INTERVAL '1.000000' SECOND(6) into a
field SECOND(0) does not cause a loss of value. Provided that the value fits in the target column
without a loss of precision, Trafodion SQL does not return an overflow error.
However, if the fractional value is > 0, an overflow occurs. Inserting value INTERVAL '1.000001'
SECOND(6) causes a loss of value.

208 SQL Language Elements

Numeric Data Types
Numeric data types are either exact or approximate. A numeric data type is compatible with any
other numeric data type, but not with character, datetime, or interval data types.
exact-numeric-type is:
 NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | SMALLINT [SIGNED|UNSIGNED]
 | INT[EGER] [SIGNED|UNSIGNED]
 | LARGEINT
 | DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
approximate-numeric-type is:
 FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION

Exact numeric data types are types that can represent a value exactly: NUMERIC, SMALLINT,
INTEGER, LARGEINT, and DECIMAL.
Approximate numeric data types are types that do not necessarily represent a value exactly: FLOAT,
REAL, and DOUBLE PRECISION.
A column in a Trafodion SQL table declared with a floating-point data type is stored in IEEE
floating-point format and all computations on it are done assuming that. Trafodion SQL tables can
contain only IEEE floating-point data.
NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]

specifies an exact numeric column—a two-byte binary number, SIGNED or UNSIGNED.
precision specifies the total number of digits and cannot exceed 128. If precision is
between 10 and 18, you must use a signed value to obtain the supported hardware data type.
If precision is over 18, you will receive the supported software data type. You will also receive
the supported software data type if the precision type is between 10 and 18, and you specify
UNSIGNED. scale specifies the number of digits to the right of the decimal point.
The default is NUMERIC (9,0) SIGNED.

SMALLINT [SIGNED|UNSIGNED]

specifies an exact numeric column—a two-byte binary integer, SIGNED or UNSIGNED. The
column stores integers in the range unsigned 0 to 65535 or signed -32768 to +32767.
The default is SIGNED.

INT[EGER] [SIGNED|UNSIGNED]

specifies an exact numeric column—a 4-byte binary integer, SIGNED or UNSIGNED. The column
stores integers in the range unsigned 0 to 4294967295 or signed -2147483648 to
+2147483647.
The default is SIGNED.

LARGEINT

specifies an exact numeric column—an 8-byte signed binary integer. The column stores integers
in the range -2**63 to +2**63 -1 (approximately 9.223 times 10 to the eighteenth power).

DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]

specifies an exact numeric column—a decimal number, SIGNED or UNSIGNED,stored as ASCII
characters. precision specifies the total number of digits and cannot exceed 18. If
precision is 10 or more, the value must be SIGNED. The sign is stored as the first bit of the
leftmost byte. scale specifies the number of digits to the right of the decimal point.
The default is DECIMAL (9,0) SIGNED.

FLOAT [(precision)]

specifies an approximate numeric column. The column stores floating-point numbers and
designates from 1 through 54 bits of precision. The range is from +/-
2.2250738585072014e-308 through +/-1.7976931348623157e+308 stored in 8 bytes.

Data Types 209

An IEEE FLOAT precision data type is stored as an IEEE DOUBLE, that is, in 8 bytes, with
the specified precision.
The default precision is 54.

REAL
specifies a 4-byte approximate numeric column. The column stores 32-bit floating-point numbers
with 23 bits of binary precision and 8 bits of exponent.
The minimum and maximum range is from +/- 1.17549435e-38 through +/ 3.40282347e+38.

DOUBLE PRECISION
specifies an 8-byte approximate numeric column.
The column stores 64-bit floating-point numbers and designates from 1 through 52 bits of
precision.
An IEEE DOUBLE PRECISION data type is stored in 8 bytes with 52 bits of binary precision
and 11 bits of exponent. The minimum and maximum range is from +/-
2.2250738585072014e-308 through +/-1.7976931348623157e+308.

210 SQL Language Elements

Expressions
An SQL value expression, called an expression, evaluates to a value. Trafodion SQL supports these
types of expressions:

Operands can be combined with the concatenation
operator (||). Example: 'HOUSTON,' ||' TEXAS'

“Character Value Expressions” (page 211)

Operands can be combined in specific ways with arithmetic
operators. Example: CURRENT_DATE + INTERVAL '1'
DAY

“Datetime Value Expressions” (page 212)

Operands can be combined in specific ways with addition
and subtraction operators. Example: INTERVAL '2' YEAR
- INTERVAL '3' MONTH

“Interval Value Expressions” (page 215)

Operands can be combined in specific ways with arithmetic
operators. Example: SALARY * 1.10

“Numeric Value Expressions” (page 218)

The data type of an expression is the data type of the value of the expression.
A value expression can be a character string literal, a numeric literal, a dynamic parameter, or a
column name that specifies the value of the column in a row of a table. A value expression can
also include functions and scalar subqueries.

Character Value Expressions
The operands of a character value expression—called character primaries—can be combined with
the concatenation operator (||). The data type of a character primary is character string.

character-expression is:
character-primary

 | character-expression || character-primary

character-primary is:
character-string-literal

 | column-reference
 | character-type-host-variable
 | dynamic parameter
 | character-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (character-expression)

Character (or string) value expressions are built from operands that can be:

• Character string literals

• Character string functions

• Column references with character values

• Dynamic parameters

• Aggregate functions, sequence functions, scalar subqueries, CASE expressions, or CAST
expressions that return character values

Expressions 211

Examples of Character Value Expressions
These are examples of character value expressions:

DescriptionExpression

Character string literal.'ABILENE'

The concatenation of two string literals.'ABILENE ' ||' TEXAS'

The concatenation of three string literals to form the literal:
'ABILENE TEXAS USA'

'ABILENE ' ||' TEXAS ' || x’55 53 41'

The concatenation of a string literal with the value in column
CUSTNAME.

'Customer ' || custname

CAST function applied to a DATE value.CAST (order_date AS CHAR(10))

Datetime Value Expressions
• “Considerations for Datetime Value Expressions”

• “Examples of Datetime Value Expressions”
The operands of a datetime value expression can be combined in specific ways with arithmetic
operators.
In this syntax diagram, the data type of a datetime primary is DATE, TIME, or TIMESTAMP. The
data type of an interval term is INTERVAL.
datetime-expression is:

datetime-primary
 | interval-expression + datetime-primary
 | datetime-expression + interval-term
 | datetime-expression - interval-term

datetime-primary is:
datetime-literal

 | column-reference
 | datetime-type-host-variable
 | dynamic parameter
 | datetime-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (datetime-expression)

interval-term is:
interval-factor

 | numeric-term * interval-factor

interval-factor is:
 [+|-] interval-primary

interval-primary is:
interval-literal

 | column-reference
 | interval-type-host-variable
 | dynamic parameter
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (interval-expression)

212 SQL Language Elements

Datetime value expressions are built from operands that can be:

• Interval value expressions

• Datetime or interval literals

• Dynamic parameters

• Column references with datetime or interval values

• Dynamic parameters

• Datetime or interval value functions

• Any aggregate functions, sequence functions, scalar subqueries, CASE expressions, or CAST
expressions that return datetime or interval values

Considerations for Datetime Value Expressions
Data Type of Result
In general, the data type of the result is the data type of the datetime-primary part of the
datetime expression. For example, datetime value expressions include:

Result Data TypeDescriptionDatetime Expression

DATEThe sum of the current date and an
interval value of one day.

CURRENT_DATE + INTERVAL '1'
DAY

DATEThe sum of the current date and the
interval value in column
EST_COMPLETE.

CURRENT_DATE + est_complete

TIMESTAMPThe sum of the ship timestamp for the
specified project and an interval value
of seven days, four hours.

(SELECT ship_timestamp FROM
project WHERE projcode=1000
) + INTERVAL '07:04' DAY TO
HOUR

The datetime primary in the first expression is CURRENT_DATE, a function that returns a value with
DATE data type. Therefore, the data type of the result is DATE.
In the last expression, the datetime primary is this scalar subquery:
(SELECT ship_timestamp FROM project WHERE projcode=1000)

The preceding subquery returns a value with TIMESTAMP data type. Therefore, the data type of
the result is TIMESTAMP.
Restrictions on Operations With Datetime or Interval Operands
You can use datetime and interval operands with arithmetic operators in a datetime value expression
only in these combinations:

Result TypeOperand 2OperatorOperand 1

DatetimeInterval+ or –Datetime

DatetimeDatetime+Interval

When a numeric value is added to or subtracted from a DATE type, the numeric value is
automatically CASTed to an INTERVAL DAY value. When a numeric value is added to or subtracted
from a time type or a timestamp type, the numeric value is automatically CASTed to an INTERVAL
SECOND value. For information on CAST, see “CAST Expression” (page 299). For more information
on INTERVALS, see “Interval Value Expressions” (page 215)

Expressions 213

When using these operations, note:

• Adding or subtracting an interval of months to a DATE value results in a value of the same
day plus or minus the specified number of months. Because different months have different
lengths, this is an approximate result.

• Datetime and interval arithmetic can yield unexpected results, depending on how the fields
are used. For example, execution of this expression (evaluated left to right) returns an error:
DATE '2007-01-30' + INTERVAL '1' MONTH + INTERVAL '7' DAY

In contrast, this expression (which adds the same values as the previous expression, but in a
different order) correctly generates the value 2007-03-06:
DATE '2007-01-30' + INTERVAL '7' DAY + INTERVAL '1' MONTH

You can avoid these unexpected results by using the “ADD_MONTHS Function” (page 287).

Examples of Datetime Value Expressions
The PROJECT table consists of five columns that use the data types NUMERIC, VARCHAR, DATE,
TIMESTAMP, and INTERVAL DAY. Suppose that you have inserted values into the PROJECT table.
For example:
INSERT INTO persnl.project
VALUES (1000,'SALT LAKE CITY',DATE '2007-04-10',
 TIMESTAMP '2007-04-21:08:15:00.00',INTERVAL '15' DAY);

The next examples use these values in the PROJECT table:

EST_COMPLETESHIP_TIMESTAMPSTART_DATEPROJCODE

152007-04-21 08:15:00.002007-04-101000

302007-12-21 08:15:00.002007-10-20945

202007-03-12 09:45:00.002007-02-21920

302008-01-01 00:00:00.002007-11-20134

• Add an interval value qualified by YEAR to a datetime value:
SELECT start_date + INTERVAL '1' YEAR
FROM persnl.project
WHERE projcode = 1000;

(EXPR)

2008-04-10

--- 1 row(s) selected.

• Subtract an interval value qualified by MONTH from a datetime value:
SELECT ship_timestamp - INTERVAL '1' MONTH
FROM persnl.project
WHERE projcode = 134;

(EXPR)

2007-12-01 00:00:00.000000

--- 1 row(s) selected.

The result is 2007-12-01 00:00:00.00. The YEAR value is decremented by 1 because
subtracting a month from January 1 causes the date to be in the previous year.

• Add a column whose value is an interval qualified by DAY to a datetime value:
SELECT start_date + est_complete
FROM persnl.project

214 SQL Language Elements

WHERE projcode = 920;

(EXPR)

2007-03-12

--- 1 row(s) selected.

The result of adding 20 days to 2008-02-21 is 2008-03-12. Trafodion SQL correctly handles
2008 as a leap year.

• Subtract an interval value qualified by HOUR TO MINUTE from a datetime value:
SELECT ship_timestamp - INTERVAL '15:30' HOUR TO MINUTE
FROM persnl.project
WHERE projcode = 1000;

(EXPR)

2008-04-20 16:45:00.000000

The result of subtracting 15 hours and 30 minutes from 2007-04-21 08:15:00.00 is
2007-04-20 16:45:00.00.

Interval Value Expressions
• “Considerations for Interval Value Expressions”

• “Examples of Interval Value Expressions”
The operands of an interval value expression can be combined in specific ways with addition and
subtraction operators. In this syntax diagram, the data type of a datetime expression is DATE,
TIME, or TIMESTAMP; the data type of an interval term or expression is INTERVAL.
interval-expression is:

interval-term
 | interval-expression + interval-term
 | interval-expression - interval-term
 | (datetime-expression - datetime-primary)
 [interval-qualifier]

interval-term is:
interval-factor

 | interval-term * numeric-factor
 | interval-term / numeric-factor
 | numeric-term * interval-factor

interval-factor is:
 [+|-] interval-primary

interval-primary is:
interval-literal

 | column-reference
 | interval-type-host-variable
 | dynamic-parameter
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (interval-expression)

numeric-factor is:
 [+|-] numeric-primary
 | [+|-] numeric-primary ** numeric-factor

Expressions 215

Interval value expressions are built from operands that can be:

• Integers

• Datetime value expressions

• Interval literals

• Column references with datetime or interval values

• Dynamic parameters

• Datetime or interval value functions

• Aggregate functions, sequence functions, scalar subqueries, CASE expressions, or CAST
expressions that return interval values

For interval-term, datetime-expression, and datetime-primary, see “Datetime Value
Expressions” (page 212).
If the interval expression is the difference of two datetime expressions, by default, the result is
expressed in the least significant unit of measure for that interval. For date differences, the interval
is expressed in days. For timestamp differences, the interval is expressed in fractional seconds.
If the interval expression is the difference or sum of interval operands, the interval qualifiers of the
operands are either year-month or day-time. If you are updating or inserting a value that is the
result of adding or subtracting two interval qualifiers, the interval qualifier of the result depends
on the interval qualifier of the target column.

Considerations for Interval Value Expressions
Start and End Fields
Within the definition of an interval range, the start-field and end-field can be any of the
specified fields with these restrictions:

• An interval is either year-month or day-time. If the start-field is YEAR, the end-field
is MONTH; if the start-field is DAY, HOUR, or MINUTE, the end-field is also a time
field.

• The start-field must precede the end-field within the hierarchy YEAR, MONTH, DAY,
HOUR, MINUTE, and SECOND.

Within the definition of an interval expression, the start-field and end-field of all operands
in the expression must be either year-month or day-time.
Interval Qualifier
The rules for determining the interval qualifier of the result expression vary. For example, interval
value expressions include:

Result Data TypeDescriptionDatetime Expression

INTERVAL DAY (12)By default, the interval difference
between the current date and the value

CURRENT_DATE - start_date

in column START_DATE is expressed
in days. You are not required to
specify the interval qualifier.

INTERVAL DAY (3)The difference of two interval literals.
The result is 1 day.

INTERVAL '3' DAY - INTERVAL
'2' DAY

INTERVAL DAY (3)The sum of two interval literals. The
result is 5 days.

INTERVAL '3' DAY + INTERVAL
'2' DAY

INTERVAL YEAR (3) TO MONTHThe difference of two interval literals.
The result is 1 year, 9 months.

INTERVAL '2' YEAR - INTERVAL
'3' MONTH

Restrictions on Operations

216 SQL Language Elements

You can use datetime and interval operands with arithmetic operators in an interval value expression
only in these combinations:

Result TypeOperand 2OperatorOperand 1

IntervalDatetime–Datetime

IntervalInterval+ or –Interval

IntervalNumeric* or /Interval

IntervalInterval*Numeric

This table lists valid combinations of datetime and interval arithmetic operators, and the data type
of the result:

Result typeOperands

DateDate + Interval or Interval + Date

DateDate + Numeric or Numeric + Date

DateDate - Numeric

DateDate – Interval

IntervalDate – Date

TimeTime + Interval or Interval + Time

TimeTime + Numeric or Numeric + Time

TimeTime - Number

TimeTime – Interval

TimestampTimestamp + Interval or Interval + Timestamp

TimestampTimestamp + Numeric or Numeric + Timestamp

TimestampTimestamp - Numeric

TimestampTimestamp – Interval

year-month Intervalyear-month Interval + year-month Interval

day-time Intervalday-time Interval + day-time Interval

year-month Intervalyear-month Interval – year-month Interval

day-time Intervalday-time Interval – day-time Interval

IntervalTime – Time

IntervalTimestamp – Timestamp

IntervalInterval * Number or Number * Interval

IntervalInterval / Number

IntervalInterval – Interval or Interval + Interval

When using these operations, note:

• If you subtract a datetime value from another datetime value, both values must have the same
data type. To get this result, use the CAST expression. For example:
CAST (ship_timestamp AS DATE) - start_date

• If you subtract a datetime value from another datetime value, and you specify the interval
qualifier, you must allow for the maximum number of digits in the result for the precision. For
example:
(CURRENT_TIMESTAMP - ship_timestamp) DAY(4) TO SECOND(6)

Expressions 217

• If you are updating a value that is the result of adding or subtracting two interval values, an
SQL error occurs if the source value does not fit into the target column's range of interval fields.
For example, this expression cannot replace an INTERVAL DAY column:
INTERVAL '1' MONTH + INTERVAL '7' DAY

• If you multiply or divide an interval value by a numeric value expression, Trafodion SQL
converts the interval value to its least significant subfield and then multiplies or divides it by
the numeric value expression. The result has the same fields as the interval that was multiplied
or divided. For example, this expression returns the value 5-02:
INTERVAL '2-7' YEAR TO MONTH * 2

Examples of Interval Value Expressions
The PROJECT table consists of five columns using the data types NUMERIC, VARCHAR, DATE,
TIMESTAMP, and INTERVAL DAY. Suppose that you have inserted values into the PROJECT table.
For example:
INSERT INTO persnl.project
VALUES (1000,'SALT LAKE CITY',DATE '2007-04-10',
 TIMESTAMP '2007-04-21:08:15:00.00',INTERVAL '15' DAY);

The next example uses these values in the PROJECT table:

EST_COMPLETESHIP_TIMESTAMPSTART_DATEPROJCODE

152007-04-21:08:15:00.00002007-04-101000

302007-07-21:08:30:00.00002007-06-102000

602007-12-21:09:00:00.00002007-10-102500

602007-10-21:08:10:00.00002007-08-213000

302007-10-21:10:15:00.00002007-09-214000

302007-10-28:09:25:01.11112007-09-285000

• Suppose that the CURRENT_TIMESTAMP is 2000-01-06 11:14:41.748703. Find the number
of days, hours, minutes, seconds, and fractional seconds in the difference of the current
timestamp and the SHIP_TIMESTAMP in the PROJECT table:
SELECT projcode,
 (CURRENT_TIMESTAMP - ship_timestamp) DAY(4) TO SECOND(6)
FROM samdbcat.persnl.project;

Project/Code (EXPR)
------------ ---------------------
 1000 1355 02:58:57.087086
 2000 1264 02:43:57.087086
 2500 1111 02:13:57.087086
 3000 1172 03:03:57.087086
 4000 1172 00:58:57.087086
 5000 1165 01:48:55.975986

--- 6 row(s) selected.

Numeric Value Expressions
• “Considerations for Numeric Value Expressions”

• “Examples of Numeric Value Expressions”
The operands of a numeric value expression can be combined in specific ways with arithmetic
operators. In this syntax diagram, the data type of a term, factor, or numeric primary is numeric.

218 SQL Language Elements

numeric-expression is:
numeric-term

 | numeric-expression + numeric-term
 | numeric-expression - numeric-term

numeric-term is:
numeric-factor

 | numeric-term * numeric-factor
 | numeric-term / numeric-factor

numeric-factor is:
 [+|-] numeric-primary
 | [+|-] numeric-primary ** numeric-factor

numeric-primary is:
unsigned-numeric-literal

 | column-reference
 | numeric-type-host-variable
 | dynamic parameter
 | numeric-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (numeric-expression)

As shown in the preceding syntax diagram, numeric value expressions are built from operands
that can be:

• Numeric literals

• Column references with numeric values

• Dynamic parameters

• Numeric value functions

• Aggregate functions, sequence functions, scalar subqueries, CASE expressions, or CAST
expressions that return numeric values

Considerations for Numeric Value Expressions

Order of Evaluation
1. Expressions within parentheses
2. Unary operators
3. Exponentiation
4. Multiplication and division
5. Addition and subtraction
Operators at the same level are evaluated from left to right for all operators except exponentiation.
Exponentiation operators at the same level are evaluated from right to left. For example, X + Y +
Z is evaluated as (X + Y) + Z, whereas X ** Y ** Z is evaluated as X ** (Y ** Z).

Additional Rules for Arithmetic Operations
Numeric expressions are evaluated according to these additional rules:

• An expression with a numeric operator evaluates to null if any of the operands is null.

• Dividing by 0 causes an error.

• Exponentiation is allowed only with numeric data types. If the first operand is 0 (zero), the
second operand must be greater than 0, and the result is 0. If the second operand is 0, the

Expressions 219

first operand cannot be 0, and the result is 1. If the first operand is negative, the second
operand must be a value with an exact numeric data type and a scale of zero.

• Exponentiation is subject to rounding error. In general, results of exponentiation should be
considered approximate.

Precision, Magnitude, and Scale of Arithmetic Results
The precision, magnitude, and scale are computed during the evaluation of an arithmetic expression
. Precision is the maximum number of digits in the expression. Magnitude is the number of digits
to the left of the decimal point. Scale is the number of digits to the right of the decimal point.
For example, a column declared as NUMERIC (18, 5) has a precision of 18, a magnitude of 13,
and a scale of 5. As another example, the literal 12345.6789 has a precision of 9, a magnitude
of 5, and a scale of 4.
The maximum precision for exact numeric data types is 128 digits. The maximum precision for the
REAL data type is approximately 7 decimal digits, and the maximum precision for the DOUBLE
PRECISION data type is approximately 16 digits.
When Trafodion SQL encounters an arithmetic operator in an expression, it applies these rules
(with the restriction that if the precision becomes greater than 18, the resulting precision is set to
18 and the resulting scale is the maximum of 0 and (18- (resulted precision - resulted
scale)).

• If the operator is + or -, the resulting scale is the maximum of the scales of the operands. The
resulting precision is the maximum of the magnitudes of the operands, plus the scale of the
result, plus 1.

• If the operator is *, the resulting scale is the sum of the scales of the operands. The resulting
precision is the sum of the magnitudes of the operands and the scale of the result.

• If the operator is /, the resulting scale is the sum of the scale of the numerator and the
magnitude of the denominator. The resulting magnitude is the sum of the magnitude of the
numerator and the scale of the denominator.

For example, if the numerator is NUMERIC (7, 3) and the denominator is NUMERIC (7, 5), the
resulting scale is 3 plus 2 (or 5), and the resulting magnitude is 4 plus 5 (or 9). The expression
result is NUMERIC (14, 5).

Conversion of Numeric Types for Arithmetic Operations
Trafodion SQL automatically converts between floating-point numeric types (REAL and DOUBLE
PRECISION) and other numeric types. All numeric values in the expression are first converted to
binary, with the maximum precision needed anywhere in the evaluation.

Examples of Numeric Value Expressions
These are examples of numeric value expressions:

Numeric literal.-57

The product of the values in the SALARY column and a
numeric literal.

salary * 1.10

The product of the values in the UNIT_PRICE and
QTY_ORDERED columns.

unit_price * qty_ordered

An expression whose operands are numeric literals.12 * (7 - 4)

Function applied to the values in a column.COUNT (DISTINCT city)

220 SQL Language Elements

Identifiers
SQL identifiers are names used to identify tables, views, columns, and other SQL entities. The two
types of identifiers are regular and delimited. A delimited identifier is enclosed in double quotes
("). Case-insensitive delimited identifiers are used only for usernames and role names. Either
regular, delimited, or case-sensitive delimited identifiers can contain up to 128 characters.

Regular Identifiers
Regular identifiers begin with a letter (A through Z and a through z), but can also contain digits
(0 through 9) or underscore characters (_). Regular identifiers are not case-sensitive. You cannot
use a reserved word as a regular identifier.

Delimited Identifiers
Delimited identifiers are character strings that appear within double quote characters (") and
consist of alphanumeric characters, including the underscore character (_) or a dash (-). Unlike
regular identifiers, delimited identifiers are case-sensitive. Trafodion SQL does not support spaces
or special characters in delimited identifiers given the constraints of the underlying HBase filesystem.
You can use reserved words as delimited identifiers.

Case-Insensitive Delimited Identifiers
Case-insensitive delimited identifiers, which are used for usernames and roles, are character strings
that appear within double quote characters (") and consist of alphanumeric characters (A through
Z and a through z), digits (0 through 9), underscores (_), dashes (-), periods (.), at symbols (@),
and forward slashes (/), except for the leading at sign (@) or leading forward slash (/) character.
Unlike other delimited identifiers, case-insensitive-delimited identifiers are case-insensitive. Identifiers
are up-shifted before being inserted into the SQL metadata. Thus, whether you specify a user's
name as "Penelope.Quan@hp.com", "PENELOPE.QUAN@hp.com", or
"penelope.quan@hp.com", the value stored in the metadata will be the same:
PENELOPE.QUAN@HP.COM.
You can use reserved words as case-insensitive delimited identifiers.

Examples of Identifiers
• These are regular identifiers:

mytable
SALES2006
Employee_Benefits_Selections
CUSTOMER_BILLING_INFORMATION

Because regular identifiers are case insensitive, SQL treats all these identifiers as alternative
representations of mytable:
mytable MYTABLE MyTable mYtAbLe

• These are delimited identifiers:
"mytable"
"table"
"CUSTOMER-BILLING-INFORMATION"

Because delimited identifiers are case-sensitive, SQL treats the identifier "mytable" as
different from the identifiers "MYTABLE" or "MyTable".
You can use reserved words as delimited identifiers. For example, table is not allowed as
a regular identifier, but "table" is allowed as a delimited identifier.

Identifiers 221

Indexes
An index is an ordered set of pointers to rows of a table. Each index is based on the values in one
or more columns. Indexes are transparent to DML syntax.
A one-to-one correspondence always exists between index rows and base table rows.

SQL Indexes
Each row in a Trafodion SQL index contains:

• The columns specified in the CREATE INDEX statement

• The clustering key of the underlying table (the user-defined clustering key)
An index name is an SQL identifier. Indexes have their own namespace within a schema, so an
index name might be the same as a table or constraint name. However, no two indexes in a
schema can have the same name.
See “CREATE INDEX Statement” (page 53).

222 SQL Language Elements

Keys
Trafodion SQL supports these types of keys:

• “Clustering Keys”

• “SYSKEY” (page 223)

• “Index Keys”

• “Primary Keys”

Clustering Keys
Every table has a clustering key, which is the set of columns that determine the order of the rows
on disk. Trafodion SQL organizes records of a table or index by using a b-tree based on this
clustering key. Therefore, the values of the clustering key act as logical row-ids.

SYSKEY
When the STORE BY clause is specified with the key-column-list clause, an additional column
is appended to the key-column-list called the SYSKEY.
A SYSKEY (or system-defined clustering key) is a clustering key column which is defined by Trafodion
SQL rather than by the user. Its type is LARGEINT SIGNED. When you insert a record in a table,
Trafodion SQL automatically generates a value for the SYSKEY column. You cannot supply the
value.
You cannot specify a SYSKEY at insert time and you cannot update it after it has been generated.
To see the value of the generated SYSKEY, include the SYSKEY column in the select list:
SELECT *, SYSKEY FROM t4;

Index Keys
A one-to-one correspondence always exists between index rows and base table rows.
Each row in a Trafodion SQL index contains:

• The columns specified in the CREATE INDEX statement

• The clustering (primary) key of the underlying table (the user-defined clustering key)
For a nonunique index, the clustering key of the index is composed of both items. The clustering
key cannot exceed 2048 bytes. Because the clustering key includes all the columns in the table,
each row is also limited to 2048 bytes.
For varying-length character columns, the length referred to in these byte limits is the defined column
length, not the stored length. (The stored length is the expanded length, which includes two extra
bytes for storing the data length of the item.)
See “CREATE INDEX Statement” (page 53).

Primary Keys
A primary key is the column or set of columns that define the uniqueness constraint for a table. The
columns cannot contain nulls, and only one primary key constraint can exist on a table.

Keys 223

Literals
A literal is a constant you can use in an expression, in a statement, or as a parameter value. An
SQL literal can be one of these data types:

A series of characters enclosed in single quotes. Example:
'Planning'

“Character String Literals” (page 224)

Begins with keyword DATE, TIME, or TIMESTAMP and
followed by a character string. Example: DATE
'1990-01-22'

“Datetime Literals” (page 226)

Begins with keyword INTERVAL and followed by a character
string and an interval qualifier. Example: INTERVAL
'2-7' YEAR TO MONTH

“Interval Literals” (page 227)

A simple numeric literal (one without an exponent) or a
numeric literal in scientific notation. Example: 99E-2

“Numeric Literals” (page 229)

Character String Literals
• “Considerations for Character String Literals”

• “Examples of Character String Literals”
A character string literal is a series of characters enclosed in single quotes.
You can specify either a string of characters or a set of hexadecimal code values representing the
characters in the string.
[_character-set | N]'string'
| [_character-set | N] X'hex-code-value... '
| [_character-set | N] X'[space...]hex-code-value[[space...]hex-code-value...][space...]'

_character-set
specifies the character set ISO88591 or UTF8. The _character-set specification of the
string literal should correspond with the character set of the column definition, which is either
ISO88591 or UTF8. If you omit the _character-set specification, Trafodion SQL initially assumes
the ISO88591 character set if the string literal consists entirely of 7-bit ASCII characters and
UTF8 otherwise. (However, the initial assumption will later be changed if the string literal is
used in a context that requires a character set different from the initial assumption.)

N
associates the string literal with the character set of the NATIONAL CHARACTER (NCHAR)
data type. The character set for NCHAR is determined during the installation of Trafodion SQL.
This value can be either UTF8 (the default) or ISO88591.

'string'
is a series of any input characters enclosed in single quotes. A single quote within a string is
represented by two single quotes (''). A string can have a length of zero if you specify two
single quotes ('') without a space in between.

X
indicates the hexadecimal string.

'hex-code-value'
represents the code value of a character in hexadecimal form enclosed in single quotes. It must
contain an even number of hexadecimal digits. For ISO88591, each value must be two digits
long. For UTF8, each value can be 2, 4, 6, or 8 hexadecimal digits long. If hex-code-value
is improperly formatted (for example, it contains an invalid hexadecimal digit or an odd number
of hexadecimal digits), an error is returned.

224 SQL Language Elements

space

is space sequences that can be added before or after hex-code-value for readability. The
encoding for space must be the TERMINAL_CHARSET for an interactive interface and the SQL
module character set for the programmatic interface.

Considerations for Character String Literals
Using String Literals
A string literal can be as long as a character column. See “Character String Data Types” (page 204).
You can also use string literals in string value expressions—for example, in expressions that use
the concatenation operator (||) or in expressions that use functions returning string values.
When specifying string literals:
• Do not put a space between the character set qualifier and the character string literal. If you

use this character string literal in a statement, Trafodion SQL returns an error.
• To specify a single quotation mark within a string literal, use two consecutive single quotation

marks.
• To specify a string literal whose length is more than one line, separate the literal into several

smaller string literals, and use the concatenation operator (||) to concatenate them.
• Case is significant in string literals. Lowercase letters are not equivalent to the corresponding

uppercase letters.
• Leading and trailing spaces within a string literal are significant.

• Alternately, a string whose length is more than one line can be written as a literal followed
by a space, CR, or tab character, followed by another string literal.

Examples of Character String Literals

• These data type column specifications are shown with examples of literals that can be stored
in the columns.

Character String Literal ExampleCharacter String Data Type

'PLANNING'CHAR (12) UPSHIFT

'NEW YORK'VARCHAR (18)

• These are string literals:
'This is a string literal.'
'abc^&*'
'1234.56'
'This literal contains '' a single quotation mark.'

• This is a string literal concatenated over three lines:
'This literal is' ||
' in three parts,' ||
'specified over three lines.'

• This is a hexadecimal string literal representing the VARCHAR pattern of the ISO88591 string
'Strauß':
_ISO88591 X'53 74 72 61 75 DF'

Literals 225

Datetime Literals
• “Examples of Datetime Literals”
A datetime literal is a DATE, TIME, or TIMESTAMP constant you can use in an expression, in a
statement, or as a parameter value. Datetime literals have the same range of valid values as the
corresponding datetime data types. You cannot use leading or trailing spaces within a datetime
string (within the single quotes).
A datetime literal begins with the DATE, TIME, or TIMESTAMP keyword and can appear in default,
USA, or European format.
DATE 'date' | TIME 'time' | TIMESTAMP 'timestamp'

date is:
 yyyy-mm-dd Default
 | mm/dd/yyyy USA
 | dd.mm.yyyy European

time is:
 hh:mm:ss.msssss Default
 | hh:mm:ss.msssss [am | pm] USA
 | hh.mm.ss.msssss European

timestamp is:
 yyyy-mm-dd hh:mm:ss.msssss Default
 | mm/dd/yyyy hh:mm:ss.msssss [am | pm] USA
 | dd.mm.yyyy hh.mm.ss.msssss European

date,time,timestamp

specify the datetime literal strings whose component fields are:

Year, from 0001 to 9999yyyy

Month, from 01 to 12mm

Day, from 01 to 31dd

Hour, from 00 to 23hh

Minute, from 00 to 59mm

Second, from 00 to 59ss

Microsecond, from 000000 to 999999msssss

AM or am, indicating time from midnight to before noonam

PM or pm, indicating time from noon to before midnightpm

Examples of Datetime Literals

• These are DATE literals in default, USA, and European formats, respectively:
DATE '2008-01-22'
DATE '01/22/2008'
DATE '22.01.2008'

• These are TIME literals in default, USA, and European formats, respectively:
TIME '13:40:05'
TIME '01:40:05 PM'
TIME '13.40.05'

• These are TIMESTAMP literals in default, USA, and European formats, respectively:
TIMESTAMP '2008-01-22 13:40:05'
TIMESTAMP '01/22/2008 01:40:05 PM'
TIMESTAMP '22.01.2008 13.40.05'

226 SQL Language Elements

Interval Literals
• “Considerations for Interval Literals”

• “Examples of Interval Literals”
An interval literal is a constant of data type INTERVAL that represents a positive or negative duration
of time as a year-month or day-time interval; it begins with the keyword INTERVAL optionally
preceded or followed by a minus sign (for negative duration). You cannot include leading or trailing
spaces within an interval string (within single quotes).
[-]INTERVAL [-]{'year-month' | 'day:time'} interval-qualifier

year-month is:
years [-months] | months

day:time is:
days [[:]hours [:minutes [:seconds [.fraction]]]]

 | hours [:minutes [:seconds [.fraction]]]
 | minutes [:seconds [.fraction]]
 | seconds [.fraction]

interval-qualifier is:
start-field TO end-field | single-field

start-field is:
 {YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

end-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-precision)]

single-field is:
start-field | SECOND [(leading-precision,fractional-precision)]

start-field TO end-field

must be year-month or day-time.The start-field you specify must precede the end-field
you specify in the list of field names.
{YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

specifies the start-field. A start-field can have a leading-precision up to
18 digits (the maximum depends on the number of fields in the interval). The
leading-precision is the number of digits allowed in the start-field. The default
for leading-precision is 2.

YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-precision)]
specifies the end-field. If the end-field is SECOND, it can have a
fractional-precision up to 6 digits. The fractional-precision is the number
of digits of precision after the decimal point. The default for fractional-precision
is 6.

start-field | SECOND [(leading-precision, fractional-precision)]
specifies the single-field. If the single-field is SECOND, the leading-precision
is the number of digits of precision before the decimal point, and the fractional-precision
is the number of digits of precision after the decimal point.
The default for leading-precision is 2, and the default for fractional-precision is
6. The maximum for leading-precision is 18, and the maximum for
fractional-precision is 6.

See “Interval Data Types” (page 207) and “Interval Value Expressions” (page 215).

Literals 227

'year-month' | 'day:time'
specifies the date and time components of an interval literal. The day and hour fields can be
separated by a space or a colon. The interval literal strings are:

Unsigned integer that specifies a number of years. years
can be up to 18 digits, or 16 digits if months is the

years

end-field. The maximum for the leading-precision
is specified within the interval qualifier by either YEAR(18)
or YEAR(16) TO MONTH.

Unsigned integer that specifies a number of months. Used
as a starting field, months can have up to 18 digits. The

months

maximum for the leading-precision is specified by
MONTH(18). Used as an ending field, the value of
months must be in the range 0 to 11.

Unsigned integer that specifies number of days. days
can have up to 18 digits if no end-field exists; 16 digits

days

if hours is the end-field; 14 digits if minutes is the
end-field; and 13-f digits if seconds is the end-field,
where f is the fraction less than or equal to 6. These
maximums are specified by DAY(18), DAY(16) TO
HOUR, DAY(14) TO MINUTE, and DAY(13-f) TO
SECOND(f).

Unsigned integer that specifies a number of hours. Used
as a starting field, hours can have up to 18 digits if no

hours

end-field exists; 16 digits if minutes is the end-field;
and 14-f digits if seconds is the end-field, where f is
the fraction less than or equal to 6. These maximums
are specified by HOUR(18), HOUR(16) TO MINUTE,
and HOUR(14-f) TO SECOND(f). Used as an ending
field, the value of hours must be in the range 0 to 23.

Unsigned integer that specifies a number of minutes.
Used as a starting field, minutes can have up to 18

minutes

digits if no end-field exists; and 16-f digits if seconds
is the end-field, where f is the fraction less than or
equal to 6. These maximums are specified by
MINUTE(18), and MINUTE(16-f) TO SECOND(f). Used
as an ending field, the value of minutes must be in the
range 0 to 59.

Unsigned integer that specifies a number of seconds.
Used as a starting field, seconds can have up to 18

seconds

digits, minus the number of digits f in the fraction less
than or equal to 6. This maximum is specified by
SECOND(18-f, f). The value of seconds must be in
the range 0 to 59.9(n), where n is the number of digits
specified for seconds precision.

Unsigned integer that specifies a fraction of a second.
When seconds is used as an ending field, fraction

fraction

is limited to the number of digits specified by the
fractional-precision field following the SECOND
keyword.

Considerations for Interval Literals
Length of Year-Month and Day-Time Strings
An interval literal can contain a maximum of 18 digits, in the string following the INTERVAL keyword,
plus a hyphen (-) that separates the year-month fields, and colons (:) that separate the day-time
fields. You can also separate day and hour with a space.

228 SQL Language Elements

Examples of Interval Literals

Interval of 1 monthINTERVAL '1' MONTH

Interval of 7 daysINTERVAL '7' DAY

Interval of 2 years, 7 monthsINTERVAL '2-7' YEAR TO MONTH

Interval of 5 days, 2 hours, 15 minutes, and 36.33 secondsINTERVAL '5:2:15:36.33' DAY TO SECOND(2)

Interval that subtracts 5 daysINTERVAL - '5' DAY

Interval of 100 days. This example requires an explicit
leading precision of 3 because the default is 2.

INTERVAL '100' DAY(3)

Interval of 364 days, 23 hours. The separator for the day
and hour fields can be a space or a colon.

INTERVAL '364 23' DAY(3) TO HOUR

Numeric Literals
A numeric literal represents a numeric value. Numeric literals can be represented as an exact
numeric literal (without an exponent) or as an approximate numeric literal by using scientific
notation (with an exponent).
exact-numeric-literal is:
 [+|-]unsigned-integer[.[unsigned-integer]]
 | [+|-].unsigned-integer

approximate-numeric-literal is:
mantissa{E|e}exponent

mantissa is:
exact-numeric-literal

exponent is:
 [+|-]unsigned-integer

unsigned-integer is:
digit...

exact-numeric-literal

is an exact numeric value that includes an optional plus sign (+) or minus sign (-), up to 128
digits (0 through 9), and an optional period (.) that indicates a decimal point. Leading zeros
do not count toward the 128-digit limit; trailing zeros do.
A numeric literal without a sign is a positive number. An exact numeric literal that does not
include a decimal point is an integer. Every exact numeric literal has the data type NUMERIC
and the minimum precision required to represent its value.

approximate-numeric-literal

is an exact numeric literal followed by an exponent expressed as an uppercase E or lowercase
e followed by an optionally signed integer.
Numeric values expressed in scientific notation are treated as data type REAL if they include
no more than seven digits before the exponent, but treated as type DOUBLE PRECISION if they
include eight or more digits. Because of this factor, trailing zeros after a decimal can sometimes
increase the precision of a numeric literal used as a DOUBLE PRECISION value.
For example, if XYZ is a table that consists of one DOUBLE PRECISION column, the inserted
value:
INSERT INTO XYZ VALUES (1.00000000E-10)

has more precision than:
INSERT INTO XYZ VALUES (1.0E-10)

Literals 229

Examples of Numeric Literals
These are all numeric literals, along with their display format:

Display FormatLiteral

477477

580.45580.45

5+005

-.3175-.3175

13000000001300000000

9999.

-.123456789012345678-0.123456789012345678

9.9000000E-00199E-2

1.2299999E+00612.3e+5

230 SQL Language Elements

Null
Null is a special symbol, independent of data type, that represents an unknown. The Trafodion
SQL keyword NULL represents null. Null indicates that an item has no value. For sorting purposes,
null is greater than all other values. You cannot store null in a column by using INSERT or UPDATE,
unless the column allows null.
A column that allows null can be null at any row position. A nullable column has extra bytes
associated with it in each row. A special value stored in these bytes indicates that the column has
null for that row.

Using Null Versus Default Values
Various scenarios exist in which a row in a table might contain no value for a specific column. For
example:

• A database of telemarketing contacts might have null AGE fields if contacts did not provide
their age.

• An order record might have a DATE_SHIPPED column empty until the order is actually shipped.

• An employee record for an international employee might not have a social security number.
You allow null in a column when you want to convey that a value in the column is unknown (such
as the age of a telemarketing contact) or not applicable (such as the social security number of an
international employee).
In deciding whether to allow nulls or use defaults, also note:

• Nulls are not the same as blanks. Two blanks can be compared and found equal, while the
result of a comparison of two nulls is indeterminate.

• Nulls are not the same as zeros. Zeros can participate in arithmetic operations, while nulls
are excluded from any arithmetic operation.

Defining Columns That Allow or Prohibit Null
The CREATE TABLE and ALTER TABLE statements define the attributes for columns within tables. A
column allows nulls unless the column definition includes the NOT NULL clause or the column is
part of the primary key of the table.
Null is the default for a column (other than NOT NULL) unless the column definition includes a
DEFAULT clause (other than DEFAULT NULL) or the NO DEFAULT clause. The default value for a
column is the value Trafodion SQL inserts in a row when an INSERT statement omits a value for a
particular column.

Null in DISTINCT, GROUP BY, and ORDER BY Clauses
In evaluating the DISTINCT, GROUP BY, and ORDER BY clauses, Trafodion SQL considers all nulls
to be equal. Additional considerations for these clauses are:

Nulls are considered duplicates; therefore, a result has at
most one null.

DISTINCT

The result has at most one null group.GROUP BY

Nulls are considered greater than nonnull values.ORDER BY

Null 231

Null and Expression Evaluation Comparison

ResultConditionExpression Type

For AND, the result is null. For OR, the
result is true if the other operand is true,

Either operand is null.Boolean operators (AND, OR, NOT)

or null if the other operand is null or
false. For NOT, the result is null.

The result is null.Either or both operands are null.Arithmetic operators

The result is true.The operand is null.NULL predicate

The result is null if set is empty.Some rows have null columns.The
function is evaluated after eliminating
nulls.

Aggregate (or set) functions (except
COUNT)

The result is the number of rows in the
table whether or not the rows are null.

The function does not eliminate nulls.COUNT(*)

The result is zero if set is empty.The function is evaluated after
eliminating nulls.

COUNT COUNT DISTINCT

The result is null.Either operand is null.Comparison: =, <>, <, >, <=, >=, LIKE

The result is null if all of the expressions
are null.

Some expressions in the IN value list
are null.

IN predicate

The result is null.No rows are returned.Subquery

232 SQL Language Elements

Predicates
A predicate determines an answer to a question about a value or group of values. A predicate
returns true, false, or, if the question cannot be answered, unknown. Use predicates within search
conditions to choose rows from tables or views.

Determines whether a sequence of values is within a range
of sequences of values.

“BETWEEN Predicate” (page 233)

Compares the values of sequences of expressions, or
compares the values of sequences of row values that are
the result of row subqueries.

“Comparison Predicates” (page 234)
(=, <>, <, >, <=, >=)

Determines whether any rows are selected by a subquery.
If the subquery finds at least one row that satisfies its search

“EXISTS Predicate” (page 238)

condition, the predicate evaluates to true. Otherwise, if the
result table of the subquery is empty, the predicate is false.

Determines if a sequence of values is equal to any of the
sequences of values in a list of sequences.

“IN Predicate” (page 239)

Searches for character strings that match a pattern.“LIKE Predicate” (page 241)

Determines whether all the values in a sequence of values
are null.

“NULL Predicate” (page 243)

Compares the values of sequences of expressions to the
values in each row selected by a table subquery. The
comparison is quantified by ALL, SOME, or ANY.

“Quantified Comparison Predicates” (page 244) (ALL, ANY,
SOME)

See the individual entry for a predicate or predicate group.

BETWEEN Predicate
• “Considerations for BETWEEN”

• “Examples of BETWEEN”
The BETWEEN predicate determines whether a sequence of values is within a range of sequences
of values.
row-value-constructor [NOT] BETWEEN

row-value-constructor AND row-value-constructor
row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

row-value-constructor

specifies an operand of the BETWEEN predicate. The three operands can be either of:
(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function unless expression is in a HAVING
clause. expression can be a scalar subquery (a subquery that returns a single row
consisting of a single column). See “Expressions” (page 211).

row-subquery

is a subquery that returns a single row (consisting of a sequence of values). See “Subquery”
(page 252).

The three row-value-constructors specified in a BETWEEN predicate must contain the
same number of elements. That is, the number of value expressions in each list, or the number
of values returned by a row subquery, must be the same.
The data types of the respective values of the three row-value-constructors must be
comparable. Respective values are values with the same ordinal position in the two lists. See
“Comparable and Compatible Data Types” (page 201).

Predicates 233

Considerations for BETWEEN
Logical Equivalents Using AND and OR
The predicate expr1 BETWEEN expr2 AND expr3 is true if and only if this condition is true:
expr2 <= expr1 AND expr1 <= expr3

The predicate expr1 NOT BETWEEN expr2 AND expr3 is true if and only if this condition is
true:
expr2 > expr1 OR expr1 > expr3

Descending Columns in Keys
If a clause specifies a column in a key BETWEEN expr2 and expr3, expr3 must be greater than
expr2 even if the column is specified as DESCENDING within its table definition.

Examples of BETWEEN

• This predicate is true if the total price of the units in inventory is in the range from $1,000 to
$10,000:
qty_on_hand * price
 BETWEEN 1000.00 AND 10000.00

• This predicate is true if the part cost is less than $5 or more than $800:
partcost NOT BETWEEN 5.00 AND 800.00

• This BETWEEN predicate selects the part number 6400:
SELECT * FROM partsupp
WHERE partnum BETWEEN 6400 AND 6700
 AND partcost > 300.00;

Part/Num Supp/Num Part/Cost Qty/Rec
-------- -------- ------------ ----------
 6400 1 390.00 50
 6401 2 500.00 20
 6401 3 480.00 38

--- 3 row(s) selected.

• Find names between Jody Selby and Gene Wright:
(last_name, first_name) BETWEEN
 ('SELBY', 'JODY') AND ('WRIGHT', 'GENE')

The name Barbara Swift would meet the criteria; the name Mike Wright would not.
SELECT empnum, first_name, last_name
FROM persnl.employee
WHERE (last_name, first_name) BETWEEN
 ('SELBY', 'JODY') AND ('WRIGHT', 'GENE');

EMPNUM FIRST_NAME LAST_NAME
------ --------------- --------------------
 43 PAUL WINTER
 72 GLENN THOMAS
 74 JOHN WALKER
 ...
--- 15 row(s) selected.

Comparison Predicates
• “Considerations for Comparison Predicates”

• “Examples of Comparison Predicates”

234 SQL Language Elements

A comparison predicate compares the values of sequences of expressions, or the values of sequences
of row values that are the result of row subqueries.
row-value-constructor comparison-op row-value-constructor

comparison-op is:
 = Equal
 | <> Not equal
 | < Less than
 | > Greater than
 | <= Less than or equal to
 | >= Greater than or equal to

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

row-value-constructor

specifies an operand of a comparison predicate. The two operands can be either of these:
(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function unless expression is in a HAVING
clause. expression can be a scalar subquery (a subquery that returns a single row
consisting of a single column). See “Expressions” (page 211).

row-subquery

is a subquery that returns a single row (consisting of a sequence of values). See “Subquery”
(page 252).

The two row-value-constructors must contain the same number of elements. That is, the
number of value expressions in each list, or the number of values returned by a row subquery,
must be the same.
The data types of the respective values of the two row-value-constructors must be
comparable. (Respective values are values with the same ordinal position in the two lists.) See
“Comparable and Compatible Data Types” (page 201).

Considerations for Comparison Predicates
When a Comparison Predicate Is True
Trafodion SQL determines whether a relationship is true or false by comparing values in
corresponding positions in sequence, until it finds the first nonequal pair.
You cannot use a comparison predicate in a WHERE or HAVING clause to compare row value
constructors when the value expressions in one row value constructor are equal to null. Use the IS
NULL predicate instead.
Suppose that two rows with multiple components exist, X and Y:
X=(X1,X2,...,Xn), Y=(Y1,Y2,...,Yn).

Predicate X=Y is true if for all i=1,...,n: Xi=Yi. For this predicate, Trafodion SQL must look
through all values. Predicate X = Y is false if for some i Xi<>Yi. When SQL finds nonequal
components, it stops and does not look at remaining components.
Predicate X<>Y is true if X=Y is false. If X1<>Y1, Trafodion SQL does not look at all components.
It stops and returns a value of false for the X=Y predicate and a value of true for the X<>Y predicate.
Predicate X<>Y is false if X=Y is true, or for all i=1,...,n: Xi=Yi. In this situation, Trafodion
SQL must look through all components.
Predicate X>Y is true if for some index m Xm>Ym and for all i=1,..,m-1: Xi=Yi. Trafodion
SQL does not look through all components. It stops when it finds the first nonequal components,
Xm<>Ym. If Xm>Ym, the predicate is true. Otherwise the predicate is false. The predicate is also
false if all components are equal, or X=Y.

Predicates 235

Predicate X>=Y is true if X>Y is true or X=Y is true. In this scenario, Trafodion SQL might look
through all components and return true if they are all equal. It stops at the first nonequal components,
Xm<>Ym. If Xm>Ym, the predicate is true. Otherwise, it is false.
Predicate X<Y is true if for some index m Xm<Ym, and for all i=1,..,m-1: Xi=Yi. Trafodion
SQL does not look through all components. It stops when it finds the first nonequal components
Xm<>Ym. If Xm<Ym, the predicate is true. Otherwise, the predicate is false. The predicate is also
false if all components are equal, or X=Y.
Predicate X<=Y is true if X<Y is true or X=Y is true. In this scenario, Trafodion SQL might need to
look through all components and return true if they are all equal. It stops at the first nonequal
components, Xm<>Ym. If Xm<Ym, the predicate is true. Otherwise, it is false.
Comparing Character Data
For comparisons between character strings of different lengths, the shorter string is padded on the
right with spaces (HEX 20) until it is the length of the longer string. Both fixed-length and
variable-length strings are padded in this way.
For example, Trafodion SQL considers the string ‘JOE’ equal to a value JOE stored in a column of
data type CHAR or VARCHAR of width three or more. Similarly, Trafodion SQL considers a value
JOE stored in any column of the CHAR data type equal to the value JOE stored in any column of
the VARCHAR data type.
Two strings are equal if all characters in the same ordinal position are equal. Lowercase and
uppercase letters are not considered equivalent.
Comparing Numeric Data
Before evaluation, all numeric values in an expression are first converted to the maximum precision
needed anywhere in the expression.
Comparing Interval Data
For comparisons of INTERVAL values, Trafodion SQL first converts the intervals to a common unit.
If no common unit exists, Trafodion SQL reports an error. Two INTERVAL values must be both
year-month intervals or both day-time intervals.
Comparing Multiple Values
Use multivalue predicates whenever possible; they are generally more efficient than equivalent
conditions without multivalue predicates.

Examples of Comparison Predicates

• This predicate is true if the customer number is equal to 3210:
custnum = 3210

• This predicate is true if the salary is greater than the average salary of all employees:
salary >
 (SELECT AVG (salary) FROM persnl.employee);

• This predicate is true if the customer name is BACIGALUPI:
custname = 'BACIGALUPI'

• This predicate evaluates to unknown for any rows in either CUSTOMER or ORDERS that contain
null in the CUSTNUM column:
customer.custnum > orders.custnum

• This predicate returns information about anyone whose name follows MOSS, DUNCAN in a
list arranged alphabetically by last name and, for the same last name, alphabetically by first
name:
(last_name, first_name) > ('MOSS', 'DUNCAN')

REEVES, ANNE meets this criteria, but MOSS, ANNE does not.

236 SQL Language Elements

This multivalue predicate is equivalent to this condition with three comparison predicates:
(last_name > 'MOSS') OR
(last_name = 'MOSS' AND first_name > 'DUNCAN')

• Compare two datetime values START_DATE and the result of the CURRENT_DATE function:
START_DATE < CURRENT_DATE

• Compare two datetime values START_DATE and SHIP_TIMESTAMP:
CAST (start_date AS TIMESTAMP) < ship_timestamp

• Compare two INTERVAL values:
JOB1_TIME < JOB2_TIME

Suppose that JOB1_TIME, defined as INTERVAL DAY TO MINUTE, is 2 days 3 hours, and
JOB2_TIME, defined as INTERVAL DAY TO HOUR, is 3 days.
To evaluate the predicate, Trafodion SQL converts the two INTERVAL values to MINUTE. The
comparison predicate is true.

• The next examples contain a subquery in a comparison predicate. Each subquery operates
on a separate logical copy of the EMPLOYEE table.
The processing sequence is outer to inner. A row selected by an outer query allows an inner
query to be evaluated, and a single value is returned. The next inner query is evaluated when
it receives a value from its outer query.
Find all employees whose salary is greater than the maximum salary of employees in
department 1500:
SELECT first_name, last_name, deptnum, salary
 FROM persnl.employee
 WHERE salary > (SELECT MAX (salary)
 FROM persnl.employee
 WHERE deptnum = 1500);

FIRST_NAME LAST_NAME DEPTNUM SALARY
--------------- -------------------- ------- -----------
ROGER GREEN 9000 175500.00
KATHRYN HALL 4000 96000.00
RACHEL MCKAY 4000 118000.00
THOMAS RUDLOFF 2000 138000.40
JANE RAYMOND 3000 136000.00
JERRY HOWARD 1000 137000.10

--- 6 row(s) selected.

Find all employees from other departments whose salary is less than the minimum salary of
employees (not in department 1500) that have a salary greater than the average salary for
department 1500:

SELECT first_name, last_name, deptnum, salary
FROM persnl.employee
WHERE deptnum <> 1500 AND
 salary < (SELECT MIN (salary)
 FROM persnl.employee
 WHERE deptnum <> 1500 AND
 salary > (SELECT AVG (salary)
 FROM persnl.employee
 WHERE deptnum = 1500));

FIRST_NAME LAST_NAME DEPTNUM SALARY
--------------- -------------------- ------- -----------
JESSICA CRINER 3500 39500.00
ALAN TERRY 3000 39500.00
DINAH CLARK 9000 37000.00

Predicates 237

BILL WINN 2000 32000.00
MIRIAM KING 2500 18000.00
...

--- 35 row(s) selected.

The first subquery of this query determines the minimum salary of employees from other
departments whose salary is greater than the average salary for department 1500. The main
query then finds the names of employees who are not in department 1500 and whose salary
is less than the minimum salary determined by the first subquery.

EXISTS Predicate
The EXISTS predicate determines whether any rows are selected by a subquery. If the subquery
finds at least one row that satisfies its search condition, the predicate evaluates to true. Otherwise,
if the result table of the subquery is empty, the predicate is false.
[NOT] EXISTS subquery

subquery

specifies the operand of the predicate. A subquery is a query expression enclosed in
parentheses. An EXISTS subquery is typically correlated with an outer query. See “Subquery”
(page 252).

Examples of EXISTS

• Find locations of employees with job code 300:
SELECT deptnum, location FROM persnl.dept D
WHERE EXISTS
 (SELECT jobcode FROM persnl.employee E
 WHERE D.deptnum = E.deptnum AND jobcode = 300);

DEPTNUM LOCATION
------- -------------
 3000 NEW YORK
 3100 TORONTO
 3200 FRANKFURT
 3300 LONDON
 3500 HONG KONG

--- 5 row(s) selected.

In the preceding example, the EXISTS predicate contains a subquery that determines which
locations have employees with job code 300. The subquery depends on the value of
D.DEPTNUM from the outer query and must be evaluated for each row of the result table
where D.DEPTNUM equals E.DEPTNUM. The column D.DEPTNUM is an example of an outer
reference.

• Search for departments that have no employees with job code 420:
SELECT deptname FROM persnl.dept D
WHERE NOT EXISTS
 (SELECT jobcode FROM persnl.employee E
 WHERE D.deptnum = E.deptnum AND jobcode = 420);

DEPTNAME

FINANCE
PERSONNEL
INVENTORY
...
--- 11 row(s) selected.

• Search for parts with less than 20 units in the inventory:

238 SQL Language Elements

SELECT partnum, suppnum
FROM invent.partsupp PS
WHERE EXISTS
 (SELECT partnum FROM invent.partloc PL
 WHERE PS.partnum = PL.partnum AND qty_on_hand < 20);

PARTNUM SUPPNUM
------- -------
 212 1
 212 3
 2001 1
 2003 2
 ...

--- 18 row(s) selected.

IN Predicate
• “Considerations for IN”

• “Examples of IN”
The IN predicate determines if a sequence of values is equal to any of the sequences of values in
a list of sequences. The NOT operator reverses its truth value. For example, if IN is true, NOT IN
is false.
row-value-constructor
 [NOT] IN {table-subquery | in-value-list}

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

in-value-list is:
 (expression [,expression]...)

row-value-constructor

specifies the first operand of the IN predicate. The first operand can be either of:
(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function unless expression is in a HAVING
clause. expression can be a scalar subquery (a subquery that returns a single row
consisting of a single column). See “Expressions” (page 211).

row-subquery

is a subquery that returns a single row (consisting of a sequence of values). See “Subquery”
(page 252).

table-subquery

is a subquery that returns a table (consisting of rows of columns). The table specifies rows of
values to be compared with the row of values specified by the row-value-constructor.
The number of values of the row-value-constructor must be equal to the number of
columns in the result table of the table-subquery, and the data types of the values must be
comparable.

in-value-list

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function defined on a column. expression can
be a scalar subquery (a subquery that returns a single row consisting of a single column). In
this case, the result of the row-value-constructor is a single value. The data types of the
values must be comparable. The number of expressions in the in-value-list can have at
least 5000 expressions.

Predicates 239

Considerations for IN
Logical Equivalent Using ANY (or SOME)
The predicate expr IN (expr1, expr2, ...) is true if and only if the following predicate
is true:
expr = ANY (expr1, expr2, ...)

IN Predicate Results
The IN predicate is true if and only if either of these is true:

• The result of the row-value-constructor (a row or sequence of values) is equal to any
row of column values specified by table-subquery.
A table subquery is a query expression and can be specified as a form of a simple table; for
example, as the VALUES keyword followed by a list of row values. See “SELECT Statement”
(page 138).

• The result of the row-value-constructor (a single value) is equal to any of the values
specified by the list of expressions in-value-list.
In this case, it is helpful to think of the list of expressions as a one-column table—a special
case of a table subquery. The degree of the row value constructor and the degree of the list
of expressions are both one.

Comparing Character Data
Two strings are equal if all characters in the same ordinal position are equal. Lowercase and
uppercase letters are not considered equivalent. For comparisons between character strings of
different lengths, the shorter string is padded on the right with spaces (HEX 20) until it is the length
of the longer string. Both fixed-length and varying-length strings are padded in this way.
For example, Trafodion SQL considers the string ‘JOE’ equal to a value JOE stored in a column of
data type CHAR or VARCHAR of width three or more. Similarly, Trafodion SQL considers a value
JOE stored in any column of the CHAR data type equal to the value JOE stored in any column of
the VARCHAR data type.
Comparing Numeric Data
Before evaluation, all numeric values in an expression are first converted to the maximum precision
needed anywhere in the expression.
Comparing Interval Data
For comparisons of INTERVAL values, Trafodion SQL first converts the intervals to a common unit.
If no common unit exists, Trafodion SQL reports an error. Two INTERVAL values must be both
year-month intervals or both day-time intervals.

Examples of IN

• Find those employees whose EMPNUM is 39, 337, or 452:
SELECT last_name, first_name, empnum
FROM persnl.employee
WHERE empnum IN (39, 337, 452);

LAST_NAME FIRST_NAME EMPNUM
-------------------- --------------- ------
CLARK DINAH 337
SAFFERT KLAUS 39
--- 2 row(s) selected.

• Find those items in PARTS whose part number is not in the PARTLOC table:
SELECT partnum, partdesc
FROM sales.parts
WHERE partnum NOT IN
 (SELECT partnum

240 SQL Language Elements

 FROM invent.partloc);

PARTNUM PARTDESC
------- ------------------
 186 186 MegaByte Disk

--- 1 row(s) selected.

• Find those items (and their suppliers) in PARTS that have a supplier in the PARTSUPP table:
SELECT P.partnum, P.partdesc, S.suppnum, S.suppname
FROM sales.parts P,
 invent.supplier S
WHERE P.partnum, S.suppnum IN
 (SELECT partnum, suppnum
 FROM invent.partsupp);

• Find those employees in EMPLOYEE whose last name and job code match the list of last names
and job codes:
SELECT empnum, last_name, first_name
FROM persnl.employee
WHERE (last_name, jobcode) IN
 (VALUES ('CLARK', 500), ('GREEN', 200));

LIKE Predicate
The LIKE predicate searches for character strings that match a pattern.

Syntax

match-value [NOT] LIKE pattern [ESCAPE esc-char-expression]

match-value

is a character value expression that specifies a set of strings to search for that match the
pattern.

pattern

is a character value expression that specifies the pattern string for the search.
esc-char-expression

is a character value expression that must evaluate to a single character. The escape character
value is used to turn off the special meaning of percent (%) and underscore (_). See “Wild-Card
Characters” (page 242) and “Escape Characters” (page 242).

See “Character Value Expressions” (page 211).

Considerations

Comparing the Value to the Pattern
The values that you compare must be character strings. Lowercase and uppercase letters are not
equivalent. To make lowercase letters match uppercase letters, use the UPSHIFT function. A blank
is compared in the same way as any other character.

When a LIKE Predicate Is True
When you refer to a column, the LIKE predicate is true if the pattern matches the column value.
If the value of the column reference is null, the LIKE predicate evaluates to unknown for that row.
If the values that you compare are both empty strings (that is, strings of zero length), the LIKE
predicate is true.

Predicates 241

Using NOT
If you specify NOT, the predicate is true if the pattern does not match any string in the
match-value or is not the same length as any string in the match-value. For example, NAME
NOT LIKE '_Z' is true if the string is not two characters long or the last character is not Z. In a
search condition, the predicate NAME NOT LIKE '_Z' is equivalent to NOT (NAME LIKE
'_Z').

Wild-Card Characters
You can look for similar values by specifying only part of the characters of pattern combined
with these wild-card characters:

• “Percent Sign (%)” (page 242)

• “Underscore (_)” (page 242)

Percent Sign (%)

Use a percent sign to indicate zero or more characters of any type. For example, '%ART%' matches
'SMART', 'ARTIFICIAL', and 'PARTICULAR', but not 'smart'.

Underscore (_)

Use an underscore to indicate any single character. For example, 'BOO_' matches 'BOOK' and
'BOOT' but not 'BOO', 'BOOKLET', or 'book'.

Escape Characters
To search for a string containing a percent sign (%) or an underscore (_), define an escape character,
using ESCAPE esc-char-expression, to turn off the special meaning of the percent sign and
underscore.
To include a percent sign or an underscore in a comparison string, type the escape character
immediately preceding the percent sign or underscore. For example, to locate the value 'A_B',
type:
NAME LIKE 'A_B' ESCAPE '\'

To include the escape character itself in the comparison string, type two escape characters. For
example, to locate 'A_B\C%', type:
NAME LIKE 'A_B\\C\%' ESCAPE '\'

The escape character must precede only the percent sign, underscore, or escape character itself.
For example, the pattern RA\BS is an invalid LIKE pattern if the escape character is defined to be
'\'. Error 8410 will be returned if this kind of pattern is used in an SQL query.

Comparing the Pattern to CHAR Columns
Columns of data type CHAR are fixed length. When a value is inserted into a CHAR column,
Trafodion SQL pads the value in the column with blanks if necessary. The value 'JOE' inserted
into a CHAR(4) column becomes 'JOE ' (three characters plus one blank). The LIKE predicate is
true only if the column value and the comparison value are the same length. The column value
'JOE ' does not match 'JOE' but does match 'JOE%'.

Comparing the Pattern to VARCHAR Columns
Columns of variable-length character data types do not include trailing blanks unless blanks are
specified when data is entered. For example, the value 'JOE' inserted in a VARCHAR(4) column
is 'JOE' with no trailing blanks. The value matches both 'JOE' and 'JOE%'.
If you cannot locate a value in a variable-length character column, it might be because trailing
blanks were specified when the value was inserted into the table. For example, a value of '5MB
' (with one trailing blank) will not be located by LIKE '%MB' but will be located by LIKE
'%MB%'.

242 SQL Language Elements

Examples

• Find all employee last names beginning with ZE:
last_name LIKE 'ZE%'

• Find all part descriptions that are not 'FLOPPY_DISK':
partdesc NOT LIKE 'FLOPPY_DISK' ESCAPE '\'

The escape character indicates that the underscore in 'FLOPPY_DISK' is part of the string
to search for, not a wild-card character.

NULL Predicate
The NULL predicate determines whether all the expressions in a sequence are null. See “Null”
(page 231).
row-value-constructor IS [NOT] NULL

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

row-value-constructor

specifies the operand of the NULL predicate. The operand can be either of these:
(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function unless expression is in a HAVING
clause. expression can be a scalar subquery (a subquery that returns a single row
consisting of a single column). See “Expressions” (page 211).

row-subquery

is a subquery that returns a single row (consisting of a sequence of values). See “Subquery”
(page 252).

If all of the expressions in the row-value-constructor are null, the IS NULL predicate is true.
Otherwise, it is false. If none of the expressions in the row-value-constructor are null, the
IS NOT NULL predicate is true. Otherwise, it is false.

Considerations for NULL
Summary of NULL Results
Let rvc be the value of the row-value-constructor. This table summarizes the results of NULL
predicates. The degree of a rvc is the number of values in the rvc.

NOT rvc IS NOT
NULL

NOT rvcIS NULLrvc IS NOT NULLrvc IS NULLExpressions

TRUEFALSEFALSETRUEdegree 1: null

FALSETRUETRUEFALSEdegree 1: not null

TRUEFALSEFALSETRUEdegree>1: all null

TRUETRUEFALSEFALSEdegree>1: some null

FALSETRUETRUEFALSEdegree>1: none null

The rvc IS NOT NULL predicate is not equivalent to NOT rvc IS NULL.

Examples of NULL

• Find all rows with null in the SALARY column:

Predicates 243

salary IS NULL

• This predicate evaluates to true if the expression (PRICE + TAX) evaluates to null:
(price + tax) IS NULL

• Find all rows where both FIRST_NAME and SALARY are null:
(first_name, salary) IS NULL

Quantified Comparison Predicates
• “Considerations for ALL, ANY, SOME”

• “Examples of ALL, ANY, SOME”
A quantified comparison predicate compares the values of sequences of expressions to the values
in each row selected by a table subquery. The comparison operation is quantified by the logical
quantifiers ALL, ANY, or SOME.
row-value-constructor comparison-op quantifier table-subquery

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

comparison-op is:
 = Equal
 | <> Not equal
 | != Not equal
 | < Less than
 | > Greater than
 | <= Less than or equal to
 | >= Greater than or equal to

quantifier is:
 ALL | ANY | SOME

row-value-constructor

specifies the first operand of a quantified comparison predicate. The first operand can be either
of:
(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed in parentheses.
expression cannot include an aggregate function unless expression is in a HAVING
clause. expression can be a scalar subquery (a subquery that returns a single row
consisting of a single column). See “Expressions” (page 211).

row-subquery
is a subquery that returns a single row (consisting of a sequence of values). See “Subquery”
(page 252).

ALL
specifies that the predicate is true if the comparison is true for every row selected by
table-subquery (or if table-subquery selects no rows), and specifies that the predicate
is false if the comparison is false for at least one row selected.

ANY | SOME
specifies that the predicate is true if the comparison is true for at least one row selected by the
table-subquery and specifies that the predicate is false if the comparison is false for every
row selected (or if table-subquery selects no rows).

table-subquery
provides the values for the comparison. The number of values returned by the
row-value-constructor must be equal to the number of values specified by the

244 SQL Language Elements

table-subquery, and the data types of values returned by the row-value-constructor
must be comparable to the data types of values returned by the table-subquery. See
“Subquery” (page 252).

Considerations for ALL, ANY, SOME
Let R be the result of the row-value-constructor, T the result of the table-subquery, and
RT a row in T.
Result of Rcomparison-op ALL T
If T is empty or if R comparison-op RT is true for every row RT in T, the comparison-op ALL
predicate is true.
If R comparison-op RT is false for at least one row RT in T, the comparison-op ALL predicate
is false.
Result of Rcomparison-op ANY T or Rcomparison-op SOME T
If T is empty or if R comparison-op RT is false for every row RT in T, the comparison-op
ANY predicate is false.
If R comparison-op RT is true for at least one row RT in T, the comparison-op ANY predicate
is true.

Examples of ALL, ANY, SOME
• This predicate is true if the salary is greater than the salaries of all the employees who have

a jobcode of 420:
salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420)

Consider this SELECT statement using the preceding predicate:
SELECT empnum, first_name, last_name, salary
FROM persnl.employee
WHERE salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420);

The inner query providing the comparison values yields these results:
SELECT salary
FROM persnl.employee
WHERE jobcode = 420;

SALARY

 33000.00
 36000.00
 18000.10

--- 3 row(s) selected.

The SELECT statement using this inner query yields these results. The salaries listed are greater
than the salary of every employees with jobcode equal to 420—that is, greater than
$33,000.00, $36,000.00, and $18,000.10:
SELECT empnum, first_name, last_name, salary
FROM persnl.employee
WHERE salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420);

EMPNUM FIRST_NAME LAST_NAME SALARY
------ --------------- -------------------- -----------
 1 ROGER GREEN 175500.00
 23 JERRY HOWARD 137000.10

Predicates 245

 29 JANE RAYMOND 136000.00
 ...
 343 ALAN TERRY 39500.00
 557 BEN HENDERSON 65000.00
 568 JESSICA CRINER 39500.00

--- 23 row(s) selected.

• This predicate is true if the part number is equal to any part number with more than five units
in stock:
partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5)

Consider this SELECT statement using the preceding predicate:
SELECT ordernum, partnum, qty_ordered
FROM sales.odetail
WHERE partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5);

The inner query providing the comparison values yields these results:
SELECT partnum
FROM sales.odetail
WHERE qty_ordered > 5;

Part/Num

 2403
 5100
 5103
 6301
 6500

--- 60 row(s) selected.

The SELECT statement using this inner query yields these results. All of the order numbers listed
have part number equal to any part number with more than five total units in stock—that is,
equal to 2403, 5100, 5103, 6301, 6500, and so on:
SELECT ordernum, partnum, qty_ordered
FROM sales.odetail
WHERE partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5);

Order/Num Part/Num Qty/Ord
---------- -------- ----------
 100210 244 3
 100210 2001 3
 100210 2403 6
 100210 5100 10
 100250 244 4
 100250 5103 10
 100250 6301 15
 100250 6500 10

--- 71 row(s) selected.

246 SQL Language Elements

Privileges
A privilege provides authorization to perform a specific operation for a specific object.
A privilege can be granted to or revoked from a user or role in many ways:

• Implicit privileges are granted to an owner of an object when the object is created. The owner
retains implicit privileges for the lifespan of the object.

• Explicit privileges can be granted to or revoked from a user or role. Explicit privileges can be
granted or revoked by a database user administrator, an object owner, or a user who has
been granted the privilege with the WITH GRANT OPTION option.

• The privileges granted to a user can come from various sources. Privileges can be directly
granted to a user or they can be inherited through a role. For example, a user gets the SELECT
privilege on table T1 from two different roles. If one of the roles is revoked from the user, the
user will still be able to select from T1 via the SELECT privilege granted to the remaining role.

• A user who is granted a role is thereby conferred all privileges of the role. The only way to
revoke any such privilege is to revoke the role from the user. For more information, see “Roles”
(page 248).

You can manage privileges by using the GRANT and REVOKE statements. For more information
on GRANT, see:

• “GRANT Statement” (page 111)

• “GRANT COMPONENT PRIVILEGE Statement” (page 114)

• “GRANT ROLE Statement” (page 117)
For more information on REVOKE, see:

• “REVOKE Statement” (page 130)

• “REVOKE COMPONENT PRIVILEGE Statement” (page 133)

• “REVOKE ROLE Statement” (page 135)

Privileges 247

Roles
A role offers the flexibility of implicitly assigning a set of privileges to users, instead of assigning
privileges individually. A user can be granted one or more roles. A role can be granted to one or
more users. A role can be granted by or revoked by a database user administrator, a role owner,
or a member of the role.
Privileges are granted to a role. When a role is granted to a user, the privileges granted to the
role become available to the user. If new privileges are granted to the role, those privileges become
available to all users who have been granted the role. When a role is revoked from a user, the
privileges granted to the role are no longer available to the user. In Trafodion Release 0.9, for
any privilege changes to take effect, the user must disconnect any current sessions and then
reconnect to establish new sessions. However, starting in Trafodion Release 1.0, the change in
privileges is automatically propagated to and detected by active sessions, so there is no need for
users to disconnect from and reconnect to a session to see the updated set of privileges. For more
information about privileges, see “Privileges” (page 247).
A role name is an authorization ID. A role name cannot be identical to a registered database
username. For more information, see “Authorization IDs” (page 193).
To manage roles, see these SQL statements:

• “CREATE ROLE Statement” (page 66)

• “DROP ROLE Statement” (page 93)

• “GRANT ROLE Statement” (page 117)

• “REVOKE ROLE Statement” (page 135)

248 SQL Language Elements

Schemas
The ANSI SQL:1999 schema name is an SQL identifier that is unique for a given ANSI catalog
name. Trafodion SQL automatically qualifies the schema name with the current default catalog
name, TRAFODION.
The logical name of the form schema.object is an ANSI name. The part schema denotes the
ANSI-defined schema.
To be compliant with ANSI SQL:1999, Trafodion SQL provides support for ANSI object names.
By using these names, you can develop ANSI-compliant applications that access all SQL objects.
You can access Trafodion SQL objects with the name of the actual object. See “SET SCHEMA
Statement” (page 156).

Creating and Dropping Schemas
In Trafodion Release 0.9 and earlier, a schema is created when you qualify a table or view name
with a new schema name in a CREATE TABLE or CREATE VIEW statement. A schema is dropped
when all the database objects in the schema have been dropped. The CREATE SCHEMA statement
would run but not do anything.
Starting in Trafodion Release 1.0.0, you can now create a schema using the CREATE SCHEMA
command and drop a schema using the DROP SCHEMA statement. For more information, see the
“CREATE SCHEMA Statement” (page 67) and the “DROP SCHEMA Statement” (page 95).

Schemas 249

Search Condition
A search condition is used to choose rows from tables or views, depending on the result of applying
the condition to rows. The condition is a Boolean expression consisting of predicates combined
together with OR, AND, and NOT operators.
You can use a search condition in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
the HAVING clause of a SELECT statement, the searched form of a CASE expression, the ON
clause of a SELECT statement that involves a join, a CHECK constraint, or a ROWS SINCE sequence
function.

search-condition is:
boolean-term | search-condition OR boolean-term

boolean-term is:
boolean-factor | boolean-term AND boolean-factor

boolean-factor is:
 [NOT] boolean-primary

boolean-primary is:
predicate | (search-condition)

OR
specifies the resulting search condition is true if and only if either of the surrounding predicates
or search conditions is true.

AND
specifies the resulting search condition is true if and only if both the surrounding predicates or
search conditions are true.

NOT
reverses the truth value of its operand—the following predicate or search condition.

predicate
is a BETWEEN, comparison, EXISTS, IN, LIKE, NULL, or quantified comparison predicate. A
predicate specifies conditions that must be satisfied for a row to be chosen. See “Predicates”
(page 233) and individual entries.

Considerations for Search Condition

Order of Evaluation
SQL evaluates search conditions in this order:
1. Predicates within parentheses
2. NOT
3. AND
4. OR

Column References
Within a search condition, a reference to a column refers to the value of that column in the row
currently being evaluated by the search condition.

Subqueries
If a search condition includes a subquery and the subquery returns no values, the predicate evaluates
to null. See “Subquery” (page 252).

250 SQL Language Elements

Examples of Search Condition
• Select rows by using a search condition composed of three comparison predicates joined by

AND operators:
select O.ordernum, O.deliv_date, OD.qty_ordered
FROM sales.orders O,
 sales.odetail OD
WHERE qty_ordered < 9 AND deliv_date <= DATE '2008-11-01'
 AND O.ordernum = OD.ordernum;

ORDERNUM DELIV_DATE QTY_ORDERED
---------- ---------- -----------
 100210 2008-04-10 3
 100210 2008-04-10 3
 100210 2008-04-10 6
 100250 2008-06-15 4
 101220 2008-12-15 3
 ...
--- 28 row(s) selected.

• Select rows by using a search condition composed of three comparison predicates, two of
which are joined by an OR operator (within parentheses), and where the result of the OR and
the first comparison predicate are joined by an AND operator:
SELECT partnum, S.suppnum, suppname
FROM invent.supplier S,
 invent.partsupp PS
WHERE S.suppnum = PS.suppnum
 AND (partnum < 3000 OR partnum = 7102);

PARTNUM SUPPNUM SUPPNAME
------- ------- ------------------
 212 1 NEW COMPUTERS INC
 244 1 NEW COMPUTERS INC
 255 1 NEW COMPUTERS INC
 ...
 7102 10 LEVERAGE INC

--- 18 row(s) selected.

Search Condition 251

Subquery
A subquery is a query expression enclosed in parentheses. Its syntactic form is specified in the
syntax of a SELECT statement. For further information about query expressions, see “SELECT
Statement” (page 138).
A subquery is used to provide values for a BETWEEN, comparison, EXISTS, IN, or quantified
comparison predicate in a search condition. It is also used to specify a derived table in the FROM
clause of a SELECT statement.
A subquery can be a table, row, or scalar subquery. Therefore, its result table can be a table
consisting of multiple rows and columns, a single row of column values, or a single row consisting
of only one column value.

SELECT Form of a Subquery
A subquery is typically specified as a special form of a SELECT statement enclosed in parentheses
that queries (or selects) to provide values in a search condition or to specify a derived table as a
table reference.
The form of a subquery specified as a SELECT statement is query-expr.
Neither the ORDER BY clause nor [FIRST N] / [ANY N] clause is allowed in a subquery.

Using Subqueries to Provide Comparison Values
When a subquery is used to provide comparison values, the SELECT statement that contains the
subquery is called an outer query. The subquery within the SELECT is called an inner query.
In this case, the differences between the SELECT statement and the SELECT form of a subquery are:

• A subquery is always enclosed in parentheses.

• A subquery cannot contain an ORDER BY clause.

• If a subquery is not part of an EXISTS, IN, or quantified comparison predicate, and the subquery
evaluates to more than one row, a run-time error occurs.

Nested Subqueries When Providing Comparison Values
An outer query (a main SELECT statement) can have nested subqueries. Subqueries within the same
WHERE or HAVING clause are at the same level. For example, this query has one level of nesting:
SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2 WHERE Q = 1)
 AND B = (SELECT X FROM TABLE3 WHERE Y = 2)

A subquery within the WHERE clause of another subquery is at a different level, however, so this
query has two levels of nesting:
SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2
 WHERE Q = (SELECT X FROM TABLE3
 WHERE Y = 2))

The maximum level of nested subqueries might depend on:
• The complexity of the subqueries.

• Whether the subquery is correlated and if so, whether it can be unnested.

• Amount of available memory.
Other factors may affect the maximum level of subqueries.

Correlated Subqueries When Providing Comparison Values
In a subquery, when you refer to columns of any table or view defined in an outer query, the
reference is called an outer reference. A subquery containing an outer reference is called a
correlated subquery.

252 SQL Language Elements

If you refer to a column name that occurs in more than one outer query, you must qualify the column
name with the correlation name of the table or view to which it belongs. Similarly, if you refer to
a column name that occurs in the subquery and in one or more outer queries, you must qualify the
column name with the correlation name of the table or view to which it belongs. The correlation
name is known to other subqueries at the same level, or to inner queries but not to outer queries.
If you use the same correlation name at different levels of nesting, an inner query uses the one
from the nearest outer level.

Subquery 253

Tables
A table is a logical representation of data in which a set of records is represented as a sequence
of rows, and the set of fields common to all rows is represented by columns. A column is a set of
values of the same data type with the same definition. The intersection of a row and column
represents the data value of a particular field in a particular record.
Every table must have one or more columns, but the number of rows can be zero. No inherent
order of rows exists within a table.
You create a Trafodion SQL user table by using the CREATE TABLE statement. See the “CREATE
TABLE Statement” (page 69). The definition of a user table within the statement includes this
information:

• Name of the table

• Name of each column of the table

• Type of data you can store in each column of the table

• Other information about the table, including the physical characteristics of the file that stores
the table (for example, the storage order of rows within the table)

A Trafodion SQL table is described in an SQL schema and stored as an HBase table. Trafodion
SQL tables have regular ANSI names in the catalog TRAFODION. A Trafodion SQL table name
can be a fully qualified ANSI name of the form TRAFODION.schema-name.object-name. A
Trafodion SQL table’s metadata is stored in the schema TRAFODION."_MD_".
Because Trafodion defines the encodings for column values in Trafodion SQL tables, those tables
support various Trafodion SQL statements. See “Supported SQL Statements With HBase Tables”
(page 23).
Internally, Trafodion SQL tables use a single HBase column family and shortened column names
to conserve space. Their encoding allows keys consisting of multiple columns and preserves the
order of key values as defined by SQL. The underlying HBase column model makes it very easy
to add and remove columns from Trafodion SQL tables. HBase columns that are not recorded in
the Trafodion metadata are ignored, and missing columns are considered NULL values.

Base Tables and Views
In some descriptions of SQL, tables created with a CREATE TABLE statement are called base tables
to distinguish them from views, which are called logical tables.
A view is a named logical table defined by a query specification that uses one or more base tables
or other views. See “Views” (page 255).

Example of a Base Table
For example, this EMPLOYEE table is a base table in a sample database:

SALARYJOBCODEDEPTNUMLAST_NAMEFIRST_NAMEEMPNUM

175500.001009000GREENROGER1

137000.001001000HOWARDJERRY23

32000.003003000WALKERTIM75

.

In this sample table, the columns are EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, JOBCODE,
and SALARY. The values in each column have the same data type.

254 SQL Language Elements

Views
A view provides an alternate way of looking at data in one or more tables. A view is a named
specification of a result table, which is a set of rows selected or generated from one or more base
tables or other views. The specification is a SELECT statement that is executed whenever the view
is referenced.
A view is a logical table created with the CREATE VIEW statement and derived by projecting a
subset of columns, restricting a subset of rows, or both, from one or more base tables or other
views.

SQL Views
A view’s name must be unique among table and view names within the schema that contains it.
Single table views can be updatable. Multitable views are not updatable.
For information about SQL views, see “CREATE VIEW Statement” (page 81) and “DROP VIEW
Statement” (page 97).

Example of a View
You can define a view to show only part of the data in a table. For example, this EMPLIST view is
defined as part of the EMPLOYEE table:

JOBCODEDEPTNUMLAST_NAMEFIRST_NAMEEMPNUM

1009000GREENROGER1

1001000HOWARDJERRY23

3003000WALKERTIM75

.

In this sample view, the columns are EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, and
JOBCODE. The SALARY column in the EMPLOYEE table is not part of the EMPLIST view.

Views 255

5 SQL Clauses
Clauses are used by Trafodion SQL statements to specify default values, ways to sample or sort
data, how to store physical data, and other details.
This section describes:

• “DEFAULT Clause” specifies a default value for a column being created.

• “FORMAT Clause” specifies the format to use.

• “SAMPLE Clause” specifies the sampling method used to select a subset of the intermediate
result table of a SELECT statement.

• “SEQUENCE BY Clause” specifies the order in which to sort rows of the intermediate result
table for calculating sequence functions.

• “TRANSPOSE Clause” generates, for each row of the SELECT source table, a row for each
item in the transpose item list.

256 SQL Clauses

DEFAULT Clause
“Examples of DEFAULT”
The DEFAULT option of the CREATE TABLE or ALTER TABLE table-name ADD COLUMN statement
specifies a default value for a column being created. The default value is used when a row is
inserted in the table without a value for the column.
DEFAULT default | NO DEFAULT

 default is:
literal

 | NULL
 | CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP

NO DEFAULT
specifies the column has no default value. You cannot specify NO DEFAULT in an ALTER TABLE
statement. See “ALTER TABLE Statement” (page 36).

DEFAULT literal
is a literal of a data type compatible with the data type of the associated column.
For a character column, literal must be a string literal of no more than 240 characters or
the length of the column, whichever is less. The maximum length of a default value for a
character column is 240 bytes (minus control characters) or the length of the column, whichever
is less. Control characters consist of character set prefixes and single quote delimiter found in
the text itself.
For a numeric column, literal must be a numeric literal that does not exceed the defined
length of the column. The number of digits to the right of the decimal point must not exceed
the scale of the column, and the number of digits to the left of the decimal point must not exceed
the number in the length (or length minus scale, if you specified scale for the column).
For a datetime column, literal must be a datetime literal with a precision that matches the
precision of the column.
For an INTERVAL column, literal must be an INTERVAL literal that has the range of INTERVAL
fields defined for the column.

DEFAULT NULL
specifies NULL as the default. This default can occur only with a column that allows null.

DEFAULT CURRENT_DATE
specifies the default value for the column as the value returned by the CURRENT_DATE function
at the time of the operation that assigns a value to the column. This default can occur only with
a column whose data type is DATE.

DEFAULT CURRENT_TIME
specifies the default value for the column as the value returned by the CURRENT_TIME function
at the time of the operation that assigns a value to the column. This default can occur only with
a column whose data type is TIME.

DEFAULT CURRENT_TIMESTAMP
specifies the default value for the column as the value returned by the CURRENT_TIMESTAMP
function at the time of the operation that assigns a value to the column. This default can occur
only with a column whose data type is TIMESTAMP.

Examples of DEFAULT
• This example uses DEFAULT clauses on CREATE TABLE to specify default column values:

DEFAULT Clause 257

CREATE TABLE items
 (item_id CHAR(12) NO DEFAULT
 ,description CHAR(50) DEFAULT NULL
 ,num_on_hand INTEGER DEFAULT 0 NOT NULL);

• This example uses DEFAULT clauses on CREATE TABLE to specify default column values:
CREATE TABLE persnl.project
 (projcode NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL
 ,empnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL
 ,projdesc VARCHAR (18)
 DEFAULT NULL
 ,start_date DATE
 DEFAULT CURRENT_DATE
 ,ship_timestamp TIMESTAMP
 DEFAULT CURRENT_TIMESTAMP
 ,est_complete INTERVAL DAY
 DEFAULT INTERVAL '30' DAY
 ,PRIMARY KEY (projcode));

258 SQL Clauses

FORMAT Clause
• “Considerations for Date Formats”

• “Considerations for Other Formats”

• “Examples of FORMAT”
The FORMAT clause specifies the output format for DATE values. It can also be used to specify the
length of character output or to specify separating the digits of integer output with colons.
Date Formats:
(FORMAT 'format-string') |

(DATE, FORMAT 'format-string')

format-string for Date Formats is:
 YYYY-MM-DD
 MM/DD/YYYY
 YY/MM/DD
 YYYY/MM/DD
 YYYYMMDD
 DD.MM.YYYY
 DD-MM-YYYY
 DD-MMM-YYYY

Other Formats:
(FORMAT 'format-string')

format-string for other formats is:
 XXX
 99:99:99:99
 -99:99:99:99

YYYY-MM-DD
specifies that the FORMAT clause output format is year-month-day.

MM/DD/YYYY
specifies that the FORMAT clause output format is month/day/year

YY/MM/DD
specifies that the FORMAT clause output format is year/month/day.

YYYY/MM/DD
specifies that the FORMAT clause output format is year/month/day.

YYYYMMDD
specifies that the FORMAT clause output format is yearmonthday.

DD.MM.YYYY
specifies that the FORMAT clause output format is day.month.year.

DD-MM-YYYY
specifies that the FORMAT clause output format is day-month-year.

DD-MMM-YYYY
specifies that the FORMAT clause output format is day-month-year.

XXX
specifies that the FORMAT clause output format is a string format. The input must be a numeric
or string value.

99:99:99:99
specifies that the FORMAT clause output format is a timestamp. The input must be a numeric
value.

FORMAT Clause 259

-99:99:99:99
specifies that the FORMAT clause output format is a timestamp. The input must be a numeric
value.

Considerations for Date Formats
The expression preceding the (FORMAT ”format-string') clause must be a DATE value.
The expression preceding the (DATE, FORMAT 'format-string') clause must be a quoted string
in the USA, EUROPEAN, or DEFAULT date format.

Considerations for Other Formats
For XXX, the expression preceding the (FORMAT 'format-string') clause must be a numeric
value or a string value.
For 99:99:99:99 and -99:99:99:99, the expression preceding the (FORMAT 'format-string')
clause must be a numeric value.

Examples of FORMAT
The format string 'XXX' in this example will yield a sample result of abc:
SELECT 'abcde' (FORMAT 'XXX') FROM (VALUES(1)) t;

The format string 'YYYY-MM_DD' in this example will yield a sample result of 2008-07-17.
SELECT CAST('2008-07-17' AS DATE) (FORMAT 'YYYY-MM-DD') FROM (VALUES(1)) t;

The format string 'MM/DD/YYYY' in this example will yield a sample result of 07/17/2008.
SELECT '2008-07-17' (DATE, FORMAT 'MM/DD/YYYY') FROM (VALUES(1)) t;

The format string 'YY/MM/DD' in this example will yield a sample result of 08/07/17.
SELECT '2008-07-17'(DATE, FORMAT 'YY/MM/DD') FROM (VALUES(1)) t;

The format string 'YYYY/MM/DD' in this example will yield a sample result of 2008/07/17.
SELECT '2008-07-17' (DATE, FORMAT 'YYYY/MM/DD') FROM (VALUES(1)) t;

The format string 'YYYYMMDD' in this example will yield a sample result of 20080717.
SELECT '2008-07-17' (DATE, FORMAT 'YYYYMMDD') FROM (VALUES(1)) t;

The format string 'DD.MM.YYYY' in this example will yield a sample result of 17.07.2008.
SELECT '2008-07-17' (DATE, FORMAT 'DD.MM.YYYY') FROM (VALUES(1)) t;

The format string 'DD-MMM-YYYY' in this example will yield a sample result of 17–JUL-2008.
SELECT '2008-07-17' (DATE, FORMAT 'DD-MMM-YYYY') FROM (VALUES(1)) t;

The format string '99:99:99:99' in this example will yield a sample result of 12:34:56:78.
SELECT 12345678 (FORMAT '99:99:99:99') FROM (VALUES(1)) t;

The format string '-99:99:99:99' in this example will yield a sample result of -12:34:56:78.
SELECT (-12345678) (FORMAT '-99:99:99:99') FROM (VALUES(1)) t;

260 SQL Clauses

SAMPLE Clause
• “Considerations for SAMPLE”

• “Examples of SAMPLE”
The SAMPLE clause of the SELECT statement specifies the sampling method used to select a subset
of the intermediate result table of a SELECT statement. The intermediate result table consists of the
rows returned by a WHERE clause or, if no WHERE clause exists, the FROM clause. See “SELECT
Statement” (page 138).
SAMPLE is a Trafodion SQL extension.
SAMPLE sampling-method

sampling-method is:
 RANDOM percent-size
 | FIRST rows-size
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 | PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

percent-size is:
percent-result PERCENT [ROWS]

 | BALANCE WHEN condition
 THEN percent-result PERCENT [ROWS]
 [WHEN condition THEN percent-result PERCENT [ROWS]]...
 [ELSE percent-result PERCENT [ROWS]] END

rows-size is:
number-rows ROWS

 | BALANCE WHEN condition THEN number-rows ROWS
 [WHEN condition THEN number-rows ROWS]...
 [ELSE number-rows ROWS] END

RANDOM percent-size

directs Trafodion SQL to choose rows randomly (each row having an unbiased probability of
being chosen) without replacement from the result table. The sampling size is determined by
the percent-size, defined as:
percent-result PERCENT [ROWS] | BALANCE WHEN condition THEN
percent-result PERCENT [ROWS] [WHEN condition THEN percent-result
PERCENT [ROWS]]... [ELSE percent-result PERCENT [ROWS]] END

specifies the value of the size for RANDOM sampling by using a percent of the result table.
The value percent-result must be a numeric literal.
You can determine the actual size of the sample. Suppose that N rows exist in the
intermediate result table. Each row is picked with a probability of r%, where r is the sample
size in PERCENT. Therefore, the actual size of the resulting sample is approximately r%
of N. The number of rows picked follows a binomial distribution with mean equal to r *
N/100.
If you specify a sample size greater than 100 PERCENT, Trafodion SQL returns all the rows
in the result table plus duplicate rows. The duplicate rows are picked from the result table
according to the specified sampling method. This technique is called oversampling.
ROWS

specifies row sampling. Row sampling is the default.
BALANCE

If you specify a BALANCE expression, Trafodion SQL performs stratified sampling. The
intermediate result table is divided into disjoint strata based on the WHEN conditions.

SAMPLE Clause 261

Each stratum is sampled independently by using the sampling size. For a given row,
the stratum to which it belongs is determined by the first WHEN condition that is true
for that row—if a true condition exists. If no true condition exists, the row belongs to
the ELSE stratum.

FIRST rows-size [SORT BY colname [ASC[ENDING] | DESC[ENDING]] [,colname
[ASC[ENDING] | DESC[ENDING]]]...]

directs Trafodion SQL to choose the first rows from the result table. You can specify the order
of the rows to sample. Otherwise, Trafodion SQL chooses an arbitrary order. The sampling
size is determined by the rows-size, defined as:
number-rows ROWS | BALANCE WHEN condition THEN number-rows ROWS [WHEN
condition THEN number-rows ROWS]... [ELSE number-rows ROWS] END

specifies the value of the size for FIRST sampling by using the number of rows intended in
the sample. The value number-rows must be an integer literal.
You can determine the actual size of the sample. Suppose that N rows exist in the
intermediate result table. If the size s of the sample is specified as a number of rows, the
actual size of the resulting sample is the minimum of s and N.

PERIODIC rows-size EVERY number-rows ROWS [SORT BY colname [ASC[ENDING] |
DESC[ENDING]] [,colname [ASC[ENDING] | DESC[ENDING]]]...]

directs Trafodion SQL to choose the first rows from each block (or period) of contiguous rows.
This sampling method is equivalent to a separate FIRST sampling for each period, and the
rows-size is defined as in FIRST sampling.
The size of the period is specified as a number of rows. You can specify the order of the rows
to sample. Otherwise, Trafodion SQL chooses an arbitrary order.
You can determine the actual size of the sample. Suppose that N rows exist in the intermediate
result table. If the size s of the sample is specified as a number of rows and the size p of the
period is specified as a number of rows, the actual size of the resulting sample is calculated
as:
FLOOR (N/p) * s + minimum (MOD (N, p), s)
minimum in this expression is used simply as the mathematical minimum of two values.

Considerations for SAMPLE

Sample Rows
In general, when you use the SAMPLE clause, the same query returns different sets of rows for each
execution. The same set of rows is returned only when you use the FIRST and PERIODIC sampling
methods with the SORT BY option, where no duplicates exist in the specified column combination
for the sort.

Examples of SAMPLE
Suppose that the data-mining tables SALESPER, SALES, and DEPT have been created as:
CREATE TABLE trafodion.mining.salesper
 (empid NUMERIC (4) UNSIGNED NOT NULL
 ,dnum NUMERIC (4) UNSIGNED NOT NULL
 ,salary NUMERIC (8,2) UNSIGNED
 ,age INTEGER
 ,sex CHAR (6)
 ,PRIMARY KEY (empid));

CREATE TABLE trafodion.mining.sales
 (empid NUMERIC (4) UNSIGNED NOT NULL
 ,product VARCHAR (20)
 ,region CHAR (4)

262 SQL Clauses

 ,amount NUMERIC (9,2) UNSIGNED
 ,PRIMARY KEY (empid));

CREATE TABLE trafodion.mining.dept
 (dnum NUMERIC (4) UNSIGNED NOT NULL
 ,name VARCHAR (20)
 ,PRIMARY KEY (dnum));

Suppose, too, that sample data is inserted into this database.

• Return the SALARY of the youngest 50 sales people:

SELECT salary
FROM salesperson
SAMPLE FIRST 50 ROWS SORT BY age;

SALARY

 90000.00
 90000.00
 28000.00
 27000.12
 136000.00
 37000.40
 ...

--- 50 row(s) selected.

• Return the SALARY of 50 sales people. In this case, the table is clustered on EMPID. If the
optimizer chooses a plan to access rows using the primary access path, the result consists of
salaries of the 50 sales people with the smallest employee identifiers.

SELECT salary
FROM salesperson
SAMPLE FIRST 50 ROWS;

SALARY

 175500.00
 137000.10
 136000.00
 138000.40
 75000.00
 90000.00
 ...

--- 50 row(s) selected.

• Return the SALARY of the youngest five sales people, skip the next 15 rows, and repeat this
process until no more rows exist in the intermediate result table. You cannot specify periodic
sampling with the sample size larger than the period.

SELECT salary
FROM salesperson
SAMPLE PERIODIC 5 ROWS EVERY 20 ROWS SORT BY age;

SALARY

 90000.00
 90000.00
 28000.00
 27000.12
 136000.00
 36000.00

SAMPLE Clause 263

 ...

--- 17 row(s) selected.

In this example, 62 rows exist in the SALESPERSON table. For each set of 20 rows, the first
five rows are selected. The last set consists of two rows, both of which are selected.

• Compute the average salary of a random 10 percent of the sales people. You will get a
different result each time you run this query because it is based on a random sample.

SELECT AVG(salary)
FROM salesperson
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 61928.57

--- 1 row(s) selected.

• This query illustrates sampling after execution of the WHERE clause has chosen the qualifying
rows. The query computes the average salary of a random 10 percent of the sales people
over 35 years of age. You will get a different result each time you run this query because it
is based on a random sample.

SELECT AVG(salary)
FROM salesperson
WHERE age > 35
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 58000.00

--- 1 row(s) selected.

• Compute the average salary of a random 10 percent of sales people belonging to the
CORPORATE department. The sample is taken from the join of the SALESPERSON and
DEPARTMENT tables. You will get a different result each time you run this query because it is
based on a random sample.

SELECT AVG(salary)
FROM salesperson S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE'
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 106250.000

--- 1 row(s) selected.

• In this example, the SALESPERSON table is first sampled and then joined with the DEPARTMENT
table. This query computes the average salary of all the sales people belonging to the
CORPORATE department in a random sample of 10 percent of the sales employees.

SELECT AVG(salary)
FROM (SELECT salary, dnum
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE';

264 SQL Clauses

(EXPR)

 37000.000

--- 1 row(s) selected.

The results of this query and some of the results of previous queries might return null:

SELECT AVG(salary)
FROM (SELECT salary, dnum
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE';

(EXPR)

 ?

--- 1 row(s) selected.

For this query execution, the number of rows returned by the embedded query is limited by
the total number of rows in the SALESPERSON table. Therefore, it is possible that no rows
satisfy the search condition in the WHERE clause.

• In this example, both the tables are sampled first and then joined. This query computes the
average salary and the average sale amount generated from a random 10 percent of all the
sales people and 20 percent of all the sales transactions.

SELECT AVG(salary), AVG(amount)
FROM (SELECT salary, empid
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S,
 (SELECT amount, empid
 FROM sales
 SAMPLE RANDOM 20 PERCENT) AS T
WHERE S.empid = T.empid;

(EXPR) (EXPR)
--------- ---------
 45000.00 31000.00

--- 1 row(s) selected.

• This example illustrates oversampling. This query retrieves 150 percent of the sales transactions
where the amount exceeds $1000. The result contains every row at least once, and 50 percent
of the rows, picked randomly, occur twice.

SELECT *
FROM sales
WHERE amount > 1000
SAMPLE RANDOM 150 PERCENT;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
 32 GRAPHICPRINTER, M2 S 15000.00
 32 GRAPHICPRINTER, M2 S 15000.00

SAMPLE Clause 265

--- 88 row(s) selected.

• The BALANCE option enables stratified sampling. Retrieve the age and salary of 1000 sales
people such that 50 percent of the result are male and 50 percent female.

SELECT age, sex, salary
FROM salesperson
SAMPLE FIRST
 BALANCE WHEN sex = 'male' THEN 15 ROWS
 WHEN sex = 'female' THEN 15 ROWS
 END
ORDER BY age;

AGE SEX SALARY
----------- ------ -----------
 22 male 28000.00
 22 male 90000.00
 22 female 136000.00
 22 male 37000.40

--- 30 row(s) selected.

• Retrieve all sales records with the amount exceeding $10000 and a random sample of 10
percent of the remaining records:

SELECT *
FROM sales
SAMPLE RANDOM
 BALANCE WHEN amount > 10000 THEN 100 PERCENT
 ELSE 10 PERCENT
 END;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
 32 GRAPHICPRINTER, M2 S 15000.00

 228 MONITORCOLOR, M2 N 10500.00

--- 32 row(s) selected.

• This query shows an example of stratified sampling where the conditions are not mutually
exclusive:

SELECT *
FROM sales
SAMPLE RANDOM
BALANCE WHEN amount > 10000 THEN 100 PERCENT
 WHEN product = 'PCGOLD, 30MB' THEN 25 PERCENT
 WHEN region = 'W' THEN 40 PERCENT
 ELSE 10 PERCENT
 END;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
 32 GRAPHICPRINTER, M2 S 15000.00

266 SQL Clauses

 39 GRAPHICPRINTER, M3 S 20000.00
 75 LASERPRINTER, X1 W 42000.00

--- 30 row(s) selected.

SAMPLE Clause 267

SEQUENCE BY Clause
• “Considerations for SEQUENCE BY”

• “Examples of SEQUENCE BY”
The SEQUENCE BY clause of the SELECT statement specifies the order in which to sort the rows
of the intermediate result table for calculating sequence functions. This option is used for processing
time-sequenced rows in data mining applications. See “SELECT Statement” (page 138).
SEQUENCE BY is a Trafodion SQL extension.
SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...

colname

names a column in select-list or a column in a table reference in the FROM clause of the
SELECT statement. colname is optionally qualified by a table, view, or correlation name; for
example, CUSTOMER.CITY.

ASC | DESC
specifies the sort order. ASC is the default. For ordering an intermediate result table on a
column that can contain null, nulls are considered equal to one another but greater than all
other nonnull values.

You must include a SEQUENCE BY clause if you include a sequence function in the select list of
the SELECT statement. Otherwise, Trafodion SQL returns an error. Further, you cannot include a
SEQUENCE BY clause if no sequence function exists in the select list. See “Sequence Functions”
(page 282).

Considerations for SEQUENCE BY
• Sequence functions behave differently from set (or aggregate) functions and mathematical (or

scalar) functions.
• If you include both SEQUENCE BY and GROUP BY clauses in the same SELECT statement,

the values of the sequence functions must be evaluated first and then become input for
aggregate functions in the statement.

◦ For a SELECT statement that contains both SEQUENCE BY and GROUP BY clauses, you
can nest the sequence function in the aggregate function:
SELECT ordernum,
 MAX(MOVINGSUM(qty_ordered, 3)) AS maxmovsum_qty,
 AVG(unit_price) AS avg_price
FROM odetail
SEQUENCE BY partnum
GROUP BY ordernum;

◦ To use a sequence function as a grouping column, you must use a derived table for the
SEQUENCE BY query and use the derived column in the GROUP BY clause:
SELECT ordernum, movsum_qty, AVG(unit_price)
FROM
 (SELECT ordernum, MOVINGSUM(qty_ordered, 3), unit_price
 FROM odetail
 SEQUENCE BY partnum)
 AS tab2 (ordernum, movsum_qty, unit_price)
GROUP BY ordernum, movsum_qty;

◦ To use an aggregate function as the argument to a sequence function, you must also use
a derived table:
SELECT MOVINGSUM(avg_price,2)
FROM
 (SELECT ordernum, AVG(unit_price)
 FROM odetail

268 SQL Clauses

 GROUP BY ordernum)
 AS tab2 (ordernum, avg_price)
SEQUENCE BY ordernum;

• Like aggregate functions, sequence functions generate an intermediate result. If the query has
a WHERE clause, its search condition is applied during the generation of the intermediate
result. Therefore, you cannot use sequence functions in the WHERE clause of a SELECT
statement.

◦ This query returns an error:
SELECT ordernum, partnum, RUNNINGAVG(unit_price)
FROM odetail
WHERE ordernum > 800000 AND RUNNINGAVG(unit_price) > 350
SEQUENCE BY qty_ordered;

◦ Apply a search condition to the result of a sequence function, use a derived table for the
SEQUENCE BY query, and use the derived column in the WHERE clause:
SELECT ordernum, partnum, runavg_price
FROM
 (SELECT ordernum, partnum, RUNNINGAVG(unit_price)
 FROM odetail
 SEQUENCE BY qty_ordered)
 AS tab2 (ordernum, partnum, runavg_price)
WHERE ordernum > 800000 AND runavg_price > 350;

Examples of SEQUENCE BY
• Sequentially number each row for the entire result and also number the rows for each part

number:
SELECT RUNNINGCOUNT(*) AS RCOUNT, MOVINGCOUNT(*,
 ROWS SINCE (d.partnum<>THIS(d.partnum)))
 AS MCOUNT,
 d.partnum
FROM orders o, odetail d
WHERE o.ordernum=d.ordernum
SEQUENCE BY d.partnum, o.order_date, o.ordernum
ORDER BY d.partnum, o.order_date, o.ordernum;

RCOUNT MCOUNT Part/Num
-------------------- --------------------- --------
 1 1 212
 2 2 212
 3 1 244
 4 2 244
 5 3 244

 67 1 7301
 68 2 7301
 69 3 7301
 70 4 7301

--- 70 row(s) selected.

• Show the orders for each date, the amount for each order item and the moving total for each
order, and the running total of all the orders. The query sequences orders by date, order
number, and part number. (The CAST function is used for readability only.)
SELECT o.ordernum,
 CAST (MOVINGCOUNT(*,ROWS SINCE(THIS(o.ordernum) <>
 o.ordernum)) AS INT) AS MCOUNT,
 d.partnum, o.order_date,
 (d.unit_price * d.qty_ordered) AS AMOUNT,
 MOVINGSUM (d.unit_price * d.qty_ordered,

SEQUENCE BY Clause 269

 ROWS SINCE(THIS(o.ordernum)<>o.ordernum)) AS ORDER_TOTAL,
 RUNNINGSUM (d.unit_price * d.qty_ordered) AS TOTAL_SALES
FROM orders o, odetail d
WHERE o.ordernum=d.ordernum
SEQUENCE BY o.order_date, o.ordernum, d.partnum
ORDER BY o.order_date, o.ordernum, d.partnum;

Order/Num MCOUNT Part/Num Order/Date
AMOUNT ORDER_TOTAL TOTAL_SALES
---------- ----------- -------- ----------
---------- -------------- --------------

 100250 1 244 2008-01-23
 14000.00 14000.00 14000.00
 100250 2 5103 2008-01-23
 4000.00 18000.00 18000.00
 100250 3 6500 2008-01-23
 950.00 18950.00 18950.00

 200300 1 244 2008-02-06
 28000.00 28000.00 46950.00
 200300 2 2001 2008-02-06
 10000.00 38000.00 56950.00
 200300 3 2002 2008-02-06
 14000.00 52000.00 70950.00

 800660 18 7102 2008-10-09
 1650.00 187360.00 1113295.00
 800660 19 7301 2008-10-09
 5100.00 192460.00 1118395.00

--- 69 row(s) selected.

For example, for order number 200300, the ORDER_TOTAL is a moving sum within the order
date 2008-02-06, and the TOTAL_SALES is a running sum for all orders. The current window
for the moving sum is defined as ROWS SINCE (THIS(o.ordernum)<>o.ordernum),
which restricts the ORDER_TOTAL to the current order number.

• Show the amount of time between orders by calculating the interval between two dates:
SELECT RUNNINGCOUNT(*),o.order_date,DIFF1(o.order_date)
FROM orders o
SEQUENCE BY o.order_date, o.ordernum
ORDER BY o.order_date, o.ordernum ;

(EXPR) Order/Date (EXPR)
-------------------- ---------- -------------
 1 2008-01-23 ?
 2 2008-02-06 14
 3 2008-02-17 11
 4 2008-03-03 14
 5 2008-03-19 16
 6 2008-03-19 0
 7 2008-03-27 8
 8 2008-04-10 14
 9 2008-04-20 10
 10 2008-05-12 22
 11 2008-06-01 20
 12 2008-07-21 50
 13 2008-10-09 80

--- 13 row(s) selected.

270 SQL Clauses

TRANSPOSE Clause
• “Considerations for TRANSPOSE”

• “Examples of TRANSPOSE”
The TRANSPOSE clause of the SELECT statement generates for each row of the SELECT source
table a row for each item in the transpose item list. The result table of the TRANSPOSE clause has
all the columns of the source table plus, for each transpose item list, a value column or columns
and an optional key column.
TRANSPOSE is a Trafodion SQL extension.
TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]

transpose-set is:
transpose-item-list AS transpose-col-list

transpose-item-list is:
expression-list

 | (expression-list) [,(expression-list)]...

expression-list is:
expression [,expression]...

transpose-col-list is:
colname | (colname-list)

colname-list is:
colname [,colname]...

transpose-item-list AS transpose-col-list

specifies a transpose-set, which correlates a transpose-item-list with a
transpose-col-list. The transpose-item-list can be a list of expressions or a list
of expression lists enclosed in parentheses. The transpose-col-list can be a single
column name or a list of column names enclosed in parentheses.
For example, in the transpose-set TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2), the items in
the transpose-item-list are (A,X),(B,Y), and (C,Z), and the transpose-col-list is
(V1,V2). The number of expressions in each item must be the same as the number of value
columns in the column list.
In the example TRANSPOSE A,B,C AS V, the items are A,B, and C, and the value column is
V. This form can be thought of as a shorter way of writing TRANSPOSE (A),(B),(C) AS (V).
transpose-item-list

specifies a list of items. An item is a value expression or a list of value expressions enclosed
in parentheses.
expression-list

specifies a list of SQL value expressions, separated by commas. The expressions must
have compatible data types.
For example, in the transpose set TRANSPOSE A,B,C AS V, the expressions A,B, and
C have compatible data types.

(expression-list) [,(expression-list)]...
specifies a list of expressions enclosed in parentheses, followed by another list of
expressions enclosed in parentheses, and so on. The number of expressions within
parentheses must be equal for each list. The expressions in the same ordinal position
within the parentheses must have compatible data types.

TRANSPOSE Clause 271

For example, in the transpose set TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2), the
expressions A,B, and C have compatible data types, and the expressions X,Y, and Z
have compatible data types.

transpose-col-list

specifies the columns that consist of the evaluation of expressions in the item list as the
expressions are applied to rows of the source table.
colname

is an SQL identifier that specifies a column name. It identifies the column consisting of
the values in expression-list.
For example, in the transpose set TRANSPOSE A,B,C AS V, the column V corresponds
to the values of the expressions A,B, and C.

(colname-list)
specifies a list of column names enclosed in parentheses. Each column consists of the
values of the expressions in the same ordinal position within the parentheses in the
transpose item list.
For example, in the transpose set TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2), the column
V1 corresponds to the expressions A,B, and C, and the column V2 corresponds to the
expressions X,Y, and Z.

KEY BY key-colname

optionally specifies which expression (the value in the transpose column list corresponds to)
by its position in the item list. key-colname is an SQL identifier. The data type of the key
column is exact numeric, and the value is NOT NULL.

Considerations for TRANSPOSE

Multiple TRANSPOSE Clauses and Sets

• Multiple TRANSPOSE clauses can be used in the same query. For example:
SELECT KEYCOL1, VALCOL1, KEYCOL2, VALCOL2 FROM MYTABLE
TRANSPOSE A, B, C AS VALCOL1
 KEY BY KEYCOL1
TRANSPOSE D, E, F AS VALCOL2
 KEY BY KEYCOL2

• A TRANSPOSE clause can contain multiple transpose sets. For example:
SELECT KEYCOL, VALCOL1, VALCOL2 FROM MYTABLE
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL

Degree and Column Order of the TRANSPOSE Result
The degree of the TRANSPOSE result is the degree of the source table (the result table derived
from the table reference or references in the FROM clause and a WHERE clause if specified), plus
one if the key column is specified, plus the cardinalities of all the transpose column lists.
The columns of the TRANSPOSE result are ordered beginning with the columns of the source table,
followed by the key column if specified, and then followed by the list of column names in the order
in which they are specified.

Data Type of the TRANSPOSE Result
The data type of each of the value columns is the union compatible data type of the corresponding
expressions in the transpose-item-list. You cannot have expressions with data types that
are not compatible in a transpose-item-list.

272 SQL Clauses

For example, in TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2), the data type of V1 is the union
compatible type for A, B, and C, and the data type of V2 is the union compatible type for X, Y,
and Z.
See “Comparable and Compatible Data Types” (page 201).

Cardinality of the TRANSPOSE Result
The items in each transpose-item-list are enumerated from 1 to N, where N is the total
number of items in all the item lists in the transpose sets.
In this example with a single transpose set, the value of N is 3:
TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)

In this example with two transpose sets, the value of N is 5:
TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)
 L,M AS V3

The values 1 to N are the key values ki. The items in each transpose-item-list are the
expression values vi.
The cardinality of the result of the TRANSPOSE clause is the cardinality of the source table times
N, the total number of items in all the transpose item lists.
For each row of the source table and for each value in the key values ki, the TRANSPOSE result
contains a row with all the attributes of the source table, the key value ki in the key column, the
expression values vi in the value columns of the corresponding transpose set, and NULL in the
value columns of other transpose sets.
For example, consider this TRANSPOSE clause:
TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)
 L,M AS V3
 KEY BY K

The value of N is 5. One row of the SELECT source table produces this TRANSPOSE result:

V3V2V1Kcolumns-of-source

NULLvalue-of-Xvalue-of-A1source-row

NULLvalue-of-Yvalue-of-B2source-row

NULLvalue-of-Zvalue-of-C3source-row

value-of-LNULLNULL4source-row

value-of-MNULLNULL5source-row

Examples of TRANSPOSE
Suppose that MYTABLE has been created as:

CREATE TABLE mining.mytable
 (A INTEGER, B INTEGER, C INTEGER, D CHAR(2),
 E CHAR(2), F CHAR(2));

TRANSPOSE Clause 273

The table MYTABLE has columns A, B, C, D, E, and F with related data. The columns A, B, and C
are type INTEGER, and columns D, E, and F are type CHAR.

FEDCBA

f1e1d1100101

f2e2d2200202

• Suppose that MYTABLE has only the first three columns: A, B, and C. The result of the
TRANSPOSE clause has three times as many rows (because three items exist in the transpose
item list) as rows exist in MYTABLE:

SELECT * FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

VALCOLKEYCOLFEDCBA

11f1e1d1100101

102f1e1d1100101

1003f1e1d1100101

21f2e2d2200202

202f2e2d2200202

2003f2e2d2200202

• This query shows that the items in the transpose item list can be any valid scalar expressions:

SELECT KEYCOL, VALCOL, A, B, C FROM mytable
TRANSPOSE A + B, C + 3, 6 AS VALCOL
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

CBAVALCOLKEYCOL

100101111

1001011032

10010163

200202221

2002022032

20020263

• This query shows how the TRANSPOSE clause can be used with a GROUP BY clause. This
query is typical of queries used to obtain cross-table information, where A, B, and C are the
independent variables, and D is the dependent variable.

SELECT KEYCOL, VALCOL, D, COUNT(*) FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL
GROUP BY KEYCOL, VALCOL, D;

274 SQL Clauses

The result table of the TRANSPOSE query is:

COUNT(*)DVALCOLKEYCOL

1d111

1d1102

1d11003

1d221

1d2202

1d22003

• This query shows how to use COUNT applied to VALCOL. The result table of the TRANSPOSE
query shows the number of distinct values in VALCOL.

SELECT COUNT(DISTINCT VALCOL) FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL
GROUP BY KEYCOL;

(EXPR)

 2
 2
 2

--- 3 row(s) selected.

• This query shows how multiple TRANSPOSE clauses can be used in the same query. The result
table from this query has nine times as many rows as rows exist in MYTABLE:

SELECT KEYCOL1, VALCOL1, KEYCOL2, VALCOL2 FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 KEY BY KEYCOL1
TRANSPOSE D, E, F AS VALCOL2
 KEY BY KEYCOL2;

The result table of the TRANSPOSE query is:

VALCOL2KEYCOL2VALCOL1KEYCOL1

d1111

e1211

f1311

d11102

e12102

f13102

d111003

e121003

f131003

d2121

e2221

f2321

d21202

e22202

TRANSPOSE Clause 275

VALCOL2KEYCOL2VALCOL1KEYCOL1

f23202

d212003

e222003

f232003

• This query shows how a TRANSPOSE clause can contain multiple transpose sets—that is,
multiple transpose-item-list AS transpose-col-list. The expressions A, B, and
C are of type integer, and expressions D, E, and F are of type character.

SELECT KEYCOL, VALCOL1, VALCOL2 FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

VALCOL2VALCOL1KEYCOL

?11

?102

?1003

d1?4

e1?5

f1?6

?21

?202

?2003

d2?4

e2?5

f2?6

A question mark (?) in a value column indicates no value for the given KEYCOL.

• This query shows how the preceding query can include a GROUP BY clause:

SELECT KEYCOL, VALCOL1, VALCOL2, COUNT(*) FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL
GROUP BY KEYCOL, VALCOL1, VALCOL2;

The result table of the TRANSPOSE query is:

(EXPR)VALCOL2VALCOL1KEYCOL

1?11

1?102

1?1003

1?21

1?202

1?2003

1d2?4

276 SQL Clauses

(EXPR)VALCOL2VALCOL1KEYCOL

1e2?5

1f2?6

1d1?4

1e1?5

1f1?6

• This query shows how an item in the transpose item list can contain a list of expressions and
that the KEY BY clause is optional:

SELECT * FROM mytable
TRANSPOSE (1, A, 'abc'), (2, B, 'xyz')
 AS (VALCOL1, VALCOL2, VALCOL3);

The result table of the TRANSPOSE query is:

VALCOL3VALCOL2VALCOL1FEDCBA

abc11f1e1d1100101

xyz102f1e1d1100101

abc21f2e2d2200202

xyz202f2e2d2200202

TRANSPOSE Clause 277

6 SQL Functions and Expressions
This section describes the syntax and semantics of specific functions and expressions that you can
use in Trafodion SQL statements. The functions and expressions are categorized according to their
functionality.

Categories
Use these types of functions within an SQL value expression:

• “Aggregate (Set) Functions”

• “Character String Functions”

• “Datetime Functions”

• “Mathematical Functions”

• “Sequence Functions”

• “Other Functions and Expressions”
For more information on SQL value expressions, see “Expressions” (page 211).

Standard Normalization
For datetime functions, the definition of standard normalization is: If the ending day of the resulting
date is invalid, the day will be rounded DOWN to the last day of the result month.

Aggregate (Set) Functions
An aggregate (or set) function operates on a group or groups of rows retrieved by the SELECT
statement or the subquery in which the aggregate function appears.

Computes the average of a group of numbers derived from
the evaluation of the expression argument of the function.

“AVG Function” (page 293)

Counts the number of rows that result from a query (by using
*) or the number of rows that contain a distinct value in the

“COUNT Function” (page 313)

one-column table derived from the expression argument of
the function (optionally distinct values).

Determines a maximum value from the group of values
derived from the evaluation of the expression argument.

“MAX/MAXIMUM Function” (page 360)

Determines a minimum value from the group of values
derived from the evaluation of the expression argument.

“MIN Function” (page 361)

Computes the statistical standard deviation of a group of
numbers derived from the evaluation of the expression
argument of the function. The numbers can be weighted.

“STDDEV Function” (page 410)

Computes the sum of a group of numbers derived from the
evaluation of the expression argument of the function.

“SUM Function” (page 414)

Computes the statistical variance of a group of numbers
derived from the evaluation of the expression argument of
the function. The numbers can be weighted.

“VARIANCE Function” (page 426)

Columns and expressions can be arguments of an aggregate function. The expressions cannot
contain aggregate functions or subqueries.
An aggregate function can accept an argument specified as DISTINCT, which eliminates duplicate
values before the aggregate function is applied. See “DISTINCT Aggregate Functions” (page 147).
If you include a GROUP BY clause in the SELECT statement, the columns you refer to in the select
list must be either grouping columns or arguments of an aggregate function. If you do not include

278 SQL Functions and Expressions

a GROUP BY clause but you specify an aggregate function in the select list, all rows of the SELECT
result table form the one and only group.
See the individual entry for the function.

Character String Functions
These functions manipulate character strings and use a character value expression as an argument
or return a result of a character data type. Character string functions treat each single-byte or
multibyte character in an input string as one character, regardless of the byte length of the character.

Returns the ASCII code value of the first character of a
character value expression.

“ASCII Function” (page 288)

Returns the specified code value in a character set.“CHAR Function” (page 302)

Returns the number of characters in a string. You can also
use CHARACTER_LENGTH.

“CHAR_LENGTH Function” (page 303)

Returns an unsigned integer that is the code point of the
first character in a character value expression that can be
associated with one of the supported character sets.

“CODE_VALUE Function” (page 305)

Returns the concatenation of two character value
expressions as a string value. You can also use the
concatenation operator (||).

“CONCAT Function” (page 306)

Returns a character string where a specified number of
characters within the character string have been deleted

“INSERT Function” (page 348)

and then a second character string has been inserted at a
specified start position.

Downshifts alphanumeric characters. You can also use
LOWER.

“LCASE Function” (page 352)

Returns the leftmost specified number of characters from a
character expression.

“LEFT Function” (page 353)

Returns the position of a specified substring within a
character string. You can also use POSITION.

“LOCATE Function” (page 354)

Downshifts alphanumeric characters. You can also use
LCASE.

“LOWER Function” (page 357)

Replaces the leftmost specified number of characters in a
character expression with a padding character.

“LPAD Function” (page 358)

Removes leading spaces from a character string.“LTRIM Function” (page 359)

Returns the length of a character string in bytes.“OCTET_LENGTH Function” (page 378)

Returns the position of a specified substring within a
character string. You can also use LOCATE.

“POSITION Function” (page 381)

Returns a character string composed of the evaluation of a
character expression repeated a specified number of times.

“REPEAT Function” (page 388)

Returns a character string where all occurrences of a
specified character string in the original string are replaced
with another character string.

“REPLACE Function” (page 389)

Returns the rightmost specified number of characters from
a character expression.

“RIGHT Function” (page 390)

Replaces the rightmost specified number of characters in a
character expression with a padding character.

“RPAD Function” (page 395)

Removes trailing spaces from a character string.“RTRIM Function” (page 396)

Returns a character string consisting of a specified number
of spaces.

“SPACE Function” (page 408)

Extracts a substring from a character string.“SUBSTRING/SUBSTR Function” (page 412)

Categories 279

Translates a character string from a source character set to
a target character set.

“TRANSLATE Function” (page 420)

Removes leading or trailing characters from a character
string.

“TRIM Function” (page 421)

Upshifts alphanumeric characters. You can also use UPSHIFT
or UPPER.

“UCASE Function” (page 422)

Upshifts alphanumeric characters. You can also use UPSHIFT
or UCASE.

“UPPER Function” (page 423)

Upshifts alphanumeric characters. You can also use UPPER
or UCASE.

“UPSHIFT Function” (page 424)

See the individual entry for the function.

Datetime Functions
These functions use either a datetime value expression as an argument or return a result of datetime
data type:

Adds the integer number of months specified by
intr_expr to datetime_expr and normalizes the result.

“ADD_MONTHS Function” (page 287)

Converts a Julian timestamp to a TIMESTAMP value.“CONVERTTIMESTAMP Function” (page 310)

Returns the current timestamp. You can also use the
“CURRENT_TIMESTAMP Function”.

“CURRENT Function” (page 315)

Returns the current date.“CURRENT_DATE Function” (page 316)

Returns the current time.“CURRENT_TIME Function” (page 317)

Returns the current timestamp. You can also use the
“CURRENT Function”.

“CURRENT_TIMESTAMP Function” (page 318)

Adds the interval specified by interval_expression
to datetime_expr.

“DATE_ADD Function” (page 320)

Extracts the datetime field specified by text from the
interval value specified by interval and returns the result
as an exact numeric value.

“DATE_PART Function (of an Interval)” (page 325)

Extracts the datetime field specified by text from the
datetime value specified by timestamp and returns the
result as an exact numeric value.

“DATE_PART Function (of a Timestamp)” (page 326)

Subtracts the specified interval_expression from
datetime_expr.

“DATE_SUB Function” (page 321)

Returns the date with the time portion of the day truncated.“DATE_TRUNC Function” (page 327)

Adds the interval specified by datepart and num_expr
to datetime_expr.

“DATEADD Function” (page 322)

Returns the integer value for the number of datepart units
of time between startdate and enddate.

“DATEDIFF Function” (page 323)

Formats a datetime value for display purposes.“DATEFORMAT Function” (page 324)

Returns an integer value in the range 1 through 31 that
represents the corresponding day of the month. You can
also use DAYOFMONTH.

“DAY Function” (page 328)

Returns the name of the day of the week from a date or
timestamp expression.

“DAYNAME Function” (page 329)

Returns an integer value in the range 1 through 31 that
represents the corresponding day of the month. You can
also use DAY.

“DAYOFMONTH Function” (page 330)

Returns an integer value in the range 1 through 7 that
represents the corresponding day of the week.

“DAYOFWEEK Function” (page 331)

280 SQL Functions and Expressions

Returns an integer value in the range 1 through 366 that
represents the corresponding day of the year.

“DAYOFYEAR Function” (page 332)

Returns a specified datetime field from a datetime value
expression or an interval value expression.

“EXTRACT Function” (page 345)

Returns an integer value in the range 0 through 23 that
represents the corresponding hour of the day.

“HOUR Function” (page 347)

Converts a datetime value to a Julian timestamp.“JULIANTIMESTAMP Function” (page 350)

Returns an integer value in the range 0 through 59 that
represents the corresponding minute of the hour.

“MINUTE Function” (page 362)

Returns an integer value in the range 1 through 12 that
represents the corresponding month of the year.

“MONTH Function” (page 364)

Returns a character literal that is the name of the month of
the year (January, February, and so on).

“MONTHNAME Function” (page 365)

Returns an integer value in the range 1 through 4 that
represents the corresponding quarter of the year.

“QUARTER Function” (page 383)

Returns an integer value in the range 0 through 59 that
represents the corresponding second of the minute.

“SECOND Function” (page 404)

Adds the interval of time specified by interval-ind and
num_expr to datetime_expr.

“TIMESTAMPADD Function” (page 418)

Returns the integer value for the number of interval-ind
units of time between startdate and enddate.

“TIMESTAMPDIFF Function” (page 419)

Returns an integer value in the range 1 through 54 that
represents the corresponding week of the year.

“WEEK Function” (page 428)

Returns an integer value that represents the year.“YEAR Function” (page 429)

See the individual entry for the function.

Mathematical Functions
Use these mathematical functions within an SQL numeric value expression:

Returns the absolute value of a numeric value expression.“ABS Function” (page 285)

Returns the arccosine of a numeric value expression as an
angle expressed in radians.

“ACOS Function” (page 286)

Returns the arcsine of a numeric value expression as an
angle expressed in radians.

“ASIN Function” (page 289)

Returns the arctangent of a numeric value expression as an
angle expressed in radians.

“ATAN Function” (page 290)

Returns the arctangent of the x and y coordinates, specified
by two numeric value expressions, as an angle expressed
in radians.

“ATAN2 Function” (page 291)

Returns the smallest integer greater than or equal to a
numeric value expression.

“CEILING Function” (page 301)

Returns the cosine of a numeric value expression, where
the expression is an angle expressed in radians.

“COS Function” (page 311)

Returns the hyperbolic cosine of a numeric value expression,
where the expression is an angle expressed in radians.

“COSH Function” (page 312)

Converts a numeric value expression expressed in radians
to the number of degrees.

“DEGREES Function” (page 336)

Returns the exponential value (to the base e) of a numeric
value expression.

“EXP Function” (page 341)

Returns the largest integer less than or equal to a numeric
value expression.

“FLOOR Function” (page 346)

Categories 281

Returns the natural logarithm of a numeric value expression.“LOG Function” (page 355)

Returns the base 10 logarithm of a numeric value
expression.

“LOG10 Function” (page 356)

Returns the remainder (modulus) of an integer value
expression divided by an integer value expression.

“MOD Function” (page 363)

Returns the value of the operand unless it is zero, in which
case it returns NULL.

“NULLIFZERO Function” (page 376)

Returns the constant value of pi as a floating-point value.“PI Function” (page 380)

Returns the value of a numeric value expression raised to
the power of an integer value expression. You can also use
the exponential operator **.

“POWER Function” (page 382)

Converts a numeric value expression expressed in degrees
to the number of radians.

“RADIANS Function” (page 384)

Returns the value of numeric_expr round to num places
to the right of the decimal point.

“ROUND Function” (page 391)

Returns an indicator of the sign of a numeric value
expression. If value is less than zero, returns -1 as the

“SIGN Function” (page 405)

indicator. If value is zero, returns 0. If value is greater than
zero, returns 1.

Returns the sine of a numeric value expression, where the
expression is an angle expressed in radians.

“SIN Function” (page 406)

Returns the hyperbolic sine of a numeric value expression,
where the expression is an angle expressed in radians.

“SINH Function” (page 407)

Returns the square root of a numeric value expression.“SQRT Function” (page 409)

Returns the tangent of a numeric value expression, where
the expression is an angle expressed in radians.

“TAN Function” (page 415)

Returns the hyperbolic tangent of a numeric value
expression, where the expression is an angle expressed in
radians.

“TANH Function” (page 416)

Returns the value of the operand unless it is NULL, in which
case it returns zero.

“ZEROIFNULL Function” (page 430)

See the individual entry for the function.

Sequence Functions
Sequence functions operate on ordered rows of the intermediate result table of a SELECT statement
that includes a SEQUENCE BY clause. Sequence functions are categorized generally as difference,
moving, offset, or running.
Some sequence functions, such as ROWS SINCE, require sequentially examining every row in the
history buffer until the result is computed. Examining a large history buffer in this manner for a
condition that has not been true for many rows could be an expensive operation. In addition, such
operations may not be parallelized because the entire sorted result set must be available to compute
the result of the sequence function.

Difference sequence functions:

Calculates differences between values of a column
expression in the current row and previous rows.

“DIFF1 Function” (page 337)

Calculates differences between values of the result of DIFF1
of the current row and DIFF1 of previous rows.

“DIFF2 Function” (page 339)

Moving sequence functions:

Returns the average of nonnull values of a column
expression in the current window.

“MOVINGAVG Function” (page 366)

282 SQL Functions and Expressions

Returns the number of nonnull values of a column expression
in the current window.

“MOVINGCOUNT Function” (page 367)

Returns the maximum of nonnull values of a column
expression in the current window.

“MOVINGMAX Function” (page 368)

Returns the minimum of nonnull values of a column
expression in the current window.

“MOVINGMIN Function” (page 369)

Returns the standard deviation of nonnull values of a column
expression in the current window.

“MOVINGSTDDEV Function” (page 370)

Returns the sum of nonnull values of a column expression
in the current window.

“MOVINGSUM Function” (page 372)

Returns the variance of nonnull values of a column
expression in the current window.

“MOVINGVARIANCE Function” (page 373)

Offset sequence function:

Retrieves columns from previous rows.“OFFSET Function” (page 379)

Running sequence functions:

Returns the rank of the given value of an intermediate result
table ordered by a SEQUENCE BY clause in a SELECT
statement

“RANK/RUNNINGRANK Function” (page 385)

Returns the average of nonnull values of a column
expression up to and including the current row.

“RUNNINGAVG Function” (page 397)

Returns the number of rows up to and including the current
row.

“RUNNINGCOUNT Function” (page 398)

Returns the maximum of values of a column expression up
to and including the current row.

“RUNNINGMAX Function” (page 399)

Returns the minimum of values of a column expression up
to and including the current row.

“RUNNINGMIN Function” (page 400)

Returns the rank of the given value of an intermediate result
table ordered by a SEQUENCE BY clause in a SELECT
statement.

“RUNNINGRANK Function” (page 400)

Returns the standard deviation of nonnull values of a column
expression up to and including the current row.

“RUNNINGSTDDEV Function” (page 401)

Returns the sum of nonnull values of a column expression
up to and including the current row.

“RUNNINGSUM Function” (page 402)

Returns the variance of nonnull values of a column
expression up to and including the current row.

“RUNNINGVARIANCE Function” (page 403)

Other sequence functions:

Returns the last nonnull value for the specified column
expression. If only null values have been returned, returns
null.

“LASTNOTNULL Function” (page 351)

Returns the number of rows counted since the specified
condition was last true.

“ROWS SINCE Function” (page 392)

Returns the number of rows counted since the specified set
of values last changed.

“ROWS SINCE CHANGED Function” (page 394)

Used in ROWS SINCE to distinguish between the value of
the column in the current row and the value of the column
in previous rows.

“THIS Function” (page 417)

See “SEQUENCE BY Clause” (page 268) and the individual entry for each function.

Categories 283

Other Functions and Expressions
Use these other functions and expressions in an SQL value expression:

Returns the authorization name associated with the specified
authorization ID number.

“AUTHNAME Function” (page 292)

Performs 'and' operation on corresponding bits of the two
operands.

“BITAND Function” (page 295)

A conditional expression. The two forms of the CASE
expression are simple and searched.

“CASE (Conditional) Expression” (page 296)

Converts a value from one data type to another data type
that you specify.

“CAST Expression” (page 299)

Returns the value of the first expression in the list that does
not have a NULL value or if all the expressions have NULL
values, the function returns a NULL value.

“COALESCE Function” (page 304)

Converts the specified value expression to hexadecimal for
display purposes.

“CONVERTTOHEX Function” (page 308)

Returns the database username of the current user who
invoked the function.

“CURRENT_USER Function” (page 319)

Compares expr to each test_expr value one by one in
the order provided.

“DECODE Function” (page 333)

Generates a result table describing an access plan for a
SELECT, INSERT, DELETE, or UPDATE statement.

“EXPLAIN Function” (page 342)

Returns the first argument if it is not null, otherwise it returns
the second argument.

“ISNULL Function” (page 349)

Returns the value of the first operand if the two operands
are not equal, otherwise it returns NULL.

“NULLIF Function” (page 375)

Returns the value of the first operand unless it is NULL, in
which case it returns the value of the second operand.

“NVL Function” (page 377)

Returns either the database username of the current user
who invoked the function or the database username
associated with the specified user ID number.

“USER Function” (page 425)

See the individual entry for the function.

284 SQL Functions and Expressions

ABS Function
The ABS function returns the absolute value of a numeric value expression.
ABS is a Trafodion SQL extension.
ABS (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the ABS function.
The result is returned as an unsigned numeric value if the precision of the argument is less than
10 or as a LARGEINT if the precision of the argument is greater than or equal to 10. See
“Numeric Value Expressions” (page 218).

Example of ABS
This function returns the value 8:
ABS (-20 + 12)

ABS Function 285

ACOS Function
The ACOS function returns the arccosine of a numeric value expression as an angle expressed in
radians.
ACOS is a Trafodion SQL extension.
ACOS (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the ACOS
function. The range for the value of the argument is from -1 to +1. See “Numeric Value
Expressions” (page 218).

Examples of ACOS
• The ACOS function returns the value 3.49044274380724416E-001 or approximately 0.3491

in radians (which is 20 degrees).
ACOS (0.9397)

• This function returns the value 0.3491. The function ACOS is the inverse of the function COS.
ACOS (COS (0.3491))

286 SQL Functions and Expressions

ADD_MONTHS Function
The ADD_MONTHS function adds the integer number of months specified by int_expr to
datetime_expr and normalizes the result.
ADD_MONTHS is a Trafodion SQL extension.
ADD_MONTHS (datetime_expr, int_expr [, int2])

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. The return
value is the same type as the datetime_expr. See “Datetime Value Expressions” (page 212).

int_expr

is an SQL numeric value expression of data type SMALLINT or INTEGER that specifies the
number of months. See “Numeric Value Expressions” (page 218).

int2

is an unsigned integer constant. If int2 is omitted or is the literal 0, the normalization is the
standard normalization. If int2 is the literal 1, the normalization includes the standard
normalization and if the starting day (the day part of datetime_expr) is the last day of the
starting month, then the ending day (the day part of the result value) is set to the last valid day
of the result month. See “Standard Normalization” (page 278). See “Numeric Value Expressions”
(page 218).

Examples of ADD_MONTHS
• This function returns the value DATE '2007-03-31':

ADD_MONTHS(DATE '2007-02-28', 1, 1)

• This function returns the value DATE '2007-03-28':
ADD_MONTHS(DATE '2007-02-28', 1, 0)

• This function returns the value DATE '2008-03-28':
ADD_MONTHS(DATE '2008-02-28', 1, 1)

• This function returns the timestamp '2009-02-28 00:00:00':
ADD_MONTHS(timestamp'2008-02-29 00:00:00',12,1)

ADD_MONTHS Function 287

ASCII Function
The ASCII function returns the integer that is the ASCII code of the first character in a character
string expression associated with either the ISO8891 character set or the UTF8 character set.
ASCII is a Trafodion SQL extension.
ASCII (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters. See “Character Value
Expressions” (page 211).

Considerations for ASCII
For a string expression in the UTF8 character set, if the value of the first byte in the string is greater
than 127, Trafodion SQL returns this error message:
ERROR[8428] The argument to function ASCII is not valid.

Example of ASCII
Select the column JOBDESC and return the ASCII code of the first character of the job description:
SELECT jobdesc, ASCII (jobdesc)
FROM persnl.job;

JOBDESC (EXPR)
----------------- --------
MANAGER 77
PRODUCTION SUPV 80
ASSEMBLER 65
SALESREP 83
... ...

--- 10 row(s) selected.

288 SQL Functions and Expressions

ASIN Function
The ASIN function returns the arcsine of a numeric value expression as an angle expressed in
radians.
ASIN is a Trafodion SQL extension.
ASIN (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the ASIN
function. The range for the value of the argument is from -1 to +1. See “Numeric Value
Expressions” (page 218).

Examples of ASIN
• This function returns the value 3.49044414403046400E-001 or approximately 0.3491 in

radians (which is 20 degrees):
ASIN (0.3420)

• This function returns the value 0.3491. The function ASIN is the inverse of the function SIN.
ASIN (SIN (0.3491))

ASIN Function 289

ATAN Function
The ATAN function returns the arctangent of a numeric value expression as an angle expressed
in radians.
ATAN is a Trafodion SQL extension.
ATAN (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the ATAN
function. See “Numeric Value Expressions” (page 218).

Examples of ATAN
• This function returns the value 8.72766423249958272E-001 or approximately 0.8727 in

radians (which is 50 degrees):
ATAN (1.192)

• This function returns the value 0.8727. The function ATAN is the inverse of the function TAN.
ATAN (TAN (0.8727))

290 SQL Functions and Expressions

ATAN2 Function
The ATAN2 function returns the arctangent of the x and y coordinates, specified by two numeric
value expressions, as an angle expressed in radians.
ATAN2 is a Trafodion SQL extension.
ATAN2 (numeric-expression-x,numeric-expression-y)

numeric-expression-x, numeric-expression-y
are SQL numeric value expressions that specify the value for the x and y coordinate arguments
of the ATAN2 function. See “Numeric Value Expressions” (page 218).

Example of ATAN2
This function returns the value 2.66344329881899520E+000, or approximately 2.6634:
ATAN2 (1.192,-2.3)

ATAN2 Function 291

AUTHNAME Function
The AUTHNAME function returns the name of the authorization ID that is associated with the
specified authorization ID number.
AUTHNAME (auth-id)

auth-id

is the 32-bit number associated with an authorization ID. See “Authorization IDs” (page 193).
The AUTHNAME function is similar to the “USER Function” (page 425).

Considerations for AUTHNAME
• This function can be specified only in the top level of a SELECT statement.

• The value returned is string data type VARCHAR(128) and is in ISO8859-1 encoding.

Example of AUTHNAME
This example shows the authorization name associated with the authorization ID number, 33333:
>>SELECT AUTHNAME (33333) FROM (values(1)) x(a);
(EXPR)

DB__ROOT
--- 1 row(s) selected.

292 SQL Functions and Expressions

AVG Function
AVG is an aggregate function that returns the average of a set of numbers.
AVG ([ALL | DISTINCT] expression)

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the AVG of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the AVG function is applied.

expression

specifies a numeric or interval value expression that determines the values to average. The
expression cannot contain an aggregate function or a subquery. The DISTINCT clause
specifies that the AVG function operates on distinct values from the one-column table derived
from the evaluation of expression.
See “Numeric Value Expressions” (page 218) and “Interval Value Expressions” (page 215).

Considerations for AVG

Data Type of the Result
The data type of the result depends on the data type of the argument. If the argument is an exact
numeric type, the result is LARGEINT. If the argument is an approximate numeric type, the result
is DOUBLE PRECISION. If the argument is INTERVAL data type, the result is INTERVAL with the
same precision as the argument.
The scale of the result is the same as the scale of the argument. If the argument has no scale, the
result is truncated.

Operands of the Expression
The expression includes columns from the rows of the SELECT result table but cannot include an
aggregate function. These expressions are valid:
AVG (SALARY)
AVG (SALARY * 1.1)
AVG (PARTCOST * QTY_ORDERED)

Nulls
All nulls are eliminated before the function is applied to the set of values. If the result table is empty,
AVG returns NULL.

Examples of AVG
• Return the average value of the SALARY column:

SELECT AVG (salary)
FROM persnl.employee;

(EXPR)

 49441.52

--- 1 row(s) selected.

• Return the average value of the set of unique SALARY values:
SELECT AVG(DISTINCT salary) AS Avg_Distinct_Salary
FROM persnl.employee;

AVG_DISTINCT_SALARY

 53609.89

AVG Function 293

--- 1 row(s) selected.

• Return the average salary by department:
SELECT deptnum, AVG (salary) AS "AVERAGE SALARY"
FROM persnl.employee
WHERE deptnum < 3000
GROUP BY deptnum;

Dept/Num "AVERAGE SALARY"
-------- ---------------------
 1000 52000.17
 2000 50000.10
 1500 41250.00
 2500 37000.00

--- 4 row(s) selected.

294 SQL Functions and Expressions

BITAND Function
The BITAND function performs an AND operation on corresponding bits of the two operands. If
both bits are 1, the result bit is 1. Otherwise the result bit is 0.
BITAND (expression, expression)

expression

The result data type is a binary number. Depending on the precision of the operands, the data
type of the result can either be an INT (32-bit integer) or a LARGEINT (64-bit integer).
If the max precision of either operand is greater than 9, LARGEINT is chosen (numbers with
precision greater than 9 are represented by LARGEINT). Otherwise, INT is chosen.
If both operands are unsigned, the result is unsigned. Otherwise, the result is signed.
Both operands are converted to the result data type before performing the bit operation.

Considerations for BITAND
BITAND can be used anywhere in an SQL query where an expression could be used. This includes
SELECT lists, WHERE predicates, VALUES clauses, SET statement, and so on.
This function returns a numeric data type and can be used in arithmetic expressions.
Numeric operands can be positive or negative numbers. All numeric data types are allowed with
the exceptions listed in the “Restrictions for BITAND” section.

Restrictions for BITAND
The following are BITAND restrictions:
• Must have 2 operands

• Operands must be binary or decimal exact numerics

• Operands must have scale of zero

• Operands cannot be floating point numbers

• Operands cannot be an extended precision numeric (the maximum precision of an extended
numeric data type is 128)

Examples of BITAND
>>select bitand(1,3) from (values(1)) x(a);

(EXPR)

 1

--- 1 row(s) selected

>>select 1 & 3 from (values(1)) x(a);

(EXPR)

 1

--- 1 row(s) selected

>>select bitand(1,3) + 0 from (values(1)) x(a);

(EXPR)

 1

--- 1 row(s) selected

BITAND Function 295

CASE (Conditional) Expression
• “Considerations for CASE”

• “Examples of CASE”
The CASE expression is a conditional expression with two forms: simple and searched.
In a simple CASE expression, Trafodion SQL compares a value to a sequence of values and sets
the CASE expression to the value associated with the first match—if a match exists. If no match
exists, Trafodion SQL returns the value specified in the ELSE clause (which can be null).
In a searched CASE expression, Trafodion SQL evaluates a sequence of conditions and sets the
CASE expression to the value associated with the first condition that is true—if a true condition
exists. If no true condition exists, Trafodion SQL returns the value specified in the ELSE clause (which
can be null).
Simple CASE is:

CASE case-expression
 WHEN expression-1 THEN {result-expression-1 | NULL}
 WHEN expression-2 THEN {result-expression-2 | NULL}
 ...
 WHEN expression-n THEN {result-expression-n | NULL}
 [ELSE {result-expression | NULL}]
END

Searched CASE is:

CASE
 WHEN condition-1 THEN {result-expression-1 | NULL}
 WHEN condition-2 THEN {result-expression-2 | NULL}
 ...
 WHEN condition-n THEN {result-expression-n | NULL}
 [ELSE {result-expression | NULL}]
END

case-expression

specifies a value expression that is compared to the value expressions in each WHEN clause
of a simple CASE. The data type of each expression in the WHEN clause must be
comparable to the data type of case-expression.

expression-1 ... expression-n
specifies a value associated with each result-expression. If the value of an expression
in a WHEN clause matches the value of case-expression, simple CASE returns the
associated result-expression value. If no match exists, the CASE expression returns the
value expression specified in the ELSE clause, or NULL if the ELSE value is not specified.

result-expression-1 ... result-expression-n
specifies the result value expression associated with each expression in a WHEN clause of
a simple CASE, or with each condition in a WHEN clause of a searched CASE. All of the
result-expressions must have comparable data types, and at least one of the
result-expressions must return nonnull.

result-expression

follows the ELSE keyword and specifies the value returned if none of the expressions in the
WHEN clause of a simple CASE are equal to the case expression, or if none of the conditions
in the WHEN clause of a searched CASE are true. If the ELSE result-expression clause
is not specified, CASE returns NULL. The data type of result-expression must be
comparable to the other results.

296 SQL Functions and Expressions

condition-1 ... condition-n
specifies conditions to test for in a searched CASE. If a condition is true, the CASE expression
returns the associated result-expression value. If no condition is true, the CASE
expression returns the value expression specified in the ELSE clause, or NULL if the ELSE value
is not specified.

Considerations for CASE

Data Type of the CASE Expression
The data type of the result of the CASE expression depends on the data types of the result
expressions. If the results all have the same data type, the CASE expression adopts that data type.
If the results have comparable but not identical data types, the CASE expression adopts the data
type of the union of the result expressions. This result data type is determined in these ways.

Character Data Type
If any data type of the result expressions is variable-length character string, the result data type is
variable-length character string with maximum length equal to the maximum length of the result
expressions.
Otherwise, if none of the data types is variable-length character string, the result data type is
fixed-length character string with length equal to the maximum of the lengths of the result expressions.

Numeric Data Type
If all of the data types of the result expressions are exact numeric, the result data type is exact
numeric with precision and scale equal to the maximum of the precisions and scales of the result
expressions.
For example, if result-expression-1 and result-expression-2 have data type
NUMERIC(5) and result-expression-3 has data type NUMERIC(8,5), the result data type
is NUMERIC(10,5).
If any data type of the result expressions is approximate numeric, the result data type is approximate
numeric with precision equal to the maximum of the precisions of the result expressions.

Datetime Data Type
If the data type of the result expressions is datetime, the result data type is the same datetime data
type.

Interval Data Type
If the data type of the result expressions is interval, the result data type is the same interval data
type (either year-month or day-time) with the start field being the most significant of the start fields
of the result expressions and the end field being the least significant of the end fields of the result
expressions.

Examples of CASE
• Use a simple CASE to decode JOBCODE and return NULL if JOBCODE does not match any

of the listed values:
SELECT last_name, first_name,
 CASE jobcode
 WHEN 100 THEN 'MANAGER'
 WHEN 200 THEN 'PRODUCTION SUPV'
 WHEN 250 THEN 'ASSEMBLER'
 WHEN 300 THEN 'SALESREP'
 WHEN 400 THEN 'SYSTEM ANALYST'
 WHEN 420 THEN 'ENGINEER'
 WHEN 450 THEN 'PROGRAMMER'

CASE (Conditional) Expression 297

 WHEN 500 THEN 'ACCOUNTANT'
 WHEN 600 THEN 'ADMINISTRATOR ANALYST'
 WHEN 900 THEN 'SECRETARY'
 ELSE NULL
 END
FROM persnl.employee;

LAST_NAME FIRST_NAME (EXPR)
-------------------- --------------- -----------------

GREEN ROGER MANAGER
HOWARD JERRY MANAGER
RAYMOND JANE MANAGER
...
CHOU JOHN SECRETARY
CONRAD MANFRED PROGRAMMER
HERMAN JIM SALESREP
CLARK LARRY ACCOUNTANT
HALL KATHRYN SYSTEM ANALYST
...

--- 62 row(s) selected.

• Use a searched CASE to return LAST_NAME, FIRST_NAME and a value based on SALARY
that depends on the value of DEPTNUM:
SELECT last_name, first_name, deptnum,
 CASE
 WHEN deptnum = 9000 THEN salary * 1.10
 WHEN deptnum = 1000 THEN salary * 1.12
 ELSE salary
 END
FROM persnl.employee;

LAST_NAME FIRST_NAME DEPTNUM (EXPR)
---------------- ------------ ------- -------------------
GREEN ROGER 9000 193050.0000
HOWARD JERRY 1000 153440.1120
RAYMOND JANE 3000 136000.0000
...
--- 62 row(s) selected.

298 SQL Functions and Expressions

CAST Expression
• “Considerations for CAST”

• “Valid Conversions for CAST ”

• “Examples of CAST”
The CAST expression converts data to the data type you specify.
CAST ({expression | NULL} AS data-type)

expression | NULL
specifies the operand to convert to the data type data-type.
If the operand is an expression, then data-type depends on the data type of expression
and follows the rules outlined in “Valid Conversions for CAST ” (page 299).
If the operand is NULL, or if the value of the expression is null, the result of CAST is NULL,
regardless of the data type you specify.

data-type

specifies a data type to associate with the operand of CAST. See “Data Types” (page 199).
When casting data to a CHAR or VARCHAR data type, the resulting data value is left justified.
Otherwise, the resulting data value is right justified. Further, when you are casting to a CHAR
or VARCHAR data type, you must specify the length of the target value.

Considerations for CAST
• Fractional portions are discarded when you use CAST of a numeric value to an INTERVAL

type.
• Depending on how your file is set up, using CAST might cause poor query performance by

preventing the optimizer from choosing the most efficient plan and requiring the executor to
perform a complete table or index scan.

Valid Conversions for CAST
• An exact or approximate numeric value to any other numeric data type.

• An exact or approximate numeric value to any character string data type.

• An exact numeric value to either a single-field year-month or day-time interval such as INTERVAL
DAY(2).

• A character string to any other data type, with one restriction:
The contents of the character string to be converted must be consistent in meaning with the
data type of the result. For example, if you are converting to DATE, the contents of the character
string must be 10 characters consisting of the year, a hyphen, the month, another hyphen,
and the day.

• A date value to a character string or to a TIMESTAMP (Trafodion SQL fills in the time part with
00:00:00.00).

• A time value to a character string or to a TIMESTAMP (Trafodion SQL fills in the date part with
the current date).

• A timestamp value to a character string, a DATE, a TIME, or another TIMESTAMP with different
fractional seconds precision.

• A year-month interval value to a character string, an exact numeric, or to another year-month
INTERVAL with a different start field precision.

• A day-time interval value to a character string, an exact numeric, or to another day-time
INTERVAL with a different start field precision.

CAST Expression 299

Examples of CAST
• In this example, the fractional portion is discarded:

CAST (123.956 as INTERVAL DAY(18))

• This example returns the difference of two timestamps in minutes:
CAST((d.step_end - d.step_start) AS INTERVAL MINUTE)

• Suppose that your database includes a log file of user information. This example converts the
current timestamp to a character string and concatenates the result to a character literal. Note
the length must be specified.

INSERT INTO stats.logfile
(user_key, user_info)
VALUES (001, 'User JBrook, executed at ' ||
 CAST (CURRENT_TIMESTAMP AS CHAR(26)));

300 SQL Functions and Expressions

CEILING Function
The CEILING function returns the smallest integer, represented as a FLOAT data type, greater than
or equal to a numeric value expression.
CEILING is a Trafodion SQL extension.
CEILING (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the CEILING
function. See “Numeric Value Expressions” (page 218).

Example of CEILING
This function returns the integer value 3.00000000000000000E+000, represented as a FLOAT
data type:
CEILING (2.25)

CEILING Function 301

CHAR Function
The CHAR function returns the character that has the specified code value, which must be of exact
numeric with scale 0.
CHAR is a Trafodion SQL extension.
CHAR(code-value, [,char-set-name])

code-value

is a valid code value in the character set in use.
char-set-name

can be ISO88591 or UTF8. The returned character will be associated with the character set
specified by char-set-name.
The default for char-set-name is ISO88591.

Considerations for CHAR
• For the ISO88591 character set, the return type is VARCHAR(1).

• For the UTF8 character set, the return type is VARCHAR(1).

Example of CHAR
Select the column CUSTNAME and return the ASCII code of the first character of the customer
name and its CHAR value:
SELECT custname, ASCII (custname), CHAR (ASCII (custname))
FROM sales.customer;

CUSTNAME (EXPR) (EXPR)
------------------ ------- -------
CENTRAL UNIVERSITY 67 C
BROWN MEDICAL CO 66 B
STEVENS SUPPLY 83 S
PREMIER INSURANCE 80 P
...

--- 15 row(s) selected.

302 SQL Functions and Expressions

CHAR_LENGTH Function
The CHAR_LENGTH function returns the number of characters in a string. You can also use
CHARACTER_LENGTH. Every character, including multibyte characters, counts as one character.
CHAR[ACTER]_LENGTH (string-value-expression)

string-value-expression

specifies the string value expression for which to return the length in characters. Trafodion SQL
returns the result as a two-byte signed integer with a scale of zero. If
string-value-expression is null, Trafodion SQL returns a length of null. See “Character
Value Expressions” (page 211).

Considerations for CHAR_LENGTH

CHAR and VARCHAR Operands
For a column declared as fixed CHAR, Trafodion SQL returns the maximum length of that column.
For a VARCHAR column, Trafodion SQL returns the actual length of the string stored in that column.

Examples of CHAR_LENGTH
• This function returns 12 as the result. The concatenation operator is denoted by two vertical

bars (||).
CHAR_LENGTH ('ROBERT' || ' ' || 'SMITH')

• The string '' is the null (or empty) string. This function returns 0 (zero):
CHAR_LENGTH ('')

• The DEPTNAME column has data type CHAR(12). Therefore, this function always returns 12:
CHAR_LENGTH (deptname)

• The PROJDESC column in the PROJECT table has data type VARCHAR(18). This function returns
the actual length of the column value—not 18 for shorter strings—because it is a VARCHAR
value:
SELECT CHAR_LENGTH (projdesc)
FROM persnl.project;

(EXPR)

 14
 13
 13
 17
 9
 9
--- 6 row(s) selected.

CHAR_LENGTH Function 303

COALESCE Function
The COALESCE function returns the value of the first expression in the list that does not have a
NULL value or if all the expressions have NULL values, the function returns a NULL value.
COALESCE (expr1, expr2, ...)

expr1

an expression to be compared.
expr2

an expression to be compared.

Example of COALESCE
COALESCE returns the value of the first operand that is not NULL:
SELECT COALESCE (office_phone, cell_phone, home_phone, pager,
 fax_num, ‘411’) from emptbl;

304 SQL Functions and Expressions

CODE_VALUE Function
The CODE_VALUE function returns an unsigned integer (INTEGER UNSIGNED) that is the code
point of the first character in a character value expression that can be associated with one of the
supported character sets.
CODE_VALUE is a Trafodion SQL extension.
CODE_VALUE(character-value-expression)
_character-set

character-value-expression

is a character string.

Example of CODE_VALUE Function
This function returns 97 as the result:
>>select code_value('abc') from (values(1))x;

(EXPR)

 97

CODE_VALUE Function 305

CONCAT Function
The CONCAT function returns the concatenation of two character value expressions as a character
string value. You can also use the concatenation operator (||).
CONCAT is a Trafodion SQL extension.
CONCAT (character-expr-1, character-expr-2)

character-expr-1, character-expr-2
are SQL character value expressions (of data type CHAR or VARCHAR) that specify two strings
of characters. Both character value expressions must be either ISO8859-1 character expressions
or UTF8 character expressions. The result of the CONCAT function is the concatenation of
character-expr-1 with character-expr-2. The result type is CHAR if both expressions
are of type CHAR and it is VARCHAR if either of the expressions is of type VARCHAR. See
“Character Value Expressions” (page 211).

Concatenation Operator (||)
The concatenation operator, denoted by two vertical bars (||), concatenates two string values to
form a new string value. To indicate that two strings are concatenated, connect the strings with
two vertical bars (||):
character-expr-1 || character-expr-2

An operand can be any SQL value expression of data type CHAR or VARCHAR.

Considerations for CONCAT

Operands
A string value can be specified by any character value expression, such as a character string
literal, character string function, column reference, aggregate function, scalar subquery, CASE
expression, or CAST expression. The value of the operand must be of type CHAR or VARCHAR.
If you use the CAST expression, you must specify the length of CHAR or VARCHAR.

SQL Parameters
You can concatenate an SQL parameter and a character value expression. The concatenated
parameter takes on the data type attributes of the character value expression. Consider this example,
where ?p is assigned a string value of '5 March':
?p || ' 2002'

The type assignment of the parameter ?p becomes CHAR(5), the same data type as the character
literal ' 2002'. Because you assigned a string value of more than five characters to ?p, Trafodion
SQL returns a truncation warning, and the result of the concatenation is 5 Mar 2002.
To specify the type assignment of the parameter, use the CAST expression on the parameter as:
CAST(?p AS CHAR(7)) || '2002'

In this example, the parameter is not truncated, and the result of the concatenation is 5 March
2002.

Examples of CONCAT
• Insert information consisting of a single character string. Use the CONCAT function to construct

and insert the value:
INSERT INTO stats.logfile
(user_key, user_info)
VALUES (001, CONCAT ('Executed at ',
 CAST (CURRENT_TIMESTAMP AS CHAR(26))));

• Use the concatenation operator || to construct and insert the value:

306 SQL Functions and Expressions

INSERT INTO stats.logfile
(user_key, user_info)
VALUES (002, 'Executed at ' ||
 CAST (CURRENT_TIMESTAMP AS CHAR(26)));

CONCAT Function 307

CONVERTTOHEX Function
The CONVERTTOHEX function converts the specified value expression to hexadecimal for display
purposes.
CONVERTTOHEX is a Trafodion SQL extension.
CONVERTTOHEX (expression)

expression

is any numeric, character, datetime, or interval expression.
The primary purpose of the CONVERTTOHEX function is to eliminate any doubt as to the exact
value in a column. It is particularly useful for character expressions where some characters may
be from character sets that are not supported by the client terminal’s locale or may be control
codes or other non-displayable characters.

Considerations for CONVERTTOHEX
Although CONVERTTOHEX is usable on datetime and interval expressions, the displayed output
shows the internal value and is, consequently, not particularly meaningful to general users and is
subject to change in future releases.
CONVERTTOHEX returns ASCII characters in ISO8859-1 encoding.

Examples of CONVERTTOHEX
• Display the contents of a smallint, integer, and largeint in hexadecimal:

CREATE TABLE EG (S1 smallint, I1 int, L1 largeint);
INSERT INTO EG VALUES(37, 2147483647, 2305843009213693951);
SELECT CONVERTTOHEX(S1), CONVERTTOHEX(I1), CONVERTTOHEX(L1) from EG;

(EXPR) (EXPR) (EXPR)
------ -------- ----------------
0025 7FFFFFFF 1FFFFFFFFFFFFFFF

• Display the contents of a CHAR(4) column, a VARCHAR(4) column, and a CHAR(4) column
that uses the UTF8 character set. The varchar column does not have a trailing space character
as the fixed-length columns have:
CREATE TABLE EG_CH (FC4 CHAR(4), VC4 VARCHAR(4), FC4U CHAR(4) CHARACTER SET UTF8);
INSERT INTO EG_CH values('ABC', 'abc', _UTF8'abc');
SELECT CONVERTTOHEX(FC4), CONVERTTOHEX(VC4), CONVERTTOHEX(FC4U) from EG_CH;

(EXPR) (EXPR) (EXPR)
-------- -------- ----------------

41424320 616263 0061006200630020

• Display the internal values for a DATE column, a TIME column, a TIMESTAMP(2) column, and
a TIMESTAMP(6) column:
CREATE TABLE DT (D1 date, T1 time, TS1 timestamp(2), TS2 timestamp(6));
INSERT INTO DT values(current_date, current_time, current_timestamp,
 current_timestamp);
SELECT CONVERTTOHEX(D1), CONVERTTOHEX(T1), CONVERTTOHEX(TS1),
 CONVERTTOHEX(TS2) from DT;

(EXPR) (EXPR) (EXPR) EXPR)
----------- --------- ------------------------- -------------------------
07D8040F 0E201E 07D8040F0E201E00000035 07D8040F0E201E00081ABB

• Display the internal values for an INTERVAL YEAR column, an INTERVAL YEAR(2) TO MONTH
column, and an INTERVAL DAY TO SECOND column:
CREATE TABLE IVT (IV1 interval year, IV2 interval year(2) to month,
 IV3 interval day to second);
INSERT INTO IVT values(interval '1' year, interval '3-2' year(2) to month,

308 SQL Functions and Expressions

 interval '31:14:59:58' day to second);
 SELECT CONVERTTOHEX(IV1), CONVERTTOHEX(IV2), CONVERTTOHEX(IV3) from IVT;

(EXPR) (EXPR) (EXPR)
------ -------- -----------------------

0001 0026 0000027C2F9CB780

CONVERTTOHEX Function 309

CONVERTTIMESTAMP Function
The CONVERTTIMESTAMP function converts a Julian timestamp to a value with data type
TIMESTAMP.
CONVERTTIMESTAMP is a Trafodion SQL extension.
CONVERTTIMESTAMP (julian-timestamp)

julian-timestamp

is an expression that evaluates to a Julian timestamp, which is a LARGEINT value.

Considerations for CONVERTTIMESTAMP
The julian-timestamp value must be in the range from 148731163200000000 to
274927348799999999.

Relationship to the JULIANTIMESTAMP Function
The operand of CONVERTTIMESTAMP is a Julian timestamp, and the function result is a value of
data type TIMESTAMP. The operand of the CONVERTTIMESTAMP function is a value of data type
TIMESTAMP, and the function result is a Julian timestamp. That is, the two functions have an inverse
relationship to one another.

Use of CONVERTTIMESTAMP
You can use the inverse relationship between the JULIANTIMESTAMP and CONVERTTIMESTAMP
functions to insert Julian timestamp columns into your database and display these column values
in a TIMESTAMP format.

Examples of CONVERTTIMESTAMP
• Suppose that the EMPLOYEE table includes a column, named HIRE_DATE, which contains the

hire date of each employee as a Julian timestamp. Convert the Julian timestamp into a
TIMESTAMP value:
SELECT CONVERTTIMESTAMP (hire_date)
FROM persnl.employee;

• This example illustrates the inverse relationship between JULIANTIMESTAMP and
CONVERTTIMESTAMP.
SELECT CONVERTTIMESTAMP (JULIANTIMESTAMP (ship_timestamp))
FROM persnl.project;

If, for example, the value of SHIP_TIMESTAMP is 2008-04-03 21:05:36.143000, the result
of CONVERTTIMESTAMP(JULIANTIMESTAMP(ship_timestamp)) is the same value, 2008-04-03
21:05:36.143000.

310 SQL Functions and Expressions

COS Function
The COS function returns the cosine of a numeric value expression, where the expression is an
angle expressed in radians.
COS is a Trafodion SQL extension.
COS (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the COS function.
See “Numeric Value Expressions” (page 218).

Example of COS
This function returns the value 9.39680940386503680E-001, or approximately 0.9397, the
cosine of 0.3491 (which is 20 degrees):
COS (0.3491)

COS Function 311

COSH Function
The COSH function returns the hyperbolic cosine of a numeric value expression, where the
expression is an angle expressed in radians.
COSH is a Trafodion SQL extension.
COSH (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the COSH
function. See “Numeric Value Expressions” (page 218).

Example of COSH
This function returns the value 1.88842387716101568E+000, or approximately 1.8884, the
hyperbolic cosine of 1.25 in radians:
COSH (1.25)

312 SQL Functions and Expressions

COUNT Function
The COUNT function counts the number of rows that result from a query or the number of rows
that contain a distinct value in a specific column. The result of COUNT is data type LARGEINT.
The result can never be NULL.
COUNT {(*) | ([ALL | DISTINCT] expression)}

COUNT (*)
returns the number of rows in the table specified in the FROM clause of the SELECT statement
that contains COUNT (*). If the result table is empty (that is, no rows are returned by the query)
COUNT (*) returns zero.

ALL | DISTINCT
returns the number of all rows or the number of distinct rows in the one-column table derived
from the evaluation of expression. The default option is ALL, which causes duplicate values
to be included. If you specify DISTINCT, duplicate values are eliminated before the COUNT
function is applied.

expression

specifies a value expression that determines the values to count. The expression cannot
contain an aggregate function or a subquery. The DISTINCT clause specifies that the COUNT
function operates on distinct values from the one-column table derived from the evaluation of
expression. See “Expressions” (page 211).

Considerations for COUNT

Operands of the Expression
The operand of COUNT is either * or an expression that includes columns from the result table
specified by the SELECT statement that contains COUNT. However, the expression cannot include
an aggregate function or a subquery. These expressions are valid:
COUNT (*)
COUNT (DISTINCT JOBCODE)
COUNT (UNIT_PRICE * QTY_ORDERED)

Nulls
COUNT is evaluated after eliminating all nulls from the one-column table specified by the operand.
If the table has no rows, COUNT returns zero.
COUNT(*) does not eliminate null rows from the table specified in the FROM clause of the SELECT
statement. If all rows in a table are null, COUNT(*) returns the number of rows in the table.

Examples of COUNT
• Count the number of rows in the EMPLOYEE table:

SELECT COUNT (*)
FROM persnl.employee;

(EXPR)

 62

--- 1 row(s) selected.

• Count the number of employees who have a job code in the EMPLOYEE table:
SELECT COUNT (jobcode)
FROM persnl.employee;

(EXPR)

COUNT Function 313

 56

--- 1 row(s) selected.

SELECT COUNT(*)
FROM persnl.employee
WHERE jobcode IS NOT NULL;

(EXPR)

 56

--- 1 row(s) selected.

• Count the number of distinct departments in the EMPLOYEE table:
SELECT COUNT (DISTINCT deptnum)
FROM persnl.employee;

(EXPR)

 11

--- 1 row(s) selected.

314 SQL Functions and Expressions

CURRENT Function
The CURRENT function returns a value of type TIMESTAMP based on the current local date and
time.
The function is evaluated once when the query starts execution and is not reevaluated (even if it is
a long running query).
You can also use “CURRENT_TIMESTAMP Function” (page 318).
CURRENT [(precision)]

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of decimal
places in) the fractional seconds in the returned value. The default is 6.
For example, the function CURRENT (2) returns the current date and time as a value of data
type TIMESTAMP, where the precision of the fractional seconds is 2, for example, 2008-06-26
09:01:20.89. The value returned is not a string value.

Example of CURRENT
The PROJECT table contains a column SHIP_TIMESTAMP of data type TIMESTAMP. Update a row
by using the CURRENT value:
UPDATE persnl.project
SET ship_timestamp = CURRENT
WHERE projcode = 1000;

CURRENT Function 315

CURRENT_DATE Function
The CURRENT_DATE function returns the local current date as a value of type DATE.
The function is evaluated once when the query starts execution and is not reevaluated (even if it is
a long running query).
CURRENT_DATE

The CURRENT_DATE function returns the current date, such as 2008-09-28. The value returned is
a value of type DATE, not a string value.

Examples of CURRENT_DATE
• Select rows from the ORDERS table based on the current date:

SELECT * FROM sales.orders
WHERE deliv_date >= CURRENT_DATE;

• The PROJECT table has a column EST_COMPLETE of type INTERVAL DAY. If the current date
is the start date of your project, determine the estimated date of completion:
SELECT projdesc, CURRENT_DATE + est_complete
FROM persnl.project;

Project/Description (EXPR)
------------------- ----------
SALT LAKE CITY 2008-01-18
ROSS PRODUCTS 2008-02-02
MONTANA TOOLS 2008-03-03
AHAUS TOOL/SUPPLY 2008-03-03
THE WORKS 2008-02-02
THE WORKS 2008-02-02

--- 6 row(s) selected.

316 SQL Functions and Expressions

CURRENT_TIME Function
The CURRENT_TIME function returns the current local time as a value of type TIME.
The function is evaluated once when the query starts execution and is not reevaluated (even if it is
a long running query).
CURRENT_TIME [(precision)]

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of decimal
places in) the fractional seconds in the returned value. The default is 0.
For example, the function CURRENT_TIME (2) returns the current time as a value of data type
TIME, where the precision of the fractional seconds is 2, for example, 14:01:59.30. The value
returned is not a string value.

Example of CURRENT_TIME
Use CURRENT_DATE and CURRENT_TIME as a value in an inserted row:
INSERT INTO stats.logfile
(user_key, run_date, run_time, user_name)
VALUES (001, CURRENT_DATE, CURRENT_TIME, 'JuBrock');

CURRENT_TIME Function 317

CURRENT_TIMESTAMP Function
The CURRENT_TIMESTAMP function returns a value of type TIMESTAMP based on the current local
date and time.
The function is evaluated once when the query starts execution and is not reevaluated (even if it is
a long running query).
You can also use the “CURRENT Function” (page 315).
CURRENT_TIMESTAMP [(precision)]

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of decimal
places in) the fractional seconds in the returned value. The default is 6.
For example, the function CURRENT_TIMESTAMP (2) returns the current date and time as a
value of data type TIMESTAMP, where the precision of the fractional seconds is 2; for example,
2008-06-26 09:01:20.89. The value returned is not a string value.

Example of CURRENT_TIMESTAMP
The PROJECT table contains a column SHIP_TIMESTAMP of data type TIMESTAMP. Update a row
by using the CURRENT_TIMESTAMP value:
UPDATE persnl.project
SET ship_timestamp = CURRENT_TIMESTAMP
WHERE projcode = 1000;

318 SQL Functions and Expressions

CURRENT_USER Function
The CURRENT_USER function returns the database username of the current user who invoked the
function. The current user is the authenticated user who started the session. That database username
is used for authorization of SQL statements in the current session.
CURRENT_USER

The CURRENT_USER function is similar to the “USER Function” (page 425).

Considerations for CURRENT_USER
• This function can be specified only in the top level of a SELECT statement.

• The value returned is string data type VARCHAR(128) and is in ISO8859-1 encoding.

Example of CURRENT_USER
This example retrieves the database username for the current user:
SELECT CURRENT_USER FROM (values(1)) x(a);

(EXPR)

TSHAW
--- 1 row(s) selected.

CURRENT_USER Function 319

DATE_ADD Function
The DATE_ADD function adds the interval specified by interval_expression to
datetime_expr. If the specified interval is in years or months, DATE_ADD normalizes the result.
See “Standard Normalization” (page 278). The type of the datetime_expr is returned, unless
the interval_expression contains any time components, then a timestamp is returned.
DATE_ADD is a Trafodion SQL extension.

DATE_ADD (datetime_expr, interval_expression)

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

interval_expression

is an expression that can be combined in specific ways with addition operators. The
interval_expression accepts all interval expression types that the Trafodion database
software considers as valid interval expressions. See “Interval Value Expressions” (page 215).

Examples of DATE_ADD
• This function returns the value DATE '2007-03-07'

DATE_ADD(DATE '2007-02-28', INTERVAL '7' DAY)

• This function returns the value DATE '2008-03-06'
DATE_ADD(DATE '2008-02-28', INTERVAL '7' DAY)

• This function returns the timestamp '2008-03-07 00:00:00'
DATE_ADD(timestamp'2008-02-29 00:00:00', INTERVAL '7' DAY)

• This function returns the timestamp '2008-02-28 23:59:59'
DATE_ADD(timestamp '2007-02-28 23:59:59', INTERVAL '12' MONTH)

Note: compare the last example with the last example under DATE_SUB.

320 SQL Functions and Expressions

DATE_SUB Function
The DATE_SUB function subtracts the specified interval_expression from datetime_expr.
If the specified interval is in years or months, DATE_SUB normalizes the result. See “Standard
Normalization” (page 278). The type of the datetime_expr is returned, unless the
interval_expression contains any time components, then a timestamp is returned.
DATE_SUB is a Trafodion SQL extension.
DATE_SUB (datetime_expr, interval_expression)

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

interval_expression

is an expression that can be combined in specific ways with subtraction operators. The
interval_expression accepts all interval expression types that the Trafodion database
software considers as valid interval expressions. See “Interval Value Expressions” (page 215).

Examples of DATE_SUB
• This function returns the value DATE '2009-02-28'

DATE_SUB(DATE '2009-03-07', INTERVAL'7' DAY)

• This function returns the value DATE '2008-02-29'
DATE_SUB(DATE '2008-03-07', INTERVAL'7' DAY)

• This function returns the timestamp '2008-02-29 00:00:00'
DATE_SUB(timestamp '2008-03-31 00:00:00', INTERVAL '31' DAY)

• This function returns the timestamp '2007-02-28 23:59:59'
DATE_SUB(timestamp '2008-02-29 23:59:59', INTERVAL '12' MONTH)

DATE_SUB Function 321

DATEADD Function
The DATEADD function adds the interval of time specified by datepart and num_expr to
datetime_expr. If the specified interval is in years or months, DATEADD normalizes the result.
See “Standard Normalization” (page 278). The type of the datetime_expr is returned, unless
the interval expression contains any time components, then a timestamp is returned.
DATEADD is a Trafodion SQL extension.
DATEADD(datepart, num_expr, datetime_expr)

datepart

is YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, QUARTER, WEEK, or one of the following
abbreviations:

YY and YYYYYEAR

M and MMMONTH

D and DDDAY

HHHOUR

MI and MMINUTE

SS and SSECOND

Q and QQQUARTER

WW and WKWEEK

num_expr

is an SQL exact numeric value expression that specifies how many datepart units of time
are to be added to datetime_expr. If num_expr has a fractional portion, it is ignored. If
num_expr is negative, the return value precedes datetime_expr by the specified amount
of time. See “Numeric Value Expressions” (page 218).

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. The type of
the datetime_expression is returned, unless the interval expression contains any time
components, then a timestamp is returned. See “Datetime Value Expressions” (page 212).

Examples of DATEADD
• This function adds seven days to the date specified in start_date

DATEADD(DAY, 7,start_date)

• This function returns the value DATE '2009-03-07'
DATEADD(DAY, 7 , DATE '2009-02-28')

• This function returns the value DATE '2008-03-06'
DATEADD(DAY, 7, DATE '2008-02-28')

• This function returns the timestamp '2008-03-07 00:00:00'
DATEADD(DAY, 7, timestamp'2008-02-29 00:00:00')

322 SQL Functions and Expressions

DATEDIFF Function
The DATEDIFF function returns the integer value for the number of datepart units of time between
startdate and enddate. If enddate precedes startdate, the return value is negative or
zero.
DATEDIFF is a Trafodion SQL extension.
DATEDIFF (datepart, startdate, enddate)

datepart
is YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, QUARTER, WEEK, or one of the following
abbreviations

YY and YYYYYEAR

M and MMMONTH

D and DDDAY

HHHOUR

MI and MMINUTE

SS and SSECOND

Q and QQQUARTER

WW and WKWEEK

startdate
may be of type DATE or TIMESTAMP. See “Datetime Value Expressions” (page 212).

enddate
may be of type DATE or TIMESTAMP. See “Datetime Value Expressions” (page 212).

The method of counting crossed boundaries such as days, minutes, and seconds makes the result
given by DATEDIFF consistent across all data types. The result is a signed integer value equal to
the number of datepart boundaries crossed between the first and second date.
For example, the number of weeks between Sunday, January 4, and Sunday, January 11, is 1.
The number of months between March 31 and April 1 would be 1 because the month boundary
is crossed from March to April. The DATEDIFF function generates an error if the result is out of
range for integer values. For seconds, the maximum number is equivalent to approximately 68
years. The DATEDIFF function generates an error if a difference in weeks is requested and one of
the two dates precedes January 7 of the year 0001.

Examples of DATEDIFF
• This function returns the value of 0 because no one-second boundaries are crossed.

DATEDIFF(SECOND, TIMESTAMP '2006-09-12 11:59:58.999998', TIMESTAMP '2006-09-12 11:59:58.999999')

• This function returns the value 1 because a one-second boundary is crossed even though the
two timestamps differ by only one microsecond.
DATEDIFF(SECOND, TIMESTAMP '2006-09-12 11:59:58.999999', TIMESTAMP '2006-09-12 11:59:59.000000')

• This function returns the value of 0.
DATEDIFF(YEAR, TIMESTAMP '2006-12-31 23:59:59.999998', TIMESTAMP '2006-12-31 23:59:59.999999')

• This function returns the value of 1 because a year boundary is crossed.
DATEDIFF(YEAR, TIMESTAMP '2006-12-31 23:59:59.999999', TIMESTAMP '2007-01-01 00:00:00.000000')

• This function returns the value of 2 because two WEEK boundaries are crossed.
DATEDIFF(WEEK, DATE '2006-01-01’, DATE '2006-01-09')

• This function returns the value of -29.
DATEDIFF(DAY, DATE '2008-03-01’, DATE '2008-02-01')

DATEDIFF Function 323

DATEFORMAT Function
The DATEFORMAT function returns a datetime value as a character string literal in the DEFAULT,
USA, or EUROPEAN format. The data type of the result is CHAR.
DATEFORMAT is a Trafodion SQL extension.
DATEFORMAT (datetime-expression,{DEFAULT | USA | EUROPEAN})

datetime-expression

is an expression that evaluates to a datetime value of type DATE, TIME, or TIMESTAMP. See
“Datetime Value Expressions” (page 212).

DEFAULT | USA | EUROPEAN
specifies a format for a datetime value. See “Datetime Literals” (page 226).

Considerations for DATEFORMAT
The DATEFORMAT function returns the datetime value in ISO8859-1 encoding.

Examples of DATEFORMAT
• Convert a datetime literal in DEFAULT format to a string in USA format:

DATEFORMAT (TIMESTAMP '2008-06-20 14:20:20.00', USA)

The function returns this string literal:
'06/20/2008 02:20:20.00 PM'

• Convert a datetime literal in DEFAULT format to a string in European format:
DATEFORMAT (TIMESTAMP '2008-06-20 14:20:20.00', EUROPEAN)

The function returns this string literal:
'20.06.2008 14.20.20.00'

324 SQL Functions and Expressions

DATE_PART Function (of an Interval)
The DATE_PART function extracts the datetime field specified by text from the interval value
specified by interval and returns the result as an exact numeric value. The DATE_PART function
accepts the specification of 'YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', or 'SECOND' for text.
DATE_PART is a Trafodion SQL extension.
DATE_PART (text, interval)

text

specifies YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND. The value must be enclosed in
single quotes.

interval

interval accepts all interval expression types that the Trafodion database software considers
as valid interval expressions. See “Interval Value Expressions” (page 215).

The DATE_PART(text, interval) is equivalent to EXTRACT(text, interval), except that the
DATE_PART function requires single quotes around the text specification, where EXTRACT does
not allow single quotes.
When SECOND is specified the fractional part of the second is returned.

Examples of DATE_PART
• This function returns the value of 7.

DATE_PART('DAY', INTERVAL '07:04' DAY TO HOUR)

• This function returns the value of 6.
DATE_PART('MONTH', INTERVAL '6' MONTH)

• This function returns the value of 36.33.
DATE_PART('SECOND', INTERVAL '5:2:15:36.33' DAY TO SECOND(2))

DATE_PART Function (of an Interval) 325

DATE_PART Function (of a Timestamp)
The DATE_PART function extracts the datetime field specified by text from the datetime value
specified by datetime_expr and returns the result as an exact numeric value. The DATE_PART
function accepts the specification of 'YEAR', 'YEARQUARTER', 'YEARMONTH', 'YEARWEEK',
'MONTH', 'DAY', 'HOUR', 'MINUTE', or 'SECOND' for text.
The DATE_PART function of a timestamp can be changed to DATE_PART function of a datetime
because the second argument can be either a timestamp or a date expression.
DATE_PART is a Trafodion extension.
DATE_PART(text, datetime_expr)

text

specifies YEAR, YEARQUARTER, YEARMONTH, YEARWEEK, MONTH, DAY, HOUR, MINUTE,
or SECOND. The value must be enclosed in single quotes.
• YEARMONTH: Extracts the year and the month, as a 6-digit integer of the form yyyymm

(100 * year + month).
• YEARQUARTER: Extracts the year and quarter, as a 5-digit integer of the form yyyyq,

(10 * year + quarter) with q being 1 for the first quarter, 2 for the second, and
so on.

• YEARWEEK: Extracts the year and week of the year, as a 6-digit integer of the form
yyyyww (100 * year + week). The week number will be computed in the same way
as in the WEEK function.

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

DATE_PART(text, datetime_expr) is mostly equivalent to EXTRACT(text, datetime_expr),
except that DATE_PART requires single quotes around the text specification where EXTRACT does
not allow single quotes. In addition, you cannot use the YEARQUARTER, YEARMONTH, and
YEARWEEK text specification with EXTRACT.

Examples of DATE_PART
• This function returns the value of 12.

DATE_PART('month', date'12/05/2006')

• This function returns the value of 2006.
DATE_PART('year', date'12/05/2006')

• This function returns the value of 31.
DATE_PART('day', TIMESTAMP '2006-12-31 11:59:59.999999')

• This function returns the value 201107.
DATE_PART('YEARMONTH', date '2011-07-25')

326 SQL Functions and Expressions

DATE_TRUNC Function
The DATE_TRUNC function returns a value of type TIMESTAMP, which has all fields of lesser
precision than text set to zero (or 1 in the case of months or days).
DATE_TRUNC is a Trafodion SQL extension.
DATE_TRUNC(text, datetime_expr)

text

specifies 'YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', or 'SECOND'. The DATE_TRUNC
function also accepts the specification of 'CENTURY' or 'DECADE'.

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. DATE_TRUNC
returns a value of type TIMESTAMP which has all fields of lesser precision than text set to
zero (or 1 in the case of months or days). See “Datetime Value Expressions” (page 212).

Examples of DATE_TRUNC
• This function returns the value of TIMESTAMP '2006-12-31 00:00:00'.

DATE_TRUNC('DAY', TIMESTAMP '2006-12-31 11:59:59')

• This function returns the value of TIMESTAMP '2006-01-01 00:00:00'
DATE_TRUNC('YEAR', TIMESTAMP '2006-12-31 11:59:59')

• This function returns the value of TIMESTAMP '2006-12-01 00:00:00'
DATE_TRUNC('MONTH', DATE '2006-12-31')

• Restrictions:

DATE_TRUNC('DECADE', …) cannot be used on years less than 10.◦
◦ DATE_TRUNC('CENTURY', …) cannot be used on years less than 100.

DATE_TRUNC Function 327

DAY Function
The DAY function converts a DATE or TIMESTAMP expression into an INTEGER value in the range
1 through 31 that represents the corresponding day of the month. The result returned by the DAY
function is equal to the result returned by the DAYOFMONTH function.
DAY is a Trafodion SQL extension.
DAY (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of DAY
Return an integer that represents the day of the month from the START_DATE column of the PROJECT
table:
SELECT start_date, ship_timestamp, DAY(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 10

328 SQL Functions and Expressions

DAYNAME Function
The DAYNAME function converts a DATE or TIMESTAMP expression into a character literal that
is the name of the day of the week (Sunday, Monday, and so on).
DAYNAME is a Trafodion SQL extension.
DAYNAME (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Considerations for DAYNAME
The DAYNAME function returns the name of the day in ISO8859-1.

Example of DAYNAME
Return the name of the day of the week from the START_DATE column in the PROJECT table:
SELECT start_date, ship_timestamp, DAYNAME(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ---------
2008-04-10 2008-04-21 08:15:00.000000 Thursday

DAYNAME Function 329

DAYOFMONTH Function
The DAYOFMONTH function converts a DATE or TIMESTAMP expression into an INTEGER value
in the range 1 through 31 that represents the corresponding day of the month. The result returned
by the DAYOFMONTH function is equal to the result returned by the DAY function.
DAYOFMONTH is a Trafodion SQL extension.
DAYOFMONTH (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Examples of DAYOFMONTH
Return an integer that represents the day of the month from the START_DATE column of the PROJECT
table:
SELECT start_date, ship_timestamp, DAYOFMONTH(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 10

330 SQL Functions and Expressions

DAYOFWEEK Function
The DAYOFWEEK function converts a DATE or TIMESTAMP expression into an INTEGER value in
the range 1 through 7 that represents the corresponding day of the week. The value 1 represents
Sunday, 2 represents Monday, and so forth.
DAYOFWEEK is a Trafodion SQL extension.
DAYOFWEEK (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of DAYOFWEEK
Return an integer that represents the day of the week from the START_DATE column in the PROJECT
table:
SELECT start_date, ship_timestamp, DAYOFWEEK(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 5

The value returned is 5, representing Thursday. The week begins on Sunday.

DAYOFWEEK Function 331

DAYOFYEAR Function
The DAYOFYEAR function converts a DATE or TIMESTAMP expression into an INTEGER value in
the range 1 through 366 that represents the corresponding day of the year.
DAYOFYEAR is a Trafodion SQL extension.
DAYOFYEAR (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of DAYOFYEAR
Return an integer that represents the day of the year from the START_DATE column in the PROJECT
table:
SELECT start_date, ship_timestamp, DAYOFYEAR(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- --------------------
2008-04-10 2008-04-21 08:15:00.000000 101

332 SQL Functions and Expressions

DECODE Function
The DECODE function compares expr to each test_expr value one by one in the order provided.
If expr is equal to a test_expr, then the corresponding retval is returned. If no match is
found, default is returned. If no match is found and default is omitted, NULL is returned.
DECODE is a Trafodion SQL extension.
DECODE (expr, test_expr, retval [, test_expr2, retval2 ...] [, default])

expr

is an SQL expression.
test_expr, test_expr,..

are each an SQL expression of a type comparable to that of expr.
retval

is an SQL expression.
default, retval2,..

are each an SQL expression of a type comparable to that of retval.

Considerations for DECODE
In a DECODE function, two nulls are considered to be equivalent. If expr is null, then the returned
value is the retval of the first test_expr that is also null.
The expr, test_expr, retval, and default values can be derived from expressions.
The arguments can be any of the numeric types or character types. However, expr and each
test_expr value must be of comparable types. If expr and test_expr values are character
types, they must be in the same character set (to be comparable types.)
All the retval values and the default value, if any, must be of comparable types.
If expr and a test_expr value are character data, the comparison is made using nonpadded
comparison semantics.
If expr and a test_expr value are numeric data, the comparison is made with a temporary
copy of one of the numbers, according to defined rules of conversion. For example, if one number
is INTEGER and the other is DECIMAL, the comparison is made with a temporary copy of the
integer converted to a decimal.
If all the possible return values are of fixed-length character types, the returned value is a fixed-length
character string with size equal to the maximum size of all the possible return value types.
If any of the possible return values is a variable-length character type, the returned value is a
variable-length character string with maximum size of all the possible return value types.
If all the possible return values are of integer types, the returned value is the same type as the
largest integer type of all the possible return values.
If the returned value is of type FLOAT, the precision is the maximum precision of all the possible
return values.
If all the possible returned values are of the same non-integer, numeric type (REAL, FLOAT, DOUBLE
PRECISION, NUMERIC, or DECIMAL), the returned value is of that same type.
If all the possible return values are of numeric types but not all the same, and at least one is REAL,
FLOAT, or DOUBLE PRECISION, then the returned value is of type DOUBLE PRECISION.
If all the possible return values are of numeric types but not all the same, none are REAL, FLOAT,
or DOUBLE PRECISION, and at least one is of type NUMERIC, then the returned value is of type
NUMERIC.
If all the possible return values are of numeric types, none are NUMERIC, REAL, FLOAT, or DOUBLE
PRECISION, and at least one is of type DECIMAL, then the returned value will be of type DECIMAL.

DECODE Function 333

If the returned value is of type NUMERIC or DECIMAL, it has a precision equal to the sum of:

• The maximum scale of all the possible return value types and

• The maximum value of (precision - scale) for all the possible return value types.
However, the precision will not exceed 18.
The scale of the returned value is the minimum of:

• the maximum scale of all the possible return value types and

• 18 - (the maximum value of (precision - scale) for all the possible return value types).
The number of components in the DECODE function, including expr, test_exprs, retvals,
and default, has no limit other than the general limit of how big an SQL expression can be.
However, large lists do not perform well.
The syntax DECODE (expr, test_expr, retval [, test_expr2, retval2 ...] [
, default]):
is logically equivalent to the following:
 CASE WHEN (expr IS NULL AND test_expr IS NULL) OR
 expr = test_expr THEN retval
 WHEN (expr IS NULL AND test_expr2 IS NULL) OR
 expr = test_expr2 THEN retval2
 ...
 ELSE default /* or ELSE NULL if default not
 specified */
 END

No special conversion of expr, test_exprN, or retvalN exist other than what a CASE statement
normally does.

Examples of DECODE
• Example of the DECODE function:

SELECT emp_name,
decode(CAST ((yrs_of_service + 3) / 4 AS INT) ,
 0,0.04,
 1,0.04,
 0.06) as perc_value
FROM employees;
SELECT supplier_name,
decode(supplier_id, 10000, 'Company A',
 10001, 'Company B',
 10002, 'Company C',
 'Company D') as result
FROM suppliers;

• This example shows a different way of handling NULL specified as default and not specified
as default explicitly:
SELECT decode((?p1 || ?p2), trim(?p1), ‘Hi’, ?p3, null)
 from emp;
..
*** ERROR[4049] A CASE expression cannot have a result data type of both CHAR(2)
and NUMERIC(18,6).
*** ERROR[4062] The preceding error actually occurred in function
DECODE((?P1 || ?P2),(‘ ’ TRIM ?P1), ‘Hi’, ?P3, NULL)
*** ERROR[8822] The statement was not prepared.

The last ret-val is an explicit NULL. When Trafodion SQL encounters this situation, it assumes
that the return value will be NUMERIC(18,6). Once Trafodion SQL determines that the return
values are numeric, it determines that all possible return values must be numeric. When ‘Hi’
is encountered in a ret-val position, the error is produced because the CHAR(2) type
argument is not comparable with a NUMERIC(18,6) type return value.

334 SQL Functions and Expressions

This statement is equivalent and will not produce an error:
SELECT decode((?p1 || ?p2), trim(?p1), ‘Hi’) from emp;

DECODE Function 335

DEGREES Function
The DEGREES function converts a numeric value expression expressed in radians to the number
of degrees.
DEGREES is a Trafodion SQL extension.
DEGREES (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the DEGREES
function. See “Numeric Value Expressions” (page 218).

Examples of DEGREES
• This function returns the value 45.0001059971939008 in degrees:

DEGREES (0.78540)

• This function returns the value of 45. The function DEGREES is the inverse of the function
RADIANS.
DEGREES (RADIANS (45))

336 SQL Functions and Expressions

DIFF1 Function
• “Considerations for DIFF1”

• “Examples of DIFF1”
The DIFF1 function is a sequence function that calculates the amount of change in an expression
from row to row in an intermediate result table ordered by a SEQUENCE BY clause in a SELECT
statement. See “SEQUENCE BY Clause” (page 268).
DIFF1 is a Trafodion SQL extension.
DIFF1 (column-expression-a [,column-expression-b])

column-expression-a

specifies a derived column determined by the evaluation of the column expression. If you specify
only one column as an argument, DIFF1 returns the difference between the value of the column
in the current row and its value in the previous row; this version calculates the unit change in
the value from row to row.

column-expression-b

specifies a derived column determined by the evaluation of the column expression. If you specify
two columns as arguments, DIFF1 returns the difference in consecutive values in
column-expression-a divided by the difference in consecutive values in
column-expression-b.
The purpose of the second argument is to distribute the amount of change from row to row
evenly over some unit of change (usually time) in another column.

Considerations for DIFF1

Equivalent Result
If you specify one argument, the result of DIFF1 is equivalent to:
column-expression-a - OFFSET(column-expression-a, 1)

If you specify two arguments, the result of DIFF1 is equivalent to:
DIFF1(column-expression-a) / DIFF1(column-expression-b)

The two-argument version involves division by the result of the DIFF1 function. To avoid divide-by-zero
errors, be sure that column-expression-b does not contain any duplicate values whose DIFF1
computation could result in a divisor of zero.

Datetime Arguments
In general, Trafodion SQL does not allow division by a value of INTERVAL data type. However,
to permit use of the two-argument version of DIFF1 with times and dates, Trafodion SQL relaxes
this restriction and allows division by a value of INTERVAL data type.

Examples of DIFF1
• Retrieve the difference between the I1 column in the current row and the I1 column in the

previous row:
SELECT DIFF1 (I1) AS DIFF1_I1
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_I1

 ?
 21959
 -9116
 -14461
 7369

DIFF1 Function 337

--- 5 row(s) selected.

The first row retrieved displays null because the offset from the current row does not fall within
the results set.

• Retrieve the difference between the TS column in the current row and the TS column in the
previous row:
SELECT DIFF1 (TS) AS DIFF1_TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_TS

 ?
 30002620.000000
 134157861.000000
 168588029.000000
 114055223.000000

--- 5 row(s) selected.

The results are expressed as the number of seconds. For example, the difference between
TIMESTAMP '1951-02-15 14:35:49' and TIMESTAMP '1950-03-05 08:32:09' is
approximately 347 days. The difference between TIMESTAMP '1955-05-18 08:40:10' and
TIMESTAMP '1951-02-15 14:35:49' is approximately 4 years and 3 months, and so on.

• This query retrieves the difference in consecutive values in I1 divided by the difference in
consecutive values in TS:
SELECT DIFF1 (I1,TS) AS DIFF1_I1TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_I1TS

 ?
 .0007319
 -.0000679
 -.0000857
 .0000646

--- 5 row(s) selected.

The results are equivalent to the quotient of the results from the two preceding examples. For
example, in the second row of the output of this example, 0.0007319 is equal to 21959
divided by 30002620.

338 SQL Functions and Expressions

DIFF2 Function
• “Considerations for DIFF2”

• “Examples of DIFF2”
The DIFF2 function is a sequence function that calculates the amount of change in a DIFF1 value
from row to row in an intermediate result table ordered by a SEQUENCE BY clause in a SELECT
statement. See “SEQUENCE BY Clause” (page 268).
DIFF2 is a Trafodion SQL extension.
DIFF2 (column-expression-a [,column-expression-b])

column-expression-a

specifies a derived column determined by the evaluation of the column expression. If you specify
only one column as an argument, DIFF2 returns the difference between the value of
DIFF1(column-expression-a) in the current row and the same result in the previous row.

column-expression-b

specifies a derived column determined by the evaluation of the column expression. If you specify
two columns as arguments, DIFF2 returns the difference in consecutive values of
DIFF1(column-expression-a) divided by the difference in consecutive values in
column-expression-b.

See “DIFF1 Function” (page 337).

Considerations for DIFF2

Equivalent Result
If you specify one argument, the result of DIFF2 is equivalent to:
DIFF1(column-expression-a)- OFFSET(DIFF1(column-expression-a),1)

If you specify two arguments, the result of DIFF2 is equivalent to:
DIFF2(column-expression-a) / DIFF1(column-expression-b)

The two-argument version involves division by the result of the DIFF1 function. To avoid divide-by-zero
errors, be sure that column-expression-b does not contain any duplicate values whose DIFF1
computation could result in a divisor of zero.

Datetime Arguments
In general, Trafodion SQL does not allow division by a value of INTERVAL data type. However,
to permit use of the two-argument version of DIFF2 with times and dates, Trafodion SQL relaxes
this restriction and allows division by a value of INTERVAL data type.

Examples of DIFF2
• Retrieve the difference between the value of DIFF1(I1) in the current row and the same result

in the previous row:
SELECT DIFF2 (I1) AS DIFF2_I1
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF2_I1

 ?
 ?
 -31075
 -5345
 21830

--- 5 row(s) selected.

DIFF2 Function 339

The results are equal to the difference of DIFF1(I1) for the current row and DIFF1(I1) of the
previous row. For example, in the third row of the output of this example, -31075 is equal to
-9116 minus 21959. The value -9116 is the result of DIFF1(I1) for the current row, and the
value 21959 is the result of DIFF1(I1) for the previous row. See “Examples of DIFF1” (page 337).

• Retrieve the difference in consecutive values of DIFF1(I1) divided by the difference in consecutive
values of TS:
SELECT DIFF2 (I1,TS) AS DIFF2_I1TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF2_I1TS

 ?
 ?
 -.000231
 -.000031
 .000191

--- 5 row(s) selected.

340 SQL Functions and Expressions

EXP Function
This function returns the exponential value (to the base e) of a numeric value expression.
EXP is a Trafodion SQL extension.
EXP (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the EXP function.
See “Numeric Value Expressions” (page 218).
The minimum input value must be between -744.4400719 and -744.4400720.
The maximum input value must be between 709.78271289338404 and
709.78271289338405.

Examples of EXP
• This function returns the value 3.49034295746184128E+000, or approximately 3.4903:

EXP (1.25)

• This function returns the value 2.0. The function EXP is the inverse of the function LOG:
EXP (LOG(2.0))

EXP Function 341

EXPLAIN Function
• “Considerations for EXPLAIN Function”

• “Examples of EXPLAIN Function”
The EXPLAIN function is a table-valued stored function that generates a result table describing an
access plan for a SELECT, INSERT, DELETE, or UPDATE statement. See “Result of the EXPLAIN
Function” (page 343).
The EXPLAIN function can be specified as a table reference (table) in the FROM clause of a
SELECT statement if it is preceded by the keyword TABLE and surrounded by parentheses.
For information on the EXPLAIN statement, see “EXPLAIN Statement” (page 101).
EXPLAIN (module,'statement-pattern')

module is:
 'module-name' | NULL

'module-name'
Reserved for future use.
The module name is enclosed in single quotes and is case-sensitive. If a module name is
uppercase, the value you specify within single quotes must be uppercase. For example:
'MYCAT.MYSCH.MYPROG'

NULL
explains statements prepared in the session.

'statement-pattern'
A statement pattern is enclosed in single quotes and is case-sensitive. The statement name must
be in uppercase, unless you delimit the statement name in a PREPARE statement.

Considerations for EXPLAIN Function

Using a Statement Pattern
Using a statement pattern is analogous to using a LIKE pattern. You can use the LIKE pattern in the
following ways:
select * from table (explain(NULL,'S%'));
select * from table (explain(NULL,'S1'));
select * from table (explain(NULL,'%1'));

However, you cannot use the LIKE pattern in this way:
SELECT * FROM TABLE (EXPLAIN (NULL, '%'))

This statement returns the EXPLAIN result for all prepared statements whose names begin with the
uppercase letter 'S':
SELECT * FROM TABLE (EXPLAIN (NULL,'S%'))

If the statement pattern does not find any matching statement names, no rows are returned as the
result of the SELECT statement.

Obtaining an EXPLAIN Plan While Queries Are Running
Trafodion SQL provides the ability to capture an EXPLAIN plan for a query at any time while the
query is running with the QID option. By default, this behavior is disabled for a Trafodion session.

NOTE: Enable this feature before you start preparing and executing queries.

After this feature is enabled, use the following syntax in an EXPLAIN function to get the query
execution plan of a running query:
SELECT * FROM TABLE (EXPLAIN(NULL, 'QID=qid'))

qid is a case-sensitive identifier, which represents the query ID. For example:

342 SQL Functions and Expressions

'QID=MXID01001011194212103659400053369000000085905admin00_2605_S1'

The EXPLAIN function or statement returns the plan that was generated when the query was
prepared. EXPLAIN for QID retrieves all the information from the original plan of the executing
query. The plan is available until the query finishes executing and is removed or deallocated.

Result of the EXPLAIN Function
The result table of the EXPLAIN function describes the access plans for SELECT, INSERT, DELETE,
or UPDATE statements.
In this description of the result of the EXPLAIN function, an operator tree is a structure that represents
operators used in an access plan as nodes, with at most one parent node for each node in the
tree, and with only one root node.
A node of an operator tree is a point in the tree that represents an event (involving an operator)
in a plan. Each node might have subordinate nodes—that is, each event might generate a
subordinate event or events in the plan.

DescriptionData TypeColumn Name

Reserved for future use.CHAR(60)MODULE_NAME

Statement name; truncated on the right if longer than 60
characters.

CHAR(60)STATEMENT_ NAME

Unique system-generated plan ID automatically assigned
by Trafodion SQL; generated at compile time.

LARGEINTPLAN_ID

Sequence number of the current operator in the operator
tree; indicates the sequence in which the operator tree is
generated.

INTSEQ_NUM

Current operator type.CHAR(30)OPERATOR

Sequence number for the first child operator of the current
operator; null if node has no child operators.

INTLEFT_CHILD_ SEQ_NUM

Sequence number for the second child operator of the
current operator; null if node does not have a second
child.

INTRIGHT_CHILD_ SEQ_NUM

For operators in scan group, full name of base table,
truncated on the right if too long for column. If correlation

CHAR(60)TNAME

name differs from table name, simple correlation name
first and then table name in parentheses.

Estimated number of rows that will be returned by the
current operator. Cardinality appears as

REALCARDINALITY

ROWS/REQUEST in some forms of EXPLAIN output. For
the right child of a nested join, multiply the cardinality by
the number of requests to get the total number of rows
produced by this operator.

Estimated cost associated with the current operator to
execute the operator.

REALOPERATOR_COST

Estimated cost associated with the current operator to
execute the operator, including the cost of all subtrees in
the operator tree.

REALTOTAL_COST

Cost vector of five items, described in the next table.VARCHAR (200)DETAIL_COST

Additional information about the operator.VARCHAR (3000)DESCRIPTION

EXPLAIN Function 343

The DETAIL_COST column of the EXPLAIN function results contains these cost factors:

An estimate of the number of seconds of processor time it might take to execute the
instructions for this operator. A value of 1.0 is 1 second.

CPU_TIME

An estimate of the number of seconds of I/O time (seeks plus data transfer) to perform
the I/O for this operator.

IO_TIME

An estimate of the number of seconds it takes for the messaging for this operator.
The estimate includes the time for the number of local and remote messages and the
amount of data sent.

MSG_TIME

An estimate of the number of seconds to wait for an event to happen. The estimate
includes the amount of time to open a table or start an ESP process.

IDLETIME

The number of times the operator will be executed. Usually, this value is 1, but it can
be greater when you have, for example, an inner scan of a nested-loop join.

PROBES

Examples of EXPLAIN Function
Display the specified columns in the result table of the EXPLAIN function for the prepared statement
REGION:
>>select seq_num, operator, operator_cost from table (explain (null, 'REG'));

SEQ_NUM OPERATOR OPERATOR_COST
----------- ------------------------------ ---------------
 1 TRAFODION_SCAN 0.43691027
 2 ROOT 0.0

--- 2 row(s) selected.
>>log;

The example displays only part of the result table of the EXPLAIN function. It first uses the EXPLAIN
function to generate the table and then selects the desired columns.

344 SQL Functions and Expressions

EXTRACT Function
The EXTRACT function extracts a datetime field from a datetime or interval value expression. It
returns an exact numeric value.
EXTRACT (datetime-field FROM extract-source)

datetime-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

extract-source is:
 datetime-expression | interval-expression

See “Datetime Value Expressions” (page 212) and “Interval Value Expressions” (page 215).

Examples of EXTRACT
• Extract the year from a DATE value:

EXTRACT (YEAR FROM DATE '2007-09-28')

The result is 2007.

• Extract the year from an INTERVAL value:
EXTRACT (YEAR FROM INTERVAL '01-09' YEAR TO MONTH)

The result is 1.

EXTRACT Function 345

FLOOR Function
The FLOOR function returns the largest integer, represented as a FLOAT data type, less than or
equal to a numeric value expression.
FLOOR is a Trafodion SQL extension.
FLOOR (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the FLOOR
function. See “Numeric Value Expressions” (page 218).

Examples of FLOOR
This function returns the integer value 2.00000000000000000E+000, represented as a FLOAT
data type:
FLOOR (2.25)

346 SQL Functions and Expressions

HOUR Function
The HOUR function converts a TIME or TIMESTAMP expression into an INTEGER value in the range
0 through 23 that represents the corresponding hour of the day.
HOUR is a Trafodion SQL extension.
HOUR (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of HOUR
Return an integer that represents the hour of the day from the SHIP_TIMESTAMP column in the
PROJECT table:
SELECT start_date, ship_timestamp, HOUR(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2007-04-10 2007-04-21 08:15:00.000000 8

HOUR Function 347

INSERT Function
The INSERT function returns a character string where a specified number of characters within the
character string has been deleted, beginning at a specified start position, and where another
character string has been inserted at the start position. Every character, including multibyte
characters, is treated as one character.
INSERT is a Trafodion SQL extension.
INSERT (char-expr-1, start, length, char-expr-2)

char-expr-1, char-expr-2
are SQL character value expressions (of data type CHAR or VARCHAR) that specify two strings
of characters. The character string char-expr-2 is inserted into the character string
char-expr-1. See “Character Value Expressions” (page 211).

start

specifies the starting position start within char-expr-1 at which to start deleting length
number of characters. After the deletion, the character string char-expr-2 is inserted into
the character string char-expr-1, beginning at the start position specified by the number
start. The number start must be a value greater than zero of exact numeric data type and
with a scale of zero.

length

specifies the number of characters to delete from char-expr-1. The number length must
be a value greater than or equal to zero of exact numeric data type and with a scale of zero.
length must be less than or equal to the length of char-expr-1.

Examples of INSERT
Suppose that your JOB table includes an entry for a sales representative. Use the INSERT function
to change SALESREP to SALES REP:
UPDATE persnl.job
SET jobdesc = INSERT (jobdesc, 6, 3, ' REP')
WHERE jobdesc = 'SALESREP';

Now check the row you updated:
SELECT jobdesc FROM persnl.job
WHERE jobdesc = 'SALES REP';

Job Description

SALES REP

--- 1 row(s) selected.

348 SQL Functions and Expressions

ISNULL Function
The ISNULL function returns the value of the first argument if it is not null, otherwise it returns the
value of the second argument. Both expressions must be of comparable types.
ISNULL is a Trafodion SQL extension.
ISNULL(ck_expr, repl_value)

ck_expr

an expression of any valid SQL data type.
repl_value

an expression of any valid SQL data type, but must be a comparable type with that of ck_expr.

Examples of ISNULL
• This function returns a 0 instead of a null if value is null.

ISNULL(value,0)

• This function returns the date constant if date_col is null.
ISNULL(date_col, DATE '2006-01-01')

• This function returns 'Smith' if the string column last_name is null.
ISNULL(last_name, 'Smith')

ISNULL Function 349

JULIANTIMESTAMP Function
The JULIANTIMESTAMP function converts a datetime value into a 64-bit Julian timestamp value
that represents the number of microseconds that have elapsed between 4713 B.C., January 1,
00:00, and the specified datetime value. JULIANTIMESTAMP returns a value of data type LARGEINT.
The function is evaluated once when the query starts execution and is not reevaluated (even if it is
a long running query).
JULIANTIMESTAMP is a Trafodion SQL extension.
JULIANTIMESTAMP (datetime-expression)

datetime-expression

is an expression that evaluates to a value of type DATE, TIME, or TIMESTAMP. If
datetime-expression does not contain all the fields from YEAR through SECOND, Trafodion
SQL extends the value before converting it to a Julian timestamp. Datetime fields to the left of
the specified datetime value are set to current date fields. Datetime fields to the right of the
specified datetime value are set to zero. See “Datetime Value Expressions” (page 212).

Considerations for JULIANTIMESTAMP
The datetime-expression value must be a date or timestamp value from the beginning of
year 0001 to the end of year 9999.

Examples of JULIANTIMESTAMP
The PROJECT table consists of five columns using the data types NUMERIC, VARCHAR, DATE,
TIMESTAMP, and INTERVAL.

• Convert the TIMESTAMP value into a Julian timestamp representation:
SELECT ship_timestamp, JULIANTIMESTAMP (ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

SHIP_TIMESTAMP (EXPR)
-------------------------- --------------------
2008-04-21 08:15:00.000000 212075525700000000

--- 1 row(s) selected.

• Convert the DATE value into a Julian timestamp representation:
SELECT start_date, JULIANTIMESTAMP (start_date)
FROM persnl.project
WHERE projcode = 1000;

START_DATE (EXPR)
---------- --------------------
2008-04-10 212074545600000000

--- 1 row(s) selected.

350 SQL Functions and Expressions

LASTNOTNULL Function
The LASTNOTNULL function is a sequence function that returns the last nonnull value of a column
in an intermediate result table ordered by a SEQUENCE BY clause in a SELECT statement. See
“SEQUENCE BY Clause” (page 268).
LASTNOTNULL is a Trafodion SQL extension.
LASTNOTNULL (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression. If only null
values have been returned, LASTNOTNULL returns null.

Example of LASTNOTNULL
Return the last nonnull value of a column:
SELECT LASTNOTNULL (I1) AS LASTNOTNULL
FROM mining.seqfcn SEQUENCE BY TS;

LASTNOTNULL

 6215
 6215
 19058
 19058
 11966

--- 5 row(s) selected.

LASTNOTNULL Function 351

LCASE Function
The LCASE function downshifts alphanumeric characters. For non-alphanumeric characters, LCASE
returns the same character. LCASE can appear anywhere in a query where a value can be used,
such as in a select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or as qualifying a new value in an UPDATE or INSERT statement. The result returned
by the LCASE function is equal to the result returned by the “LOWER Function” (page 357).
LCASE returns a string of fixed-length or variable-length character data, depending on the data
type of the input string.
LCASE is a Trafodion SQL extension.
LCASE (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters to downshift. See
“Character Value Expressions” (page 211).

Example of LCASE
Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select the column
CUSTNAME and return in uppercase and lowercase letters by using the UCASE and LCASE
functions:
SELECT custname,UCASE(custname),LCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See “UCASE Function” (page 422).

352 SQL Functions and Expressions

LEFT Function
The LEFT function returns the leftmost specified number of characters from a character expression.
Every character, including multibyte characters, is treated as one character.
LEFT is a Trafodion SQL extension.
LEFT (character-expr, count)

character-expr

specifies the source string from which to return the leftmost specified number of characters. The
source string is an SQL character value expression. The operand is the result of evaluating
character-expr. See “Character Value Expressions” (page 211).

count

specifies the number of characters to return from character-expr. The number count must
be a value of exact numeric data type greater than or equal to 0 with a scale of zero.

Examples of LEFT
• Return 'Robert':

LEFT ('Robert John Smith', 6)

• Use the LEFT function to append the company name to the job descriptions:
UPDATE persnl.job
SET jobdesc = LEFT (jobdesc, 11) ||' COMNET';

SELECT jobdesc FROM persnl.job;

Job Description

MANAGER COMNET
PRODUCTION COMNET
ASSEMBLER COMNET
SALESREP COMNET
SYSTEM ANAL COMNET
ENGINEER COMNET
PROGRAMMER COMNET
ACCOUNTANT COMNET
ADMINISTRAT COMNET
SECRETARY COMNET

--- 10 row(s) selected.

LEFT Function 353

LOCATE Function
The LOCATE function searches for a given substring in a character string. If the substring is found,
Trafodion SQL returns the character position of the substring within the string. Every character,
including multibyte characters, is treated as one character. The result returned by the LOCATE
function is equal to the result returned by the “POSITION Function” (page 381).
LOCATE is a Trafodion SQL extension.
LOCATE (substring-expression,source-expression)

substring-expression

is an SQL character value expression that specifies the substring to search for in
source-expression. The substring-expression cannot be NULL. See “Character
Value Expressions” (page 211).

source-expression

is an SQL character value expression that specifies the source string. The source-expression
cannot be NULL. See “Character Value Expressions” (page 211).

Trafodion SQL returns the result as a 2-byte signed integer with a scale of zero. If
substring-expression is not found in source-expression, Trafodion SQL returns 0.

Considerations for LOCATE

Result of LOCATE
If the length of source-expression is zero and the length of substring-expression is
greater than zero, Trafodion SQL returns 0. If the length of substring-expression is zero,
Trafodion SQL returns 1.
If the length of substring-expression is greater than the length of source-expression,
Trafodion SQL returns 0. If source-expression is a null value, Trafodion SQL returns a null
value.

Using UCASE
To ignore case in the search, use the UCASE function (or the LCASE function) for both the
substring-expression and the source-expression.

Examples of LOCATE
• Return the value 8 for the position of the substring ‘John’ within the string:

LOCATE ('John','Robert John Smith')

• Suppose that the EMPLOYEE table has an EMPNAME column that contains both the first and
last names. This SELECT statement returns all records in table EMPLOYEE that contain the
substring 'SMITH', regardless of whether the column value is in uppercase or lowercase
characters:
SELECT * FROM persnl.employee
 WHERE LOCATE ('SMITH',UCASE(empname)) > 0 ;

354 SQL Functions and Expressions

LOG Function
The LOG function returns the natural logarithm of a numeric value expression.
LOG is a Trafodion SQL extension.
LOG (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the LOG function.
The value of the argument must be greater than zero. See “Numeric Value Expressions”
(page 218).

Example of LOG
This function returns the value 6.93147180559945344E-001, or approximately 0.69315:
LOG (2.0)

LOG Function 355

LOG10 Function
The LOG10 function returns the base 10 logarithm of a numeric value expression.
LOG10 is a Trafodion SQL extension.
LOG10 (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the LOG10
function. The value of the argument must be greater than zero. See “Numeric Value Expressions”
(page 218).

Example of LOG10
This function returns the value 1.39794000867203776E+000, or approximately 1.3979:
LOG10 (25)

356 SQL Functions and Expressions

LOWER Function
• “Considerations for LOWER”

• “Example of LOWER”
The LOWER function downshifts alphanumeric characters. For non-alphanumeric characters, LOWER
returns the same character. LOWER can appear anywhere in a query where a value can be used,
such as in a select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or as qualifying a new value in an UPDATE or INSERT statement. The result returned
by the LOWER function is equal to the result returned by the “LCASE Function” (page 352).
LOWER returns a string of fixed-length or variable-length character data, depending on the data
type of the input string.
LOWER (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters to downshift. See
“Character Value Expressions” (page 211).

Considerations for LOWER
For a UTF8 character expression, the LOWER function downshifts all the uppercase or title case
characters in a given string to lowercase and returns a character string with the same data type
and character set as the argument.
A lower case character is a character that has the “alphabetic” property in Unicode Standard 2
whose Unicode name includes lower. An uppercase character is a character that has the
“alphabetic” property in the Unicode Standard 2 and whose Unicode name includes upper. A
title case character is a character that has the Unicode “alphabetic” property and whose Unicode
name includes title.

Example of LOWER
Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select the column
CUSTNAME and return the result in uppercase and lowercase letters by using the UPPER and
LOWER functions:
SELECT custname,UPPER(custname),LOWER(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See “UPPER Function” (page 423).

LOWER Function 357

LPAD Function
The LPAD function pads the left side of a string with the specified string. Every character in the
string, including multibyte characters, is treated as one character.
LPAD is a Trafodion SQL extension.
LPAD (str, len [,padstr])

str

can be an expression. See “Character Value Expressions” (page 211).
len

identifies the desired number of characters to be returned and can be an expression but must
be an integral value. If len is equal to the length of the string, no change is made. If len is
smaller than the string size, the string is truncated.

pad-character

can be an expression and may be a string.

Examples of LPAD
• This function returns ' kite':

lpad('kite', 7)

• This function returns 'ki':
lpad('kite', 2)

• This function returns '0000kite':
lpad('kite', 8, '0')

• This function returns 'go fly a kite':
lpad('go fly a kite', 13, 'z')

• This function returns 'John,John, go fly a kite'':
lpad('go fly a kite', 23, 'John,')

358 SQL Functions and Expressions

LTRIM Function
The LTRIM function removes leading spaces from a character string. If you must remove any leading
character other than space, use the TRIM function and specify the value of the character. See
the“TRIM Function” (page 421).
LTRIM is a Trafodion SQL extension.
LTRIM (character-expression)

character-expression

is an SQL character value expression and specifies the string from which to trim leading spaces.
See “Character Value Expressions” (page 211).

Considerations for LTRIM

Result of LTRIM
The result is always of type VARCHAR, with maximum length equal to the fixed length or maximum
variable length of character-expression.

Example of LTRIM
Return 'Robert_____ ':
LTRIM (' Robert ')

See “TRIM Function” (page 421) and “RTRIM Function” (page 396).

LTRIM Function 359

MAX/MAXIMUM Function
MAX is an aggregate function that returns the maximum value within a set of values. MAXIMUM
is the equivalent of MAX wherever the function name MAX appears within a statement. The data
type of the result is the same as the data type of the argument.
MAX | MAXIMUM ([ALL | DISTINCT] expression)

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the maximum of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the MAX/MAXIMUM function is
applied.

expression

specifies an expression that determines the values to include in the computation of the maximum.
The expression cannot contain an aggregate function or a subquery. The DISTINCT clause
specifies that the MAX/MAXIMUM function operates on distinct values from the one-column
table derived from the evaluation of expression. All nulls are eliminated before the function
is applied to the set of values. If the result table is empty, MAX/MAXIMUM returns NULL.
See “Expressions” (page 211).

Considerations for MAX/MAXIMUM

Operands of the Expression
The expression includes columns from the rows of the SELECT result table but cannot include an
aggregate function. These expressions are valid:
MAX (SALARY)
MAX (SALARY * 1.1)
MAX (PARTCOST * QTY_ORDERED)

Example of MAX/MAXIMUM
Display the maximum value in the SALARY column:
SELECT MAX (salary)
FROM persnl.employee;

(EXPR)

 175500.00

--- 1 row(s) selected.

360 SQL Functions and Expressions

MIN Function
MIN is an aggregate function that returns the minimum value within a set of values. The data type
of the result is the same as the data type of the argument.
MIN ([ALL | DISTINCT] expression)

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the minimum of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the MIN function is applied.

expression

specifies an expression that determines the values to include in the computation of the minimum.
The expression cannot contain an aggregate function or a subquery. The DISTINCT clause
specifies that the MIN function operates on distinct values from the one-column table derived
from the evaluation of expression. All nulls are eliminated before the function is applied to
the set of values. If the result table is empty, MIN returns NULL.
See “Expressions” (page 211).

Considerations for MIN

Operands of the Expression
The expression includes columns from the rows of the SELECT result table—but cannot include an
aggregate function. These expressions are valid:
MIN (SALARY)
MIN (SALARY * 1.1)
MIN (PARTCOST * QTY_ORDERED)

Example of MIN
Display the minimum value in the SALARY column:
SELECT MIN (salary)
FROM persnl.employee;

(EXPR)

 17000.00

--- 1 row(s) selected.

MIN Function 361

MINUTE Function
The MINUTE function converts a TIME or TIMESTAMP expression into an INTEGER value, in the
range 0 through 59, that represents the corresponding minute of the hour.
MINUTE is a Trafodion SQL extension.
MINUTE (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of MINUTE
Return an integer that represents the minute of the hour from the SHIP_TIMESTAMP column in the
PROJECT table:
SELECT start_date, ship_timestamp, MINUTE(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 15

362 SQL Functions and Expressions

MOD Function
The MOD function returns the remainder (modulus) of an integer value expression divided by an
integer value expression.
MOD is a Trafodion SQL extension.
MOD (integer-expression-1,integer-expression-2)

integer-expression-1

is an SQL numeric value expression of data type SMALLINT, INTEGER, or LARGEINT that
specifies the value for the dividend argument of the MOD function.

integer-expression-2

is an SQL numeric value expression of data type SMALLINT, INTEGER, or LARGEINT that
specifies the value for the divisor argument of the MOD function. The divisor argument cannot
be zero.

See “Numeric Value Expressions” (page 218).

Example of MOD
This function returns the value 2 as the remainder or modulus:
MOD (11,3)

MOD Function 363

MONTH Function
The MONTH function converts a DATE or TIMESTAMP expression into an INTEGER value in the
range 1 through 12 that represents the corresponding month of the year.
MONTH is a Trafodion SQL extension.
MONTH (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of MONTH
Return an integer that represents the month of the year from the START_DATE column in the PROJECT
table:
SELECT start_date, ship_timestamp, MONTH(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 4

364 SQL Functions and Expressions

MONTHNAME Function
The MONTHNAME function converts a DATE or TIMESTAMP expression into a character literal
that is the name of the month of the year (January, February, and so on).
MONTHNAME is a Trafodion SQL extension.
MONTHNAME (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Considerations for MONTHNAME
The MONTHNAME function returns the name of the month in ISO8859-1.

Example of MONTHNAME
Return a character literal that is the month of the year from the START_DATE column in the PROJECT
table:
SELECT start_date, ship_timestamp, MONTHNAME(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ---------
2008-04-10 2008-04-21 08:15:00.000000 April

MONTHNAME Function 365

MOVINGAVG Function
The MOVINGAVG function is a sequence function that returns the average of nonnull values of a
column in the current window of an intermediate result table ordered by a SEQUENCE BY clause
in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGAVG is a Trafodion SQL extension.
MOVINGAVG (column-expression,integer-expression [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGAVG returns the same result as RUNNINGAVG:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGAVG
Return the average of nonnull values of a column in the current window of three rows:
create table db.mining.seqfcn (I1 integer, ts timestamp);
SELECT MOVINGAVG (I1,3) AS MOVINGAVG3
FROM mining.seqfcn
SEQUENCE BY TS;

I1 TS
6215 TIMESTAMP ‘1950-03-05 08:32:09’
28174 TIMESTAMP ‘1951-02-15 14:35:49’
null TIMESTAMP ‘1955-05-18 08:40:10’
4597 TIMESTAMP ‘1960-09-19 14:40:39’
11966 TIMESTAMP ‘1964-05-01 16:41:02’

MOVINGAVG3

 6215
 17194
 17194
 16385
 8281

--- 5 row(s) selected.

366 SQL Functions and Expressions

MOVINGCOUNT Function
The MOVINGCOUNT function is a sequence function that returns the number of nonnull values of
a column in the current window of an intermediate result table ordered by a SEQUENCE BY clause
in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGCOUNT is a Trafodion SQL extension.
MOVINGCOUNT (column-expression,integer-expression [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGCOUNT returns the same result as RUNNINGCOUNT:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Considerations for MOVINGCOUNT
The MOVINGCOUNT sequence function is defined differently from the COUNT aggregate function.
If you specify DISTINCT for the COUNT aggregate function, duplicate values are eliminated before
COUNT is applied. You cannot specify DISTINCT for the MOVINGCOUNT sequence function;
duplicate values are counted.

Example of MOVINGCOUNT
Return the number of nonnull values of a column in the current window of three rows:
SELECT MOVINGCOUNT (I1,3) AS MOVINGCOUNT3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGCOUNT3

 1
 2
 2
 2
 2

--- 5 row(s) selected.

MOVINGCOUNT Function 367

MOVINGMAX Function
The MOVINGMAX function is a sequence function that returns the maximum of nonnull values of
a column in the current window of an intermediate result table ordered by a SEQUENCE BY clause
in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGMAX is a Trafodion SQL extension.
MOVINGMAX (column-expression,integer-expression [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGMAX returns the same result as RUNNINGMAX:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGMAX
Return the maximum of nonnull values of a column in the current window of three rows:
SELECT MOVINGMAX (I1,3) AS MOVINGMAX3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGMAX3

 6215
 28174
 28174
 28174
 11966

--- 5 row(s) selected.

368 SQL Functions and Expressions

MOVINGMIN Function
The MOVINGMIN function is a sequence function that returns the minimum of nonnull values of a
column in the current window of an intermediate result table ordered by a SEQUENCE BY clause
in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGMIN is a Trafodion SQL extension.
MOVINGMIN (column-expression,integer-expression [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGMIN returns the same result as RUNNINGMIN:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGMIN
Return the minimum of nonnull values of a column in the current window of three rows:
SELECT MOVINGMIN (I1,3) AS MOVINGMIN3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGMIN3

 6215
 6215
 6215
 4597
 4597

--- 5 row(s) selected.

MOVINGMIN Function 369

MOVINGSTDDEV Function
The MOVINGSTDDEV function is a sequence function that returns the standard deviation of nonnull
values of a column in the current window of an intermediate result table ordered by a SEQUENCE
BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGSTDDEV is a Trafodion SQL extension.
MOVINGSTDDEV (column-expression,integer-expression
 [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGSTDDEV returns the same result as RUNNINGSTDDEV:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGSTDDEV
Return the standard deviation of nonnull values of a column in the current window of three rows:
SELECT MOVINGSTDDEV (I1,3) AS MOVINGSTDDEV3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGSTDDEV3

 0.00000000000000000E+000
 1.55273578080753976E+004
 1.48020166531456112E+004
 1.51150124820766640E+004
 6.03627542446499008E+003

--- 5 row(s) selected.

You can use the CAST function for display purposes. For example:
SELECT CAST(MOVINGSTDDEV (I1,3) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

370 SQL Functions and Expressions

 .000
 15527.357
 14802.016
 15115.012
 6036.275

--- 5 row(s) selected.

MOVINGSTDDEV Function 371

MOVINGSUM Function
The MOVINGSUM function is a sequence function that returns the sum of nonnull values of a
column in the current window of an intermediate result table ordered by a SEQUENCE BY clause
in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGSUM is a Trafodion SQL extension.
MOVINGSUM (column-expression,integer-expression [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGSUM returns the same result as RUNNINGSUM:

The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGSUM
Return the sum of nonnull values of a column in the current window of three rows:
SELECT MOVINGSUM (I1,3) AS MOVINGSUM3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGSUM3

 6215
 34389
 34389
 32771
 16563

--- 5 row(s) selected.

372 SQL Functions and Expressions

MOVINGVARIANCE Function
The MOVINGVARIANCE function is a sequence function that returns the variance of nonnull values
of a column in the current window of an intermediate result table ordered by a SEQUENCE BY
clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
MOVINGVARIANCE is a Trafodion SQL extension.
MOVINGVARIANCE (column-expression,integer-expression
 [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the current window. The current window is defined as the current row and the previous
(integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows in the current window.
Note these considerations for the window size:

• The actual value for the window size is the minimum of integer-expression and
max-rows.

• If these conditions are met, MOVINGVARIANCE returns the same result as
RUNNINGVARIANCE:

◦ The integer-expression is out of range, and max-rows is not specified. This
condition includes the case in which both integer-expression and max-rows
are larger than the result table.

◦ The minimum of integer-expression and max-rows is out of range. In this case,
integer-expression could be within range, but max-rows might be the minimum
value of the two and be out of range (for example, a negative number).

• The number of rows is out of range if it is larger than the size of the result table, negative,
or NULL.

Example of MOVINGVARIANCE
Return the variance of nonnull values of a column in the current window of three rows:
SELECT MOVINGVARIANCE (I1,3) AS MOVINGVARIANCE3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGVARIANCE3

 0.00000000000000000E+000
 2.41098840499999960E+008
 2.19099696999999968E+008
 2.28463602333333304E+008
 3.64366210000000016E+007

--- 5 row(s) selected.

You can use the CAST function for display purposes. For example:
SELECT CAST(MOVINGVARIANCE (I1,3) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

MOVINGVARIANCE Function 373

 .000
 241098840.500
 219099697.000
 228463602.333
 36436621.000

--- 5 row(s) selected.

374 SQL Functions and Expressions

NULLIF Function
The NULLIF function compares the value of two expressions. Both expressions must be of comparable
types. The return value is NULL when the two expressions are equal. Otherwise, the return value
is the value of the first expression.
NULLIF(expr1, expr2)

expr1

an expression to be compared.
expr2

an expression to be compared.
The NULLIF(expr1, expr2) is equivalent to:
CASE WHEN expr1 = expr2
 THEN NULL
 ELSE expr1
END

NULLIF returns a NULL if both arguments are equal. The return value is the value of the first argument
when the two expressions are not equal.

Example of NULLIF
This function returns a null if the value is equal to 7. The return value is the value of the first
argument when that value is not 7.
NULLIF(value,7)

NULLIF Function 375

NULLIFZERO Function
The NULLIFZERO function returns the value of the expression if that value is not zero. It returns
NULL if the value of the expression is zero.
NULLIFZERO (expression)

expression

specifies a value expression. It must be a numeric data type.

Examples of NULLIFZERO
• This function returns the value of the column named salary for each row where the column’s

value is not zero. It returns a NULL for each row where the column’s value is zero.
SELECT NULLIFZERO (salary) from employee_tab;

• This function returns a value of 1 for each row of the table:
SELECT NULLIFZERO(1) from employee_tab;

• This function returns a value of NULL for each row of the table:
SELECT NULLIFZERO(0) from employee_tab;

376 SQL Functions and Expressions

NVL Function
The NVL function determines if the selected column has a null value and then returns the new-operand
value; otherwise the operand value is returned.
NVL (operand, new-operand)

operand

specifies a value expression.
new-operand

specifies a value expression. operand and new-operand must be comparable data types.
If operand is a null value, NVL returns new-operand.
If operand is not a null value, NVL returns operand.
The operand and new-operand can be a column name, subquery, Trafodion SQL string functions,
math functions, or constant values.

Examples of NVL
• This function returns a value of z:

select nvl(cast(null as char(1)), ‘z’) from (values(1)) x(a);
(EXPR)

"z"
--- 1 row(s) selected.

• This function returns a value of 1:
select nvl(1, 2) from (values(0)) x(a)
(EXPR)

 1

--- 1 row(s) selected.

• This function returns a value of 9999999 for the null value in the column named a1:
select nvl(a1, 9999999) from t1;
(EXPR)

 123
 34
9999999

--- 3 row(s) selected.

select * from t1;
A1

 123
 34
 ?

--- 3 row(s) selected.

NVL Function 377

OCTET_LENGTH Function
The OCTET_LENGTH function returns the length of a character string in bytes.
OCTET_LENGTH (string-value-expression)

string-value-expression

specifies the string value expression for which to return the length in bytes. Trafodion SQL
returns the result as a 2-byte signed integer with a scale of zero. If
string-value-expression is null, Trafodion SQL returns a length of zero. See “Character
Value Expressions” (page 211).

Considerations for OCTET_LENGTH

CHAR and VARCHAR Operands
For a column declared as fixed CHAR, Trafodion SQL returns the length of that column as the
maximum number of storage bytes. For a VARCHAR column, Trafodion SQL returns the length of
the string stored in that column as the actual number of storage bytes.

Similarity to CHAR_LENGTH Function
The OCTET_LENGTH and CHAR_LENGTH functions are similar. The OCTET_LENGTH function
returns the number of bytes, rather than the number of characters, in the string. This distinction is
important for multibyte implementations. For an example of selecting a double-byte column, see
“Example of OCTET_LENGTH” (page 378).

Example of OCTET_LENGTH
If a character string is stored as two bytes for each character, this function returns the value 12.
Otherwise, the function returns 6:
OCTET_LENGTH ('Robert')

378 SQL Functions and Expressions

OFFSET Function
The OFFSET function is a sequence function that retrieves columns from previous rows of an
intermediate result table ordered by a SEQUENCE BY clause in a SELECT statement. See
“SEQUENCE BY Clause” (page 268). OFFSET is a Trafodion SQL extension.
OFFSET (column-expression,number-rows [,max-rows])

column-expression

specifies a derived column determined by the evaluation of the column expression.
number-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the offset as the number of rows from the current row. If the number of rows exceeds max-rows,
OFFSET returns OFFSET(column-expression,max-rows). If the number of rows is out of
range and max-rows is not specified or is out of range, OFFSET returns null. The number of
rows is out of range if it is larger than the size of the result table, negative, or NULL.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows of the offset.

Example of OFFSET
Retrieve the I1 column offset by three rows:
SELECT OFFSET (I1,3) AS OFFSET3
FROM mining.seqfcn
SEQUENCE BY TS;

OFFSET3

 ?
 ?
 ?
 6215
 28174

--- 5 row(s) selected.

The first three rows retrieved display null because the offset from the current row does not fall within
the result table.

OFFSET Function 379

PI Function
The PI function returns the constant value of pi as a floating-point value.
PI is a Trafodion SQL extension.
PI()

Example of PI
This constant function returns the value 3.14159260000000000E+000:
PI()

380 SQL Functions and Expressions

POSITION Function
The POSITION function searches for a given substring in a character string. If the substring is found,
Trafodion SQL returns the character position of the substring within the string. Every character,
including multibyte characters, is treated as one character. The result returned by the POSITION
function is equal to the result returned by the “LOCATE Function” (page 354).
POSITION (substring-expression IN source-expression)

substring-expression

is an SQL character value expression that specifies the substring to search for in
source-expression. The substring-expression cannot be NULL. See “Character
Value Expressions” (page 211).

source-expression

is an SQL character value expression that specifies the source string. The source-expression
cannot be NULL. See “Character Value Expressions” (page 211).

Trafodion SQL returns the result as a 2-byte signed integer with a scale of zero. If
substring-expression is not found in source-expression, Trafodion SQL returns zero.

Considerations for POSITION

Result of POSITION
If the length of source-expression is zero and the length of substring-expression is
greater than zero, Trafodion SQL returns 0. If the length of substring-expression is zero,
Trafodion SQL returns 1.
If the length of substring-expression is greater than the length of source-expression,
Trafodion SQL returns zero. If source-expression is a null value, Trafodion SQL returns a null
value.

Using the UPSHIFT Function
To ignore case in the search, use the UPSHIFT function (or the LOWER function) for both the
substring-expression and the source-expression.

Examples of POSITION
• This function returns the value 8 for the position of the substring ‘John’ within the string:

POSITION ('John' IN 'Robert John Smith')

• Suppose that the EMPLOYEE table has an EMPNAME column that contains both the first and
last names. Return all records in table EMPLOYEE that contain the substring 'Smith' regardless
of whether the column value is in uppercase or lowercase characters:
SELECT * FROM persnl.employee
 WHERE POSITION ('SMITH' IN UPSHIFT(empname)) > 0 ;

POSITION Function 381

POWER Function
The POWER function returns the value of a numeric value expression raised to the power of an
integer value expression. You can also use the exponential operator **.
POWER is a Trafodion SQL extension.
POWER (numeric-expression-1,numeric-expression-2)

numeric-expression-1, numeric-expression-2
are SQL numeric value expressions that specify the values for the base and exponent arguments
of the POWER function. See “Numeric Value Expressions” (page 218).
If base numeric-expression-1 is zero, the exponent numeric-expression-2 must be
greater than zero, and the result is zero. If the exponent is zero, the base cannot be 0, and
the result is 1. If the base is negative, the exponent must be a value with an exact numeric data
type and a scale of zero.

Examples of POWER
• Return the value 15.625:

POWER (2.5,3)

• Return the value 27. The function POWER raised to the power of 2 is the inverse of the function
SQRT:
POWER (SQRT(27),2)

382 SQL Functions and Expressions

QUARTER Function
The QUARTER function converts a DATE or TIMESTAMP expression into an INTEGER value in the
range 1 through 4 that represents the corresponding quarter of the year. Quarter 1 represents
January 1 through March 31, and so on.
QUARTER is a Trafodion SQL extension.
QUARTER (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of QUARTER
Return an integer that represents the quarter of the year from the START_DATE column in the
PROJECT table:
SELECT start_date, ship_timestamp, QUARTER(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 2

QUARTER Function 383

RADIANS Function
The RADIANS function converts a numeric value expression (expressed in degrees) to the number
of radians.
RADIANS is a Trafodion SQL extension.
RADIANS (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the RADIANS
function. See “Numeric Value Expressions” (page 218).

Examples of RADIANS
• Return the value 7.85398150000000000E-001, or approximately 0.78540 in degrees:

RADIANS (45)

• Return the value 45 in degrees. The function DEGREES is the inverse of the function RADIANS.
DEGREES (RADIANS (45))

384 SQL Functions and Expressions

RANK/RUNNINGRANK Function
The RANK/RUNNINGRANK function is a sequence function that returns the rank of the given value
of an intermediate result table ordered by a SEQUENCE BY clause in a SELECT statement. RANK
is an alternative syntax for RANK/RUNNINGRANK.
RANK/RUNNINGRANK is a Trafodion extension.
RUNNINGRANK(expression) | RANK(expression)

expression

specifies the expression on which to perform the rank.
RANK/RUNNINGRANK returns the rank of the expression within the intermediate result table. The
definition of rank is as follows:
RANK = 1 for the first value of the intermediate result table.

= the previous value of RANK if the previous value of expression is the
same as the current value of expression.

= RUNNINGCOUNT(*) otherwise.

In other words, RANK starts at 1. Values that are equal have the same rank. The value of RANK
advances to the relative position of the row in the intermediate result when the value changes.

Considerations for RANK/RUNNINGRANK

Sequence Order Dependency
The RUNNINGRANK function is meaningful only when the given expression is the leading column
of the SEQUENCE BY clause. This is because the RUNNINGRANK function assumes that the values
of expression are in order and that like values are contiguous. If an ascending order is specified
for expression in the SEQUENCE BY clause, then the RUNNINGRANK function assigns a rank of
1 to the lowest value of expression. If a descending order is specified for expression in the
SEQUENCE BY clause, then the RUNNINGRANK function assigns a rank of 1 to the highest value
of expression.

NULL Values
For the purposes of RUNNINGRANK, NULL values are considered to be equal.

Examples of RANK/RUNNINGRANK
Suppose that SEQFCN has been created as:
CREATE TABLE cat.sch.seqfcn
(I1 INTEGER,I2 INTEGER);

The table SEQFCN has columns I1 and I2 with data:

I2I1

1001

2003

1004

2002

3005

null10

RANK/RUNNINGRANK Function 385

I2I1

null6

2008

• Return the rank of I1:
SELECT I1, RUNNINGRANK (I1) AS RANK

FROM cat.sch.seqfcn

SEQUENCE BY I1;

I1 RANK
----------- --------------------
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 8 7
 10 8

--- 8 row(s) selected.

• Return the rank of I1 descending:

SELECT I1, RUNNINGRANK (I1) AS RANK
FROM cat.sch.seqfcn
SEQUENCE BY I1 DESC;

I1 RANK

----------- --------------------

 10 1
 8 2
 6 3
 5 4
 4 5
 3 6
 2 7
 1 8

--- 8 row(s) selected.

• Return the rank of I2, using the alternative RANK syntax:
SELECT I2, RANK (I2) AS RANK
FROM cat.sch.seqfcn
SEQUENCE BY I2;

I2 RANK
----------- --------------------
 100 1
 100 1
 200 3
 200 3
 200 3
 300 6
 ? 7
 ? 7

386 SQL Functions and Expressions

--- 8 row(s) selected.

Notice that the two NULL values received the same rank.

• Return the rank of I2 descending, using the alternative RANK syntax:
SELECT I2, RANK (I2) AS RANK
FROM cat.sch.seqfcn
SEQUENCE BY I2 DESC;

I2 RANK
----------- --------------------
 ? 1
 ? 1
 300 3
 200 4
 200 4
 200 4
 100 7
 100 7

--- 8 row(s) selected.

• Return the rank of I2 descending, excluding NULL values:
SELECT I2, RANK (I2) AS RANK
FROM cat.sch.seqfcn
WHERE I2 IS NOT NULL
SEQUENCE BY I2 DESC;

I2 RANK
----------- --------------------
 300 1
 200 2
 200 2
 200 2
 100 5
 100 5
--- 6 row(s) selected.

RANK/RUNNINGRANK Function 387

REPEAT Function
The REPEAT function returns a character string composed of the evaluation of a character expression
repeated a specified number of times.
REPEAT is a Trafodion SQL extension.
REPEAT (character-expr, count)

character-expr

specifies the source string from which to return the specified number of repeated strings. The
source string is an SQL character value expression. The operand is the result of evaluating
character-expr. See “Character Value Expressions” (page 211).

count

specifies the number of times the source string character-expr is to be repeated. The number
count must be a value greater than or equal to zero of exact numeric data type and with a
scale of zero.

Example of REPEAT
Return this quote from Act 5, Scene 3, of King Lear:
REPEAT ('Never,', 5)

Never,Never,Never,Never,Never,

388 SQL Functions and Expressions

REPLACE Function
The REPLACE function returns a character string where all occurrences of a specified character
string in the original string are replaced with another character string. All three character value
expressions must be comparable types. The return value is the VARCHAR type.
REPLACE is a Trafodion SQL extension.
REPLACE (char-expr-1, char-expr-2, char-expr-3)

char-expr-1, char-expr-2, char-expr-3
are SQL character value expressions. The operands are the result of evaluating the character
expressions. All occurrences of char-expr-2 in char-expr-1 are replaced by
char-expr-3. See “Character Value Expressions” (page 211).

Example of REPLACE
Use the REPLACE function to change job descriptions so that occurrences of the company name
are updated:
SELECT jobdesc FROM persnl.job;

Job Description

MANAGER COMNET
PRODUCTION COMNET
ASSEMBLER COMNET
SALESREP COMNET
SYSTEM ANAL COMNET
...

--- 10 row(s) selected.

UPDATE persnl.job
SET jobdesc = REPLACE (jobdesc, 'COMNET', 'TDMNET');

Job Description

MANAGER TDMNET
PRODUCTION TDMNET
ASSEMBLER TDMNET
SALESREP TDMNET
SYSTEM ANAL TDMNET
...

--- 10 row(s) selected.

REPLACE Function 389

RIGHT Function
The RIGHT function returns the rightmost specified number of characters from a character expression.
Every character, including multibyte characters, is treated as one character.
RIGHT is a Trafodion SQL extension.
RIGHT (character-expr, count)

character-expr

specifies the source string from which to return the rightmost specified number of characters.
The source string is an SQL character value expression. The operand is the result of evaluating
character-expr. See “Character Value Expressions” (page 211).

count

specifies the number of characters to return from character-expr. The number count must
be a value of exact numeric data type with a scale of zero.

Examples of RIGHT
• Return 'Smith':

RIGHT ('Robert John Smith', 5)

• Suppose that a six-character company literal has been concatenated as the first six characters
to the job descriptions in the JOB table. Use the RIGHT function to remove the company literal
from the job descriptions:
UPDATE persnl.job
SET jobdesc = RIGHT (jobdesc, 12);

390 SQL Functions and Expressions

ROUND Function
The ROUND function returns the value of numeric_expr rounded to num places to the right of
the decimal point.
ROUND is a Trafodion SQL extension.
ROUND(numeric_expr [, num])

numeric_expr

is an SQL numeric value expression.
num

specifies the number of places to the right of the decimal point for rounding. If num is a negative
number, all places to the right of the decimal point and num places to the left of the decimal
point are zeroed. If num is not specified or is 0, then all places to the right of the decimal point
are zeroed.
For any exact numeric value, the value numeric_expr is rounded away from 0 (for example,
to x+1 when x.5 is positive and to x-1 when x.5 is negative). For the inexact numeric values
(real, float, and double) the value numeric_expr is rounded toward the nearest even number.

Examples of ROUND
• This function returns the value of 123.46.

ROUND(123.4567,2)

• This function returns the value of 123.

ROUND(123.4567,0)

• This function returns the value of 120.

ROUND(123.4567,-1)

• This function returns the value of 0.

ROUND(999.0,-4)

• This function returns the value of 1000.

ROUND(999.0.-3)

• This function returns the value of 2.0E+000.

ROUND(1.5E+000,0)

• This function returns the value of 2.0E+00.

ROUND(2.5E+000,0)

• This function returns the value of 1.0E+00.
ROUND(1.4E+000,0)

ROUND Function 391

ROWS SINCE Function
The ROWS SINCE function is a sequence function that returns the number of rows counted since
the specified condition was last true in the intermediate result table ordered by a SEQUENCE BY
clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
ROWS SINCE is a Trafodion SQL extension.
ROWS SINCE [INCLUSIVE] (condition [,max-rows])

INCLUSIVE
specifies the current row is to be considered. If you specify INCLUSIVE, the condition is evaluated
in the current row. Otherwise, the condition is evaluated beginning with the previous row. If
you specify INCLUSIVE and the condition is true in the current row, ROWS SINCE returns 0.

condition

specifies a condition to be considered for each row in the result table. Each column in
condition must be a column that exists in the result table. If the condition has never been
true for the result table, ROWS SINCE returns null.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER that specifies
the maximum number of rows from the current row to consider. If the condition has never been
true for max-rows from the current row, or if max-rows is negative or null, ROWS SINCE
returns null.

Considerations for ROWS SINCE

Counting the Rows
If you specify INCLUSIVE, the condition in each row of the result table is evaluated starting with
the current row as row 0 (zero) (up to the maximum number of rows or the size of the result table).
Otherwise, the condition is evaluated starting with the previous row as row 1.
If a row is reached where the condition is true, ROWS SINCE returns the number of rows counted
so far. Otherwise, if the condition is never true within the result table being considered, ROWS
SINCE returns null. Trafodion SQL then goes to the next row as the new current row.

Examples of ROWS SINCE
• Return the number of rows since the condition I1 IS NULL became true:

SELECT ROWS SINCE (I1 IS NULL) AS ROWS_SINCE_NULL
FROM mining.seqfcn
SEQUENCE BY TS;

ROWS_SINCE_NULL

 ?
 ?
 1
 2
 1

--- 5 row(s) selected.

• Return the number of rows since the condition I1 < I2 became true:

SELECT ROWS SINCE (I1<I2), ROWS SINCE INCLUSIVE (I1<I2)
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR) (EXPR)

392 SQL Functions and Expressions

--------------- ---------------
 ? 0
 1 1
 2 0
 1 1
 2 0

--- 5 row(s) selected.

ROWS SINCE Function 393

ROWS SINCE CHANGED Function
The ROWS SINCE CHANGED function is a sequence function that returns the number of rows
counted since the specified set of values last changed in the intermediate result table ordered by
a SEQUENCE BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
ROWS SINCE CHANGED is a Trafodion SQL extension.
ROWS SINCE CHANGED (column-expression-list)

column-expression-list

is a comma-separated list that specifies a derived column list determined by the evaluation of
the column expression list. ROWS SINCE CHANGED returns the number of rows counted since
the values of column-expression-list changed.

Considerations for ROWS SINCE CHANGED

Counting the Rows
For the first row in the intermediate result table, the count is 1. For subsequent rows that have the
same value for column-expression-list as the previous row, the count is 1 plus the count
in the previous row. For subsequent rows that have a different value of column-expression-list
than the previous row, the count is 1.

Examples of ROWS SINCE CHANGED
• Return the number of rows since the value I1 last changed:

SELECT ROWS SINCE CHANGED (I1)
FROM mining.seqfcn
SEQUENCE BY TS;

• Return the number of rows since the values I1 and ts last changed:

SELECT ROWS SINCE CHANGED (I1, TS)
FROM mining.seqfcn
SEQUENCE BY TS;

394 SQL Functions and Expressions

RPAD Function
The RPAD function pads the right side of a string with the specified string. Every character in the
string, including multibyte characters, is treated as one character.
RPAD is a Trafodion SQL extension.
RPAD (str, len [,padstr])

str

can be an expression. See “Character Value Expressions” (page 211).
len

identifies the desired number of characters to be returned and can be an expression but must
be an integral value. If len is equal to the length of the string, no change is made. If len is
smaller than the string size, the string is truncated.

pad-character

can be an expression and may be a string.

Examples of RPAD Function
• This function returns 'kite ':

rpad('kite', 7)

• This function returns 'ki':

rpad('kite', 2)

• This function returns 'kite0000':

rpad('kite', 8, '0')

• This function returns 'go fly a kite':

rpad('go fly a kite', 13, 'z')

• This function returns 'go fly a kitez'

rpad('go fly a kite', 14, 'z')

• This function returns 'kitegoflygoflygof':

rpad('kite', 17, 'gofly')

RPAD Function 395

RTRIM Function
The RTRIM function removes trailing spaces from a character string. If you must remove any leading
character other than space, use the TRIM function and specify the value of the character. See the
“TRIM Function” (page 421).
RTRIM is a Trafodion SQL extension.
RTRIM (character-expression)

character-expression

is an SQL character value expression and specifies the string from which to trim trailing spaces.
See “Character Value Expressions” (page 211).

Considerations for RTRIM

Result of RTRIM
The result is always of type VARCHAR, with maximum length equal to the fixed length or maximum
variable length of character-expression.

Example of RTRIM
Return ' Robert':
RTRIM (' Robert ')

See “TRIM Function” (page 421) and “LTRIM Function” (page 359).

396 SQL Functions and Expressions

RUNNINGAVG Function
The RUNNINGAVG function is a sequence function that returns the average of nonnull values of
a column up to and including the current row of an intermediate result table ordered by a
SEQUENCE BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGAVG is a Trafodion SQL extension.
RUNNINGAVG (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGAVG returns the average of nonnull values of column-expression up to and
including the current row.

Considerations for RUNNINGAVG

Equivalent Result
The result of RUNNINGAVG is equivalent to:

RUNNINGSUM(column-expr) / RUNNINGCOUNT(*)

Example of RUNNINGAVG
Return the average of nonnull values of I1 up to and including the current row:

SELECT RUNNINGAVG (I1) AS AVG_I1
FROM mining.seqfcn
SEQUENCE BY TS;

AVG_I1

 6215
 17194
 11463
 9746
 10190

--- 5 row(s) selected.

RUNNINGAVG Function 397

RUNNINGCOUNT Function
The RUNNINGCOUNT function is a sequence function that returns the number of rows up to and
including the current row of an intermediate result table ordered by a SEQUENCE BY clause in a
SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGCOUNT is a Trafodion SQL extension.
RUNNINGCOUNT {(*) | (column-expression)}

*
as an argument causes RUNNINGCOUNT(*) to return the number of rows in the intermediate
result table up to and including the current row.

column-expression

specifies a derived column determined by the evaluation of the column expression. If
column-expression is the argument, RUNNINGCOUNT returns the number of rows
containing nonnull values of column-expression in the intermediate result table up to and
including the current row.

Considerations for RUNNINGCOUNT

No DISTINCT Clause
The RUNNINGCOUNT sequence function is defined differently from the COUNT aggregate
function. If you specify DISTINCT for the COUNT aggregate function, duplicate values are eliminated
before COUNT is applied. You cannot specify DISTINCT for the RUNNINGCOUNT sequence
function; duplicate values are counted.

Example of RUNNINGCOUNT
Return the number of rows that include nonnull values of I1 up to and including the current row:

SELECT RUNNINGCOUNT (I1) AS COUNT_I1
FROM mining.seqfcn
SEQUENCE BY TS;

COUNT_I1

 1
 2
 2
 3
 4

--- 5 row(s) selected.

398 SQL Functions and Expressions

RUNNINGMAX Function
The RUNNINGMAX function is a sequence function that returns the maximum of values of a column
up to and including the current row of an intermediate result table ordered by a SEQUENCE BY
clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGMAX is a Trafodion SQL extension.
RUNNINGMAX (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGMAX returns the maximum of values of column-expression up to and including
the current row.

Example of RUNNINGMAX
Return the maximum of values of I1 up to and including the current row:

SELECT RUNNINGMAX (I1) AS MAX_I1
FROM mining.seqfcn
SEQUENCE BY TS;

MAX_I1

 6215
 28174
 28174
 28174
 28174

--- 5 row(s) selected.

RUNNINGMAX Function 399

RUNNINGMIN Function
The RUNNINGMIN function is a sequence function that returns the minimum of values of a column
up to and including the current row of an intermediate result table ordered by a SEQUENCE BY
clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGMIN is a Trafodion SQL extension.
RUNNINGMIN (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGMIN returns the minimum of values of column-expression up to and including
the current row.

Example of RUNNINGMIN
Return the minimum of values of I1 up to and including the current row:

SELECT RUNNINGMIN (I1) AS MIN_I1
FROM mining.seqfcn
SEQUENCE BY TS;

MIN_I1

 6215
 6215
 6215
 4597
 4597

--- 5 row(s) selected.

RUNNINGRANK Function
See the “RANK/RUNNINGRANK Function” (page 385).

400 SQL Functions and Expressions

RUNNINGSTDDEV Function
The RUNNINGSTDDEV function is a sequence function that returns the standard deviation of nonnull
values of a column up to and including the current row of an intermediate result table ordered by
a SEQUENCE BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGSTDDEV is a Trafodion SQL extension.
RUNNINGSTDDEV (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGSTDDEV returns the standard deviation of nonnull values of column-expression
up to and including the current row.

Considerations for RUNNINGSTDDEV

Equivalent Result
The result of RUNNINGSTDDEV is equivalent to:
SQRT(RUNNINGVARIANCE(column-expression))

Examples of RUNNINGSTDDEV
Return the standard deviation of nonnull values of I1 up to and including the current row:
SELECT RUNNINGSTDDEV (I1) AS STDDEV_I1
FROM mining.seqfcn
SEQUENCE BY TS;

STDDEV_I1

 0.00000000000000000E+000
 1.55273578080753976E+004
 1.48020166531456112E+004
 1.25639147428923072E+004
 1.09258501408357232E+004

--- 5 row(s) selected.

You can use the CAST function for display purposes. For example:
SELECT CAST(RUNNINGSTDDEV (I1) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 15527.357
 14802.016
 12563.914
 10925.850

--- 5 row(s) selected.

RUNNINGSTDDEV Function 401

RUNNINGSUM Function
The RUNNINGSUM function is a sequence function that returns the sum of nonnull values of a
column up to and including the current row of an intermediate result table ordered by a SEQUENCE
BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGSUM is a Trafodion SQL extension.
RUNNINGSUM (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGSUM returns the sum of nonnull values of column-expression up to and including
the current row.

Example of RUNNINGSUM
Return the sum of nonnull values of I1 up to and including the current row:
SELECT RUNNINGSUM (I1) AS SUM_I1
FROM mining.seqfcn
SEQUENCE BY TS;

SUM_I1

 6215
 34389
 34389
 38986
 50952

--- 5 row(s) selected.

402 SQL Functions and Expressions

RUNNINGVARIANCE Function
The RUNNINGVARIANCE function is a sequence function that returns the variance of nonnull
values of a column up to and including the current row of an intermediate result table ordered by
a SEQUENCE BY clause in a SELECT statement. See “SEQUENCE BY Clause” (page 268).
RUNNINGVARIANCE is a Trafodion SQL extension.
RUNNINGVARIANCE (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGVARIANCE returns the variance of nonnull values of column-expression up to
and including the current row.

Examples of RUNNINGVARIANCE
Return the variance of nonnull values of I1 up to and including the current row:
SELECT RUNNINGVARIANCE (I1) AS VARIANCE_I1
FROM mining.seqfcn
SEQUENCE BY TS;

VARIANCE_I1

 0.00000000000000000E+000
 2.41098840499999960E+008
 2.19099696999999968E+008
 1.57851953666666640E+008
 1.19374201299999980E+008

--- 5 row(s) selected.

You can use the CAST function for display purposes. For example:
SELECT CAST(RUNNINGVARIANCE (I1) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 241098840.500
 219099697.000
 157851953.666
 119374201.299

--- 5 row(s) selected.

RUNNINGVARIANCE Function 403

SECOND Function
The SECOND function converts a TIME or TIMESTAMP expression into an INTEGER value in the
range 0 through 59 that represents the corresponding second of the hour.
SECOND is a Trafodion SQL extension.
SECOND (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of SECOND
Return a NUMERIC value that represents the second of the hour from the SHIP_TIMESTAMP column
:
SELECT start_date, ship_timestamp, SECOND(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- -----------
2008-04-10 2008-04-21 08:15:00.000000 .000000

404 SQL Functions and Expressions

SIGN Function
The SIGN function returns an indicator of the sign of a numeric value expression. If the value is
less than zero, the function returns -1 as the indicator. If the value is zero, the function returns 0.
If the value is greater than zero, the function returns 1.
SIGN is a Trafodion SQL extension.
SIGN (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the SIGN
function. See “Numeric Value Expressions” (page 218).

Examples of SIGN
• Return the value –1:

SIGN (-20 + 12)

• Return the value 0:
SIGN (-20 + 20)

• Return the value 1:
SIGN (-20 + 22)

SIGN Function 405

SIN Function
The SIN function returns the sine of a numeric value expression, where the expression is an angle
expressed in radians.
SIN is a Trafodion SQL extension.
SIN (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the SIN function.
See “Numeric Value Expressions” (page 218).

Example of SIN
This function returns the value 3.42052233254419840E-001, or approximately 0.3420, the sine
of 0.3491 (which is 20 degrees):
SIN (0.3491)

406 SQL Functions and Expressions

SINH Function
The SINH function returns the hyperbolic sine of a numeric value expression, where the expression
is an angle expressed in radians.
SINH is a Trafodion SQL extension.
SINH (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the SINH
function. See “Numeric Value Expressions” (page 218).

Example of SINH
This function returns the value 1.60191908030082560E+000, or approximately 1.6019, the
hyperbolic sine of 1.25:
SINH (1.25)

SINH Function 407

SPACE Function
The SPACE function returns a character string consisting of a specified number of spaces, each of
which is 0x20 or 0x0020, depending on the chosen character set.
SPACE is a Trafodion SQL extension.
SPACE (length [,char-set-name])

length

specifies the number of characters to be returned. The number count must be a value greater
than or equal to zero of exact numeric data type and with a scale of zero. length cannot
exceed 32768 for the ISO8859-1 or UTF8 character sets.

char-set-name

can be ISO88591 or UTF8. If you do not specify this second argument, the default is the default
character set.
The returned character string will be of data type VARCHAR associated with the character set
specified by char-set-name.

Example of SPACE
Return three spaces:
SPACE (3)

408 SQL Functions and Expressions

SQRT Function
The SQRT function returns the square root of a numeric value expression.
SQRT is a Trafodion SQL extension.
SQRT (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the SQRT
function. The value of the argument must not be a negative number. See “Numeric Value
Expressions” (page 218).

Example of SQRT
This function returns the value 5.19615242270663232E+000, or approximately 5.196:
SQRT (27)

SQRT Function 409

STDDEV Function
• “Considerations for STDDEV”

• “Examples of STDDEV”
STDDEV is an aggregate function that returns the standard deviation of a set of numbers.
STDDEV is a Trafodion SQL extension.
STDDEV ([ALL | DISTINCT] expression [,weight])

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the STDDEV of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the STDDEV function is applied. If
DISTINCT is specified, you cannot specify weight.

expression

specifies a numeric value expression that determines the values for which to compute the
standard deviation. The expression cannot contain an aggregate function or a subquery.
The DISTINCT clause specifies that the STDDEV function operates on distinct values from the
one-column table derived from the evaluation of expression.

weight

specifies a numeric value expression that determines the weights of the values for which to
compute the standard deviation. weight cannot contain an aggregate function or a subquery.
weight is defined on the same table as expression. The one-column table derived from
the evaluation of expression and the one-column table derived from the evaluation of weight
must have the same cardinality.

Considerations for STDDEV

Definition of STDDEV
The standard deviation of a value expression is defined to be the square root of the variance of
the expression. See “VARIANCE Function” (page 426).
Because the definition of variance has N-1 in the denominator of the expression (if weight is not
specified), Trafodion SQL returns a system-defined default setting of zero (and no error) if the
number of rows in the table, or a group of the table, is equal to 1.

Data Type of the Result
The data type of the result is always DOUBLE PRECISION.

Operands of the Expression
The expression includes columns from the rows of the SELECT result table but cannot include an
aggregate function. These are valid:
STDDEV (SALARY)
STDDEV (SALARY * 1.1)
STDDEV (PARTCOST * QTY_ORDERED)

Nulls
STDDEV is evaluated after eliminating all nulls from the set. If the result table is empty, STDDEV
returns NULL.

FLOAT(54) and DOUBLE PRECISION Data
Avoid using large FLOAT(54) or DOUBLE PRECISION values as arguments to STDDEV. If SUM(x
* x) exceeds the value of 1.15792089237316192e77 during the computation of STDDEV(x), a
numeric overflow occurs.

410 SQL Functions and Expressions

Examples of STDDEV
• Compute the standard deviation of the salary of the current employees:

SELECT STDDEV(salary) AS StdDev_Salary
FROM persnl.employee;

STDDEV_SALARY

 3.57174062500000000E+004

--- 1 row(s) selected.

• Compute the standard deviation of the cost of parts in the current inventory:
SELECT STDDEV (price * qty_available)
FROM sales.parts;

(EXPR)

 7.13899499999999808E+006

--- 1 row(s) selected.

STDDEV Function 411

SUBSTRING/SUBSTR Function
The SUBSTRING function extracts a substring out of a given character expression. It returns a
character string of data type VARCHAR, with a maximum length equal to the smaller of these two:

• The fixed length of the input string (for CHAR-type strings) or the maximum variable length (for
VARCHAR-type strings)

• The value of the length argument (when a constant is specified) or 32708 (when a non-constant
is specified)

SUBSTR is equivalent to SUBSTRING.
SUBSTRING (character-expr FROM start-position [FOR length])

or:
SUBSTRING (character-expr,start-position[,length])

character-expr

specifies the source string from which to extract the substring. The source string is an SQL
character value expression. The operand is the result of evaluating character-expr. See
“Character Value Expressions” (page 211).

start-position

specifies the starting position start-position within character-expr at which to start
extracting the substring. start-position must be a value with an exact numeric data type
and a scale of zero.

length

specifies the number of characters to extract from character-expr. Keep in mind that every
character, including multibyte characters, counts as one character. length is the length of the
extracted substring and must be a value greater than or equal to zero of exact numeric data
type and with a scale of zero. The length field is optional, so if you do not specify the substring
length, all characters starting at start-position and continuing until the end of the
character expression are returned.
The length field is optional. If you do not specify it, all characters starting at start-position
and continuing until the end of the character-expr are returned.

Alternative Forms
• The SUBSTRING function treats SUBSTRING(string FOR int) equivalent to SUBSTRING(

string FROM 1 FOR int). The Trafodion database software already supports the ANSI
standard form as:
SUBSTRING(string FROM int [FOR int])

• The SUBSTRING function treats SUBSTRING (string, Fromint) equivalent to
SUBSTRING(string FROM Fromint). The Trafodion database software already supports
SUBSTRING (string, Fromint, Forint) as equivalent to the ANSI standard form:
SUBSTRING(string FROM Fromint FOR Forint)

Considerations for SUBSTRING/SUBSTR

Requirements for the Expression, Length, and Start Position

• The data types of the substring length and the start position must be numeric with a scale of
zero. Otherwise, an error is returned.

• If the sum of the start position and the substring length is greater than the length of the character
expression, the substring from the start position to the end of the string is returned.

412 SQL Functions and Expressions

• If the start position is greater than the length of the character expression, an empty string ('')
is returned.

• The resulting substring is always of type VARCHAR. If the source character string is an upshifted
CHAR or VARCHAR string, the result is an upshifted VARCHAR type.

Examples of SUBSTRING/SUBSTR
• Extract 'Ro':

SUBSTRING('Robert John Smith' FROM 0 FOR 3)
SUBSTR('Robert John Smith' FROM 0 FOR 3)

• Extract 'John':
SUBSTRING ('Robert John Smith' FROM 8 FOR 4)
SUBSTR ('Robert John Smith' FROM 8 FOR 4)

• Extract 'John Smith':
SUBSTRING ('Robert John Smith' FROM 8)
SUBSTR ('Robert John Smith' FROM 8)

• Extract 'Robert John Smith':
SUBSTRING ('Robert John Smith' FROM 1 FOR 17)
SUBSTR ('Robert John Smith' FROM 1 FOR 17)

• Extract 'John Smith':
SUBSTRING ('Robert John Smith' FROM 8 FOR 15)
SUBSTR ('Robert John Smith' FROM 8 FOR 15)

• Extract 'Ro':
SUBSTRING ('Robert John Smith' FROM -2 FOR 5)
SUBSTR ('Robert John Smith' FROM -2 FOR 5)

• Extract an empty string '':
SUBSTRING ('Robert John Smith' FROM 8 FOR 0)
SUBSTR ('Robert John Smith' FROM 8 FOR 0)

SUBSTRING/SUBSTR Function 413

SUM Function
SUM is an aggregate function that returns the sum of a set of numbers.
SUM ([ALL | DISTINCT] expression)

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the SUM of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the SUM function is applied.

expression

specifies a numeric or interval value expression that determines the values to sum. The
expression cannot contain an aggregate function or a subquery. The DISTINCT clause
specifies that the SUM function operates on distinct values from the one-column table derived
from the evaluation of expression. All nulls are eliminated before the function is applied to
the set of values. If the result table is empty, SUM returns NULL.
See “Expressions” (page 211).

Considerations for SUM

Data Type and Scale of the Result
The data type of the result depends on the data type of the argument. If the argument is an exact
numeric type, the result is LARGEINT. If the argument is an approximate numeric type, the result
is DOUBLE PRECISION. If the argument is INTERVAL data type, the result is INTERVAL with the
same precision as the argument. The scale of the result is the same as the scale of the argument.
If the argument has no scale, the result is truncated.

Operands of the Expression
The expression includes columns from the rows of the SELECT result table—but cannot include an
aggregate function. The valid expressions are:
SUM (SALARY)
SUM (SALARY * 1.1)
SUM (PARTCOST * QTY_ORDERED)

Example of SUM
Compute the total value of parts in the current inventory:
SELECT SUM (price * qty_available)
FROM sales.parts;

(EXPR)

 117683505.96

--- 1 row(s) selected.

414 SQL Functions and Expressions

TAN Function
The TAN function returns the tangent of a numeric value expression, where the expression is an
angle expressed in radians.
TAN is a Trafodion SQL extension.
TAN (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the TAN function.
See “Numeric Value Expressions” (page 218).

Example of TAN
This function returns the value 3.64008908293626880E-001, or approximately 0.3640, the
tangent of 0.3491 (which is 20 degrees):
TAN (0.3491)

TAN Function 415

TANH Function
The TANH function returns the hyperbolic tangent of a numeric value expression, where the
expression is an angle expressed in radians.
TANH is a Trafodion SQL extension.
TANH (numeric-expression)

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of the TANH
function. See “Numeric Value Expressions” (page 218).

Example of TANH
• This function returns the value 8.48283639957512960E-001 or approximately 0.8483, the

hyperbolic tangent of 1.25:
TANH (1.25)

416 SQL Functions and Expressions

THIS Function
The THIS function is a sequence function that is used in the ROWS SINCE function to distinguish
between the value of the column in the current row and the value of the column in previous rows
(in an intermediate result table ordered by a SEQUENCE BY clause in a SELECT statement). See
“ROWS SINCE Function” (page 392).
THIS is a Trafodion SQL extension.
THIS (column-expression)

column-expression

specifies a derived column determined by the evaluation of the column expression. If the value
of the expression is null, THIS returns null.

Considerations for THIS

Counting the Rows
You can use the THIS function only within the ROWS SINCE function. For each row, the ROWS
SINCE condition is evaluated in two steps:
1. The expression for THIS is evaluated for the current row. This value becomes a constant.
2. The condition is evaluated for the result table, using a combination of the THIS constant and

the data for each row in the result table, starting with the previous row as row 1 (up to the
maximum number of rows or the size of the result table).

If a row is reached where the condition is true, ROWS SINCE returns the number of rows counted
so far. Otherwise, if the condition is never true within the result table being considered, ROWS
SINCE returns null. Trafodion SQL then goes to the next row as the new current row and the THIS
constant is reevaluated.

Example of THIS
Return the number of rows since the condition I1 less than a previous row became true:
SELECT ROWS SINCE (THIS(I1) < I1) AS ROWS_SINCE_THIS
FROM mining.seqfcn
SEQUENCE BY TS;

ROWS_SINCE_THIS

 ?
 ?
 1
 1
 ?

--- 5 row(s) selected.

THIS Function 417

TIMESTAMPADD Function
The TIMESTAMPADD function adds the interval of time specified by interval-ind and num_expr
to datetime_expr. If the specified interval is in years, months, or quarters and the resulting date
is not a valid date, the day will be rounded down to the last day of the result month. The type of
the datetime_expr is returned except when the interval-ind contains any time component,
in which case a TIMESTAMP is returned.
TIMESTAMPADD is a Trafodion SQL extension.
TIMESTAMPADD (interval-ind, num_expr, datetime_expr)

interval-ind

is SQL_TSI_YEAR, SQL_TSI_MONTH, SQL_TSI_DAY, SQL_TSI_HOUR, SQL_TSI_MINUTE,
SQL_TSI_SECOND, SQL_TSI_QUARTER, or SQL_TSI_WEEK

num_expr

is an SQL exact numeric value expression that specifies how many interval-ind units of
time are to be added to datetime_expr. If num_expr has a fractional portion, it is ignored.
If num_expr is negative, the return value precedes datetime_expr by the specified amount
of time.

datetime_expr

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. The type of
the datetime_expr is returned except when the interval-ind contains any time
component, in which case a TIMESTAMP is returned.

Examples of TIMESTAMPADD
• This function adds seven days to the date specified in start-date:

TIMESTAMPADD (SQL_TSI_DAY, 7, start-date)

• This function returns the value DATE '2008–03–06':
TIMESTAMPADD (SQL_TSI_WEEK, 1, DATE '2008-02-28')

• This function returns the value DATE '1999–02–28':
TIMESTAMPADD (SQL_TSI_YEAR, -1, DATE '2000-02-29')

• This function returns the value TIMESTAMP '2003–02–28 13:27:35':
TIMESTAMPADD (SQL_TSI_MONTH, -12, TIMESTAMP '2004-02-29 13:27:35')

• This function returns the value TIMESTAMP '2004–02–28 13:27:35':
TIMESTAMPADD (SQL_TSI_MONTH, 12, TIMESTAMP '2003-02-28 13:27:35')

• This function returns the value DATE '2008–06–30':
TIMESTAMPADD (SQL_TSI_QUARTER, -2, DATE '2008-12-31')

• This function returns the value TIMESTAMP '2008–06–30 23:59:55':
TIMESTAMPADD (SQL_TSI_SECOND, -5, DATE '2008-07-01')

418 SQL Functions and Expressions

TIMESTAMPDIFF Function
The TIMESTAMPDIFF function returns the integer value for the number of interval-ind units of
time between startdate and enddate. If enddate precedes startdate, the return value is
negative or zero.
TIMESTAMPDIFF (interval-ind, startdate, enddate)

interval-ind

is SQL_TSI_YEAR, SQL_TSI_MONTH, SQL_TSI_DAY, SQL_TSI_HOUR, SQL_TSI_MINUTE,
SQL_TSI_SECOND, SQL_TSI_QUARTER, or SQL_TSI_WEEK

startdate and enddate

are each of type DATE or TIMESTAMP
The method of counting crossed boundaries such as days, minutes, and seconds makes the result
given by TIMESTAMPDIFF consistent across all data types. The TIMESTAMPDIFF function makes
these boundary assumptions:

• A year begins at the start of January 1.

• A new quarter begins on January 1, April 1, July 1, and October 1.

• A week begins at the start of Sunday.

• A day begins at midnight.
The result is a signed integer value equal to the number of interval-ind boundaries crossed
between the first and second date. For example, the number of weeks between Sunday, January
4 and Sunday, January 11 is 1. The number of months between March 31 and April 1 would be
1 because the month boundary is crossed from March to April.
The TIMESTAMPDIFF function generates an error if the result is out of range for integer values. For
seconds, the maximum number is equivalent to approximately 68 years. The TIMESTAMPDIFF
function generates an error if a difference in weeks is requested and one of the two dates precedes
January 7 of the year 0001.

Examples of TIMESTAMPDIFF
• This function returns the value 1 because a 1-second boundary is crossed even though the two

timestamps differ by only one microsecond:
TIMESTAMPDIFF (SQL_TSI_SECOND, TIMESTAMP '2006-09-12 11:59:58.999999',
TIMESTAMP '2006-09-12 11:59:59.000000')

• This function returns the value 0 because no 1-second boundaries are crossed:
TIMESTAMPDIFF (SQL_TSI_YEAR, TIMESTAMP '2006-12-31 23:59:59.00000,
TIMESTAMP '2006-12-31 23:59:59.999999')

• This function returns the value 1 because a year boundary is crossed:
TIMESTAMPDIFF (SQL_TSI_YEAR, TIMESTAMP '2006-12-31 23:59:59.999999',
TIMESTAMP '2007-01-01 00:00:00.000000;)

• This function returns the value 1 because a WEEK boundary is crossed:
TIMESTAMPDIFF (SQL_TSI_WEEK, DATE '2006-01-01', DATE '2006-01-09')

• This function returns the value of -29:
TIMESTAMPDIFF (SQL_TSI_DAY, DATE '2004-03-01', DATE '2004-02-01')

TIMESTAMPDIFF Function 419

TRANSLATE Function
The TRANSLATE function translates a character string from a source character set to a target
character set. The TRANSLATE function changes both the character string data type and the
character set encoding of the string.
TRANSLATE(character-value-expression USING translation-name)

character-value-expression

is a character string.
translation-name

is one of these translation names:

CommentsTarget Character SetSource Character SetTranslation Name

Translates ISO8859-1
characters to UTF8

UTF8ISO88591ISO88591TOUTF8

characters. No data loss is
possible.

Translates UTF8 characters
to ISO88591 characters.

ISO88591UTF8UTF8TOISO88591

Trafodion SQL will display
an error if it encounters a
Unicode character that
cannot be converted to the
target character set.

translation-name identifies the translation, source and target character set. When you
translate to the UTF8 character set, no data loss is possible. However, when Trafodion SQL
translates a character-value-expression from UTF8, it may be that certain characters
cannot be converted to the target character set. Trafodion SQL reports an error in this case.
Trafodion SQL returns a variable-length character string with character repertoire equal to the
character repertoire of the target character set of the translation and the maximum length equal
to the fixed length or maximum variable length of the source character-value-expression.
If you enter an illegal translation-name, Trafodion SQL returns an error.
If the character set for character-value-expression is different from the source character
set as specified in the translation-name, Trafodion SQL returns an error.

420 SQL Functions and Expressions

TRIM Function
The TRIM function removes leading and trailing characters from a character string. Every character,
including multibyte characters, is treated as one character.
TRIM ([[trim-type] [trim-char] FROM] trim-source)

trim-type is:
 LEADING | TRAILING | BOTH

trim-type

specifies whether characters are to be trimmed from the leading end (LEADING), trailing end
(TRAILING), or both ends (BOTH) of trim-source. If you omit trim-type, the default is
BOTH.

trim_char

is an SQL character value expression and specifies the character to be trimmed from
trim-source. trim_char has a maximum length of 1. If you omit trim_char, SQL trims
blanks (' ') from trim-source.

trim-source

is an SQL character value expression and specifies the string from which to trim characters.
See “Character Value Expressions” (page 211).

Considerations for TRIM

Result of TRIM
The result is always of type VARCHAR, with maximum length equal to the fixed length or maximum
variable length of trim-source. If the source character string is an upshifts CHAR or VARCHAR
string, the result is an upshifts VARCHAR type.

Examples of TRIM
• Return 'Robert':

TRIM (' Robert ')

• The EMPLOYEE table defines FIRST_NAME as CHAR(15) and LAST_NAME as CHAR(20).
This expression uses the TRIM function to return the value 'Robert Smith' without extra blanks:
TRIM (first_name) || ' ' || TRIM (last_name)

TRIM Function 421

UCASE Function
• “Considerations for UCASE”

• “Examples of UCASE”
The UCASE function upshifts alphanumeric characters. For non-alphanumeric characters, UCASE
returns the same character. UCASE can appear anywhere in a query where a value can be used,
such as in a select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or as qualifying a new value in an UPDATE or INSERT statement. The result returned
by the UCASE function is equal to the result returned by the “UPPER Function” (page 423) or “UPSHIFT
Function” (page 424).
UCASE returns a string of fixed-length or variable-length character data, depending on the data
type of the input string.
UCASE is a Trafodion SQL extension.
UCASE (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters to upshift. See
“Character Value Expressions” (page 211).

Considerations for UCASE
For a UTF8 character expression, the UCASE function upshifts all lowercase or title case characters
to uppercase and returns a character string. If the argument is of type CHAR(n) or VARCHAR(n),
the result is of type VARCHAR(min(3n, 2048)), where the maximum length of VARCHAR is the
minimum of 3n or 2048, whichever is smaller.
A lowercase character is a character that has the “alphabetic” property in Unicode Standard 2
and whose Unicode name includes lower. An uppercase character is a character that has the
“alphabetic” property and whose Unicode name includes upper. A title case character is a character
that has the Unicode “alphabetic” property and whose Unicode name includes title.

Examples of UCASE
Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select the column
CUSTNAME and return in uppercase and lowercase letters by using the UCASE and LCASE
functions:
SELECT custname,UCASE(custname),LCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See “LCASE Function” (page 352).
For more examples of when to use the UCASE function, see “UPSHIFT Function” (page 424).

422 SQL Functions and Expressions

UPPER Function
The UPPER function upshifts alphanumeric characters. For non-alphanumeric characters, UCASE
returns the same character. UPPER can appear anywhere in a query where a value can be used,
such as in a select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or as qualifying a new value in an UPDATE or INSERT statement. The result returned
by the UPPER function is equal to the result returned by the “UPSHIFT Function” (page 424) or
“UCASE Function” (page 422).
UPPER returns a string of fixed-length or variable-length character data, depending on the data
type of the input string.
UPPER (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters to upshift. See
“Character Value Expressions” (page 211).

Example of UPPER
Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select the column
CUSTNAME and return in uppercase and lowercase letters by using the UPPER and LOWER
functions:
SELECT custname,UPPER(custname),LOWER(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See “LOWER Function” (page 357).
For examples of when to use the UPPER function, see “UPSHIFT Function” (page 424).

UPPER Function 423

UPSHIFT Function
The UPSHIFT function upshifts alphanumeric characters. For non-alphanumeric characters, UCASE
returns the same character. UPSHIFT can appear anywhere in a query where a value can be used,
such as in a select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or as qualifying a new value in an UPDATE or INSERT statement. The result returned
by the UPSHIFT function is equal to the result returned by the “UPPER Function” (page 423) or
“UCASE Function” (page 422).
UPSHIFT returns a string of fixed-length or variable-length character data, depending on the data
type of the input string.
UPSHIFT is a Trafodion SQL extension.
UPSHIFT (character-expression)

character-expression

is an SQL character value expression that specifies a string of characters to upshift. See
“Character Value Expressions” (page 211).

Examples of UPSHIFT
• Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select the column

CUSTNAME and return a result in uppercase and lowercase letters by using the UPSHIFT,
UPPER, and LOWER functions:
SELECT UPSHIFT(custname),UPPER(custname),UCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
HOTEL OREGON HOTEL OREGON HOTEL OREGON

--- 17 row(s) selected.

• Perform a case-insensitive search for the DataSpeed customer:
SELECT *
FROM sales.customer
WHERE UPSHIFT (custname) = 'DATASPEED';

CUSTNUM CUSTNAME STREET CITY ...
------- ---------- -------------------- --------- ...
 1234 DataSpeed 300 SAN GABRIEL WAY NEW YORK ...

--- 1 row(s) selected.

In the table, the name can be in lowercase, uppercase, or mixed case letters.

• Suppose that your database includes two department tables: DEPT1 and DEPT2. Return all
rows from the two tables in which the department names have the same value regardless of
case:
SELECT * FROM persnl.dept1 D1, persnl.dept2 D2
WHERE UPSHIFT(D1.deptname) = UPSHIFT(D2.deptname);

424 SQL Functions and Expressions

USER Function
The USER function returns either the database username associated with the specified user ID
number or the database username of the current user who invoked the function. The current user
is the authenticated user who started the session. That database username is used for authorization
of SQL statements in the current session.
USER [(user-id)]

user-id

is the 32-bit number associated with a database username.
The USER function is similar to the “AUTHNAME Function” (page 292) and the “CURRENT_USER
Function” (page 319).

Considerations for USER
• This function can be specified only in the top level of a SELECT statement.

• The value returned is string data type VARCHAR(128) and is in ISO8859-1 encoding.

Examples of USER
• This example shows the database username of the current user who is logged in to the session:

>>SELECT USER FROM (values(1)) x(a);
(EXPR)

TSHAW
--- 1 row(s) selected.

• This example shows the database username associated with the user ID number, 33333:
>>SELECT USER (33333) FROM (values(1)) x(a);
(EXPR)

DB__ROOT
--- 1 row(s) selected.

USER Function 425

VARIANCE Function
• “Considerations for VARIANCE”

• “Examples of VARIANCE”
VARIANCE is an aggregate function that returns the statistical variance of a set of numbers.
VARIANCE is a Trafodion SQL extension.
VARIANCE ([ALL | DISTINCT] expression [,weight])

ALL | DISTINCT
specifies whether duplicate values are included in the computation of the VARIANCE of the
expression. The default option is ALL, which causes duplicate values to be included. If you
specify DISTINCT, duplicate values are eliminated before the VARIANCE function is applied.
If DISTINCT is specified, you cannot specify weight.

expression

specifies a numeric value expression that determines the values for which to compute the
variance. expression cannot contain an aggregate function or a subquery. The DISTINCT
clause specifies that the VARIANCE function operates on distinct values from the one-column
table derived from the evaluation of expression.

weight

specifies a numeric value expression that determines the weights of the values for which to
compute the variance. weight cannot contain an aggregate function or a subquery. weight
is defined on the same table as expression. The one-column table derived from the evaluation
of expression and the one-column table derived from the evaluation of weight must have
the same cardinality.

Considerations for VARIANCE

Definition of VARIANCE
Suppose that vi are the values in the one-column table derived from the evaluation of expression.
N is the cardinality of this one-column table that is the result of applying the expression to each
row of the source table and eliminating rows that are null.
If weight is specified, wi are the values derived from the evaluation of weight. N is the cardinality
of the two-column table that is the result of applying the expression and weight to each row
of the source table and eliminating rows that have nulls in either column.
Definition When Weight Is Not Specified
If weight is not specified, the statistical variance of the values in the one-column result table is
defined as:
where vi is the i-th value of expression, v is the average value expressed in the common data
type, and N is the cardinality of the result table.
Because the definition of variance has N-1 in the denominator of the expression (when weight is
not specified), Trafodion SQL returns a default value of zero (and no error) if the number of rows
in the table, or a group of the table, is equal to 1.
Definition When Weight Is Specified
If weight is specified, the statistical variance of the values in the two-column result table is defined
as:
where vi is the i-th value of expression, wi is the i-th value of weight, vw is the weighted
average value expressed in the common data type, and N is the cardinality of the result table.
Weighted Average
The weighted average vw of vi and wi is defined as:

426 SQL Functions and Expressions

where vi is the i-th value of expression, wi is the i-th value of weight, and N is the cardinality
of the result table.

Data Type of the Result
The data type of the result is always DOUBLE PRECISION.

Operands of the Expression
The expression includes columns from the rows of the SELECT result table—but cannot include an
aggregate function. These expressions are valid:
VARIANCE (SALARY)
VARIANCE (SALARY * 1.1)
VARIANCE (PARTCOST * QTY_ORDERED)

Nulls
VARIANCE is evaluated after eliminating all nulls from the set. If the result table is empty, VARIANCE
returns NULL.

FLOAT(54) and DOUBLE PRECISION Data
Avoid using large FLOAT(54) or DOUBLE PRECISION values as arguments to VARIANCE. If SUM(x
* x) exceeds the value of 1.15792089237316192e77 during the computation of VARIANCE(x),
then a numeric overflow occurs.

Examples of VARIANCE
• Compute the variance of the salary of the current employees:

SELECT VARIANCE(salary) AS Variance_Salary
FROM persnl.employee;

VARIANCE_SALARY

 1.27573263588496116E+009

--- 1 row(s) selected.

• Compute the variance of the cost of parts in the current inventory:
SELECT VARIANCE (price * qty_available)
FROM sales.parts;

(EXPR)

 5.09652410092950336E+013

--- 1 row(s) selected.

VARIANCE Function 427

WEEK Function
The WEEK function converts a DATE or TIMESTAMP expression into an INTEGER value in the range
1 through 54 that represents the corresponding week of the year. If the year begins on a Sunday,
the value 1 will be returned for any datetime that occurs in the first 7 days of the year. Otherwise,
the value 1 will be returned for any datetime that occurs in the partial week before the start of the
first Sunday of the year. The value 53 is returned for datetimes that occur in the last full or partial
week of the year except for leap years that start on Saturday where December 31 is in the 54th
full or partial week.
WEEK is a Trafodion SQL extension.
WEEK (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of WEEK
Return an integer that represents the week of the year from the START_DATE column in the PROJECT
table:
SELECT start_date, ship_timestamp, WEEK(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- --------------
2008-04-10 2008-04-21 08:15:00.000000 15

428 SQL Functions and Expressions

YEAR Function
The YEAR function converts a DATE or TIMESTAMP expression into an INTEGER value that represents
the year.
YEAR is a Trafodion SQL extension.
YEAR (datetime-expression)

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP. See “Datetime
Value Expressions” (page 212).

Example of YEAR
Return an integer that represents the year from the START_DATE column in the PROJECT table:
SELECT start_date, ship_timestamp, YEAR(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
2008-04-10 2008-04-21 08:15:00.000000 2008

YEAR Function 429

ZEROIFNULL Function
The ZEROIFNULL function returns a value of zero if the expression if NULL. Otherwise, it returns
the value of the expression.
ZEROIFNULL (expression)

expression

specifies a value expression. It must be a numeric data type.

Example of ZEROIFNULL
ZEROIFNULL returns the value of the column named salary whenever the column value is not
NULL and it returns 0 whenever the column value is NULL.
ZEROIFNULL (salary)

430 SQL Functions and Expressions

7 OLAP Functions
This section describes the syntax and semantics of the On Line Analytical Process (OLAP) window
functions. The OLAP window functions are ANSI compliant.

Considerations for Window Functions
These considerations apply to all window functions.
inline-window-specification

The window defined by the inline-window-specification consists of the rows specified
by the window-frame-clause, bounded by the current partition. If no PARTITION BY clause
is specified, the partition is defined to be all the rows of the intermediate result. If a PARTITION
BY clause is specified, the partition is the set of rows which have the same values for the
expressions specified in the PARTITION clause.

window-frame-clause

DISTINCT is not supported for window functions.
Use of a FOLLOWING term is not supported. Using a FOLLOWING term results in an error.
If no window-frame-clause is specified, “ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING” is assumed. This clause is not supported because it involves
a FOLLOWING term and will result in an error.
“ROWS CURRENT ROW” is equivalent to “ROWS BETWEEN CURRENT ROW AND CURRENT
ROW”.
“ROWS preceding-row” is equivalent to “ROWS BETWEEN preceding-row AND
CURRENT ROW”.

Nulls
All nulls are eliminated before the function is applied to the set of values. If the window contains
all NULL values, the result of the window function is NULL.
If the specified window for a particular row consists of rows that are all before the first row of the
partition (no rows in the window), the result of the window function is NULL.

ORDER BY Clause Supports Expressions For OLAP Functions
The ORDER BY clause of the OLAP functions now supports expressions. However, use of multiple
OLAP functions with different expressions in the same query is not supported. The following examples
show how expressions may be used in the ORDER BY clause.
SELECT -1 * annualsalary neg_total,
RANK() OVER (ORDER BY -1 * annualsalary) olap_rank
FROM employee;

Using an aggregate in the ORDER BY clause:
SELECT num,
RANK() OVER (ORDER BY SUM(annualsalary)) olap_rank
FROM employee
GROUP BY num;

Using multiple functions with the same expression in the ORDER BY clause:
SELECT num, workgroupnum,
 RANK() OVER (ORDER BY SUM (annualsalary)*num) olap_rank,
 DENSE_RANK() OVER (ORDER BY SUM (annualsalary)*num) olap_drank
 ROW_NUMBER() OVER (ORDER BY SUM (annualsalary)*num) olap_mum
FROM employee
GROUP BY num, workgroupnum, annualsalary;

Using more functions with the same expression in the ORDER BY clause:

Considerations for Window Functions 431

SELECT num, workgroupnum, annualsalary,
 SUM(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS
UNBOUNDED PRECEDING),
 AVG(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS UNBOUNDED
PRECEDING),
 MIN(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS UNBOUNDED
PRECEDING),
 MAX(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS UNBOUNDED
PRECEDING),
 VARIANCE(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS
UNBOUNDED PRECEDING),
 STDDEV(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS
UNBOUNDED PRECEDING),
 COUNT(AnnualSalary) OVER (ORDER BY SUM(annualsalary)*num ROWS
UNBOUNDED PRECEDING),
FROM employee
GROUP BY num, workgroupnum, annualsalary;

Limitations for Window Functions
These limitations apply to all window functions.

• The ANSI window-clause is not supported by Trafodion. Only the
inline-window-specification is supported. An attempt to use an ANSI
window-clause will result in a syntax error.

• The window-frame-clause cannot contain a FOLLOWING term, either explicitly or
implicitly. Because the default window frame clause contains an implicit FOLLOWING (“ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING”), the default is
not supported. So, practically, the window-frame-clause is not optional. An attempt to
use a FOLLOWING term, either explicitly or implicitly will result in the “4343” error message.

• The window frame units can only be ROWS. RANGE is not supported by Trafodion. An
attempt to use RANGE will result in a syntax error.

• The ANSI window-frame-exclusion-specification is not supported by Trafodion.
An attempt to use a window-frame-exclusion-specification will result in a syntax
error.

• Multiple inline-window-specifications in a single SELECT clause are not supported.
For each window function within a SELECT clause, the ORDER BY clause and PARTITION BY
specifications must be identical. The window frame can vary within a SELECT clause. An
attempt to use multiple inline-window-specifications in a single SELECT clause will
result in the "4340" error message.

• The ANSI null-ordering-specification within the ORDER BY clause is not supported
by Trafodion. Null values will always be sorted as if they are greater than all non-null values.
This is slightly different than a null ordering of NULLS LAST. An attempt to use a
null-ordering-specification will result in a syntax error.

• The ANSI filter-clause is not supported for window functions by Trafodion. The
filter-clause applies to all aggregate functions (grouped and windowed) and that the
filter-clause is not currently supported for grouped aggregate functions. An attempt to
use a filter-clause will result in a syntax error.

• The DISTINCT value for the set-qualifier-clause within a window function is not
supported. Only the ALL value is supported for the set-qualifier-clause within a window
function. An attempt to use DISTINCT in a window function will result in the “4341” error
message.

432 OLAP Functions

AVG Window Function
AVG is a window function that returns the average of nonnull values of the given expression for
the current window specified by the inline-window specification.
AVG ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row
 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row
 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the AVG of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies a numeric or interval value expression that determines the values to average.
See “Numeric Value Expressions” (page 218) and “Interval Value Expressions” (page 215).

inline-window-specification

specifies the window over which the AVG is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the AVG is computed.

Examples of AVG Window Function
• Return the running average value of the SALARY column:

SELECT empnum, AVG(salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the running average value of the SALARY column within each department:
SELECT deptnum, empnum, AVG(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the moving average of salary within each department over a window of the last 4 rows:

AVG Window Function 433

SELECT deptnum, empnum, AVG(SALARY)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS 3 PRECEDING)
FROM persnl.employee;

COUNT Window Function
COUNT is a window function that returns the count of the non null values of the given expression
for the current window specified by the inline-window-specification.
COUNT {(*) | ([ALL] expression) } OVER
inline-window-specification

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

window-frame-clause is:
 ROW CURRENT ROW
 | ROW preceding-row
 | ROW BETWEEN preceding-row AND preceding-row
 | ROW BETWEEN preceding-row AND CURRENT ROW
 | ROW BETWEEN preceding-row AND following-row
 | ROW BETWEEN CURRENT ROW AND CURRENT ROW
 | ROW BETWEEN CURRENT ROW AND following-row
 | ROW BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the COUNT of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies a value expression that is to be counted. See “Expressions” (page 211).
inline-window-specification

specifies the window over which the COUNT is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the COUNT is computed.

Examples of COUNT Window Function
• Return the running count of the SALARY column:

SELECT empnum, COUNT(salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the running count of the SALARY column within each department:
SELECT deptnum, empnum, COUNT(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

434 OLAP Functions

• Return the moving count of salary within each department over a window of the last 4 rows:
SELECT deptnum, empnum, COUNT(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS 3 PRECEDING)
FROM persnl.employee;

• Return the running count of employees within each department:
SELECT deptnum, empnum, COUNT(*)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

DENSE_RANK Window Funtion
DENSE_RANK is a window function that returns the ranking of each row of the current partition
specified by the inline-window-specification. The ranking is relative to the ordering specified in the
inline-window-specification. The return value of DENSE_RANK starts at 1 for the first row of the
window. Values of the given expression that are equal have the same rank. The value of
DENSE_RANK advances 1 when the value of the given expression changes.
DENSE_RANK() OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]

inline-window-specification

specifies the window over which the DENSE_RANK is computed. The
inline-window-specification can contain an optional PARTITION BY clause and an
optional ORDER BY clause. The PARTITION BY clause specifies how the intermediate result is
partitioned and the ORDER BY clause specifies how the rows are ordered within each partition.

Examples of DENSE_RANK Window Function
• Return the dense rank for each employee based on employee number:

SELECT DENSE_RANK() OVER (ORDER BY empnum), *
FROM persnl.employee;

• Return the dense rank for each employee within each department based on salary:
SELECT DENSE_RANK() OVER (PARTITION BY deptnum ORDER BY salary), *
FROM persnl.employee;

MAX Window Function
MAX is a window function that returns the maximum value of all non null values of the given
expression for the current window specified by the inline-window-specification.
MAX ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row
 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row

DENSE_RANK Window Funtion 435

 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the MAX of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies an expression that determines the values over which the MAX is computed.
See “Expressions” (page 211).

inline-window-specification

specifies the window over which the MAX is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the MAX is computed.

Examples of MAX Window Function
• Return the running maximum of the SALARY column:

SELECT empnum, MAX(salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the running maximum of the SALARY column within each department:
SELECT deptnum, empnum, MAX(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the moving maximum of salary within each department over a window of the last 4
rows:
SELECT deptnum, empnum, MAX(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS 3 PRECEDING)
FROM persnl.employee;

MIN Window Function
MIN is a window function that returns the minimum value of all non null values of the given
expression for the current window specified by the inline-window-specification.
MIN ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row

436 OLAP Functions

 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row
 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the MIN of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies an expression that determines the values over which the MIN is computed
See “Expressions” (page 211).

inline-window-specification

specifies the window over which the MIN is computed. The inline-window-specification
can contain an optional PARTITION BY clause, an optional ORDER BY clause and an optional
window frame clause. The PARTITION BY clause specifies how the intermediate result is
partitioned and the ORDER BY clause specifies how the rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the MIN is computed.

Examples of MIN Window Function
• Return the running minimum of the SALARY column:

SELECT empnum, MIN(salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the running minimum of the SALARY column within each department:
SELECT deptnum, empnum, MIN(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the moving minimum of salary within each department over a window of the last 4
rows:
SELECT deptnum, empnum, MIN(salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS 3 PRECEDING)
FROM persnl.employee;

RANK Window Function
RANK is a window function that returns the ranking of each row of the current partition specified
by the inline-window-specification. The ranking is relative to the ordering specified in the
inline-window-specification. The return value of RANK starts at 1 for the first row of the window.
Values that are equal have the same rank. The value of RANK advances to the relative position of
the row in the window when the value changes.
RANK() OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]

RANK Window Function 437

 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]

inline-window-specification

specifies the window over which the RANK is computed. The
inline-window-specification can contain an optional PARTITION BY clause and an
optional ORDER BY clause. The PARTITION BY clause specifies how the intermediate result is
partitioned and the ORDER BY clause specifies how the rows are ordered within each partition.

Examples of RANK Window Function
• Return the rank for each employee based on employee number:

SELECT RANK() OVER (ORDER BY empnum), *
FROM persnl.employee;

• Return the rank for each employee within each department based on salary:
SELECT RANK() OVER (PARTITION BY deptnum ORDER BY salary), *
FROM persnl.employee;

ROW_NUMBER Window Function
ROW_NUMBER is a window function that returns the row number of each row of the current
window specified by the inline-window-specification.
ROW_NUMBER () OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]

inline-window-specification

specifies the window over which the ROW_NUMBER is computed. The
inline-window-specification can contain an optional PARTITION BY clause and an
optional ORDER BY clause. The PARTITION BY clause specifies how the intermediate result is
partitioned and the ORDER BY clause specifies how the rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the ROW_NUMBER is computed.

Examples of ROW_NUMBER Window Function
• Return the row number for each row of the employee table:

SELECT ROW_NUMBER () OVER(ORDER BY empnum), *
FROM persnl.employee;

• Return the row number for each row within each department:
SELECT ROW_NUMBER () OVER(PARTITION BY deptnum ORDER BY empnum), *
FROM persnl.employee;

STDDEV Window Function
STDDEV is a window function that returns the standard deviation of non null values of the given
expression for the current window specified by the inline-window-specification.
STDDEV ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

438 OLAP Functions

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row
 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row
 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the STDDEV of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies a numeric or interval value expression that determines the values over which
STDDEV is computed.

inline-window-specification

specifies the window over which the STDDEV is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the STDDEV is computed.

Examples of STDDEV
• Return the standard deviation of the salary for each row of the employee table:

SELECT STDDEV(salary) OVER(ORDER BY empnum ROWS UNBOUNDED PRECEDING),*
FROM persnl.employee;

• Return the standard deviation for each row within each department:
SELECT STDDEV() OVER(PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING), *
FROM persnl.employee;

SUM Window Function
SUM is a window function that returns the sum of non null values of the given expression for the
current window specified by the inline-window-specification.
SUM ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row

SUM Window Function 439

 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row
 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the SUM of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies a numeric or interval value expression that determines the values to sum.
See “Expressions” (page 211).

inline-window-specification

specifies the window over which the SUM is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the SUM is computed.

Examples of SUM Window Function
• Return the running sum value of the SALARY column:

SELECT empnum, SUM (salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the running sum of the SALARY column within each department:
SELECT deptnum, empnum, SUM (salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the moving sum of the SALARY column within each department over a window of the
last 4 rows:
SELECT deptnum, empnum, SUM (salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS 3 PRECEDING)
FROM persnl.employee;

VARIANCE Window Function
VARIANCE is a window function that returns the variance of non null values of the given expression
for the current window specified by the inline-window-specification.
VARIANCE ([ALL] expression) OVER (inline-window-specification)

inline-window-specification is:
 [PARTITION BY expression [, expression]...]
 [ORDER BY expression [ASC[ENDING] | DESC[ENDING]]
 [,expression [ASC[ENDING] | DESC[ENDING]]]...]
 [window-frame-clause]

440 OLAP Functions

window-frame-clause is:
 ROWS CURRENT ROW
 | ROWS preceding-row
 | ROWS BETWEEN preceding-row AND preceding-row
 | ROWS BETWEEN preceding-row AND CURRENT ROW
 | ROWS BETWEEN preceding-row AND following-row
 | ROWS BETWEEN CURRENT ROW AND CURRENT ROW
 | ROWS BETWEEN CURRENT ROW AND following-row
 | ROWS BETWEEN following-row AND following-row

preceding-row is:
 UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING

following-row is:
 UNBOUNDED FOLLOWING
 | unsigned-integer FOLLOWING

ALL
specifies whether duplicate values are included in the computation of the VARIANCE of the
expression. The default option is ALL, which causes duplicate values to be included.

expression

specifies a numeric or interval value expression that determines the values over which the
variance is computed.
See “Expressions” (page 211).

inline-window-specification

specifies the window over which the VARIANCE is computed. The
inline-window-specification can contain an optional PARTITION BY clause, an
optional ORDER BY clause and an optional window frame clause. The PARTITION BY clause
specifies how the intermediate result is partitioned and the ORDER BY clause specifies how the
rows are ordered within each partition.

window-frame-clause

specifies the window within the partition over which the VARIANCE is computed.

Examples of VARIANCE Window Function
• Return the variance of the SALARY column:

SELECT empnum, VARIANCE (salary)
 OVER (ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

• Return the variance of the SALARY column within each department:
SELECT deptnum, empnum, VARIANCE (salary)
 OVER (PARTITION BY deptnum ORDER BY empnum ROWS UNBOUNDED PRECEDING)
FROM persnl.employee;

VARIANCE Window Function 441

8 SQL Runtime Statistics
The Runtime Management System (RMS) shows the status of queries while they are running. RMS
can service on-demand requests from the Trafodion Command Interface (TrafCI) to get statistics for
a given query ID or for active queries in a given process. RMS also provides information about
itself to determine the health of the RMS infrastructure.
RMS provides the summary statistics for each fragment instance and detailed statistics for each
operator (TDB_ID) of a given active query. A query is considered active if either the compilation
or execution is in progress. The variable_input column output is returned as a multiple value pair
of the form token=value. For more information, see “Considerations For Obtaining Statistics
For Each Fragment-Instance of an Active Query” (page 460).
RMS is enabled and available all the time.
This chapter includes:

• “Retrieving SQL Runtime Statistics” (page 443)

• “Displaying SQL Runtime Statistics” (page 447)

• “Gathering Statistics About RMS ” (page 457)

• “Using the QUERYID_EXTRACT Function” (page 459)

• “Considerations For Obtaining Statistics For Each Fragment-Instance of an Active Query”
(page 460)

PERTABLE and OPERATOR Statistics
The SQL database engine determines which type of statistics collection is appropriate for the query.
The RMS infrastructure provides the runtime metrics about a query while a query is executing. You
can identify queries that are using excessive resources, suspend a query to determine its impact
on resources, and cancel a query, when necessary. PERTABLE statistics count rows and report rows
estimated in the operators in the disk processes and time spent in the ESP processes. Although
PERTABLE statistics can deduce when all the rows have been read from the disks, it is impossible
to correctly assess the current state of the query.
Complex queries such as joins, sorts, and group result sets are often too large to fit into memory,
so intermediate results must overflow to scratch files. These operators are called Big Memory
Operators (BMOs). Because of the BMOs, RMS provides OPERATOR statistics, which provide a
richer set of statistics so that the current state of a query can be determined at any time.
With OPERATOR statistics, all SQL operators are instrumented and the following statistics are
collected:
• Node time spent in the operator

• Actual number of rows flowing to the parent operator

• Estimated number of rows flowing to the parent operator (estimated by the optimizer)

• Virtual memory used in the BMO

• Amount of data overflowed to scratch files and read back to the query
For more information, see “Displaying SQL Runtime Statistics” (page 447).

Adaptive Statistics Collection
The SQL database engine chooses the appropriate statistics collection type based on the type of
query. By default, the SQL database engine statistics collection is OPERATOR statistics. You can
view the statistics in different formats: PERTABLE, ACCUMULATED, PROGRESS, and DEFAULT.
Statistics Collection is adaptive to ensure that sufficient statistics information is available without

442 SQL Runtime Statistics

causing any performance impact to the query's execution. For some queries, either no statistics or
PERTABLE statistics are collected.

Statistics Collection TypeQuery Type

PERTABLEOLT optimized queries

PERTABLEUnique queries

No statisticsCQD

No statisticsSET commands

No statisticsEXPLAIN

No statisticsGET STATISTICS

DEFAULTAll other queries

Retrieving SQL Runtime Statistics

Using the GET STATISTICS Command
The GET STATISTICS command shows statistical information for:

• A single query ID (QID)

• Active queries for a process ID (PID)

• RMS itself
A query is considered active if either compilation or execution is in progress. In the case of a
SELECT statement, a query is in execution until the statement or result set is closed. Logically, a
query is considered to be active when the compile end time is -1 and the compile start time is not
-1, or when the execute end time is -1 and the execute start time is not -1.

Syntax of GET STATISTICS

GET STATISTICS FOR QID {query-id|CURRENT}[stats-view-type]}
 |PID {process-name|[nodeid,pid]}[ACTIVE n][stats-view-type]

|RMS node-num|ALL[RESET]

stats-view-type is:

ACCUMULATED|PERTABLE|PROGRESS|DEFAULT

QID
Required keyword if requesting statistics for a specific query.
query-id

is the query ID. You must put the query-id in double quotes if the user name in the query
ID contains lower case letters or if the user name contains a period.

NOTE: The query-id is a unique identifier for the SQL statement generated when the
query is compiled (prepared). The query-id is visible for queries executed through certain
TrafCI commands.

CURRENT
provides statistics for the most recently prepared or executed statement in the same session
where you run the GET STATISTICS FOR QID CURRENT command. You must issue the GET
STATISTICS FOR QID CURRENT command immediately after the PREPARE or EXECUTE
statement.

Retrieving SQL Runtime Statistics 443

PID
Required keyword if requesting statistics for an active query in a given process.
process-name

is the name of the process ID (PID) in the format: $Znnn. The process name can be for the
master (MXOSRVR) or executor server process (ESP). If the process name corresponds to
the ESP, the ACTIVE n query is just the nth query in that ESP and might not be the currently
active query in the ESP.

ACTIVE n

describes which of the active queries for which RMS returns statistics. ACTIVE 1 is the
default. ACTIVE 1 returns statistics for the first active query. ACTIVE 2 returns statistics for
the second active query.

stats-view-type

sets the statistics view type to a different format. Statistics are collected at the operator level
by default. For exceptions, see “Adaptive Statistics Collection” (page 442).
ACCUMULATED

causes the statistics to be displayed in an aggregated summary across all tables in the
query.

PERTABLE
displays statistics for each table in the query. This is the default stats-view-type
although statistics are collected at the operator level. If the collection occurs at a lower level
due to Adaptive Statistics, the default is the lowered collection level. For more information,
see “Adaptive Statistics Collection” (page 442)

PROGRESS
displays rows of information corresponding to each of the big memory operators (BMO)
operators involved in the query, in addition to pertable stats-view-type. For more
information about BMOs, see “PERTABLE and OPERATOR Statistics” (page 442).

DEFAULT
displays statistics in the same way as it is collected.

RMS
Required keyword if requesting statistics about RMS itself.
node-num

returns the statistics about the RMS infrastructure for a given node.
ALL

returns the statistics about the RMS infrastructure for every node in the cluster.
RESET

resets the cumulative RMS statistics counters.

Examples of GET STATISTICS
These examples show the runtime statistics that various GET STATISTICS commands return. For
more information about the runtime statistics and RMS counters, see “Displaying SQL Runtime
Statistics” (page 447).
• This GET STATISTICS command returns PERTABLE statistics for the most recently executed

statement in the same session:
SQL>get statistics for qid current;
Qid MXID1100801837021216821167247667200000000030000_59_SQL_CUR_6
Compile Start Time 2011/03/30 07:29:15.332216
Compile End Time 2011/03/30 07:29:15.339467
Compile Elapsed Time 0:00:00.007251
Execute Start Time 2011/03/30 07:29:15.383077
Execute End Time 2011/03/30 07:29:15.470222
Execute Elapsed Time 0:00:00.087145
State CLOSE
Rows Affected 0

444 SQL Runtime Statistics

SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 0
Estimated Used Rows 0
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 1
Number of Cpus 1
Execution Priority -1
Transaction Id -1
Source String SELECT
CUR_SERVICE,PLAN,TEXT,CUR_SCHEMA,RULE_NAME,APPL_NAME,SESSION_NAME,DSN_NAME,ROLE_NAME,DEFAULT_SCHEMA_ACCESS_ONLY
 FROM(VALUES(CAST('HP_DEFAULT_SERVICE' as VARCHAR(50)),CAST(0 AS INT),CAST(0 AS INT),CAST('NEO.USR' as
VARCHAR(260)),CAST('' as VARCHAR(
SQL Source Length 548
Rows Returned 1
First Row Returned Time 2011/03/30 07:29:15.469778
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
SQL Process Busy Time 0
UDR Process Busy Time 0
SQL Space Allocated 32 KB
SQL Space Used 3 KB
SQL Heap Allocated 7 KB
SQL Heap Used 1 KB
EID Space Allocated 0 KB
EID Space Used 0 KB
EID Heap Allocated 0 KB
EID Heap Used 0 KB
Processes Created 0
Process Create Time 0
Request Message Count 0
Request Message Bytes 0
Reply Message Count 0
Reply Message Bytes 0
Scr. Overflow Mode DISK
Scr File Count 0
Scr. Buffer Blk Size 0
Scr. Buffer Blks Read 0
Scr. Buffer Blks Written 0
Scr. Read Count 0
Scr. Write Count 0

--- SQL operation complete.

• This GET STATISTICS command returns PERTABLE statistics for the specified query ID (note
that this command should be issued in the same session):
SQL>get statistics for qid "MXID1100800517921216818752807267200000000030000_48_SQL_CUR_2";
Qid MXID1100800517921216818752807267200000000030000_48_SQL_CUR_2
Compile Start Time 2011/03/30 00:53:21.382211
Compile End Time 2011/03/30 00:53:22.980201
Compile Elapsed Time 0:00:01.597990
Execute Start Time 2011/03/30 00:53:23.079979
Execute End Time -1
Execute Elapsed Time 7:16:13.494563
State OPEN
Rows Affected -1
SQL Error Code 0
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 2,487,984
Estimated Used Rows 2,487,984
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 129
Number of Cpus 9
Execution Priority -1
Transaction Id 34359956800
Source String select count(*) from
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT K,
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT J,
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT H,
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT G
SQL Source Length 220
Rows Returned 0
First Row Returned Time -1
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
SQL Process Busy Time 830,910,830,000
UDR Process Busy Time 0
SQL Space Allocated 179,049 KB
SQL Space Used 171,746 KB
SQL Heap Allocated 1,140,503 KB
SQL Heap Used 1,138,033 KB

Retrieving SQL Runtime Statistics 445

EID Space Allocated 46,080 KB
EID Space Used 42,816 KB
EID Heap Allocated 18,624 KB
EID Heap Used 192 KB
Processes Created 32
Process Create Time 799,702
Request Message Count 202,214
Request Message Bytes 27,091,104
Reply Message Count 197,563
Reply Message Bytes 1,008,451,688
Scr. Overflow Mode DISK
Scr File Count 0
Scr. Buffer Blk Size 0
Scr. Buffer Blks Read 0
Scr. Buffer Blks Written 0
Scr. Read Count 0
Scr. Write Count 0

Table Name
 Records Accessed Records Used Disk Message Message Lock Lock
 Disk Process Open Open
 Estimated/Actual Estimated/Actual I/Os Count Bytes Escl wait
 Busy Time Count Time
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT(H)
 621,996 621,996
 621,998 621,998 0 441 10,666,384 0 0
 303,955 32 15,967
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT(J)
 621,996 621,996
 621,998 621,998 0 439 10,666,384 0 0
 289,949 32 19,680
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT(K)
 621,996 621,996
 621,998 621,998 0 439 10,666,384 0 0
 301,956 32 14,419
MANAGEABILITY.INSTANCE_REPOSITORY.EVENTS_TEXT(G)
 0 621,996
 0 0 0 192 4,548,048 0 0
 0 32 40,019

--- SQL operation complete.

• This GET STATISTICS command returns ACCUMULATED statistics for the most recently executed
statement in the same session:
SQL>get statistics for qid current accumulated;

Qid MXID1100802517321216821277534304000000000340000_957_SQL_CUR_6
Compile Start Time 2011/03/30 08:05:07.646667
Compile End Time 2011/03/30 08:05:07.647622
Compile Elapsed Time 0:00:00.000955
Execute Start Time 2011/03/30 08:05:07.652710
Execute End Time 2011/03/30 08:05:07.740461
Execute Elapsed Time 0:00:00.087751
State CLOSE
Rows Affected 0
SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 0
Estimated Used Rows 0
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 0
Number of Cpus 0
Execution Priority -1
Transaction Id -1
Source String SELECT
CUR_SERVICE,PLAN,TEXT,CUR_SCHEMA,RULE_NAME,APPL_NAME,SESSION_NAME,DSN_NAME,ROLE_NAME,DEFAULT_SCHEMA_ACCESS_ONLY
 FROM(VALUES(CAST('HP_DEFAULT_SERVICE' as VARCHAR(50)),CAST(0 AS INT),CAST(0 AS INT),CAST('NEO.SCH' as
VARCHAR(260)),CAST('' as VARCHAR(
SQL Source Length 548
Rows Returned 1
First Row Returned Time 2011/03/30 08:05:07.739827
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
Accessed Rows 0
Used Rows 0
Message Count 0
Message Bytes 0
Stats Bytes 0
Disk IOs 0
Lock Waits 0
Lock Escalations 0
Disk Process Busy Time 0
SQL Process Busy Time 0
UDR Process Busy Time 0
SQL Space Allocated 32 KB
SQL Space Used 3 KB

446 SQL Runtime Statistics

SQL Heap Allocated 7 KB
SQL Heap Used 1 KB
EID Space Allocated 0 KB
EID Space Used 0 KB
EID Heap Allocated 0 KB
EID Heap Used 0 KB
Opens 0
Open Time 0
Processes Created 0
Process Create Time 0
Request Message Count 0
Request Message Bytes 0
Reply Message Count 0
Reply Message Bytes 0
Scr. Overflow Mode UNKNOWN
Scr. File Count 0
Scr. Buffer Blk Size 0
Scr. Buffer Blks Read 0
Scr. Buffer Blks Written 0
Scr. Read Count 0
Scr. Write Count 0

--- SQL operation complete.

• These GET STATISTICS commands return PERTABLE statistics for the first active query in the
specified process ID:
SQL>get statistics for pid 0,27195;
SQL>get statistics for pid $Z000F3R;

Displaying SQL Runtime Statistics
By default, GET STATISTICS displays table-wise statistics (PERTABLE). If you want to view the statistics
in a different format, use the appropriate view option of the GET STATISTICS command.
RMS provides abbreviated statistics information for prepared statements and full runtime statistics
for executed statements.
Table 3 (page 447) shows the RMS counters that are returned by GET STATISTICS, tokens from the
STATISTICS table-valued function that relate to the RMS counters, and descriptions of the counters
and tokens.

Table 3 RMS Counter Information for SQL Runtime Statistics

Description
Tokens in STATISTICS
Table-Valued FunctionCounter Name

A unique ID generated for each query. Each time a SQL statement
is prepared, a new query ID is generated.

QidQid

Time when the query compilation started or time when PREPARE
for this query started.

CompStartTimeCompile Start Time

Time when the query compilation ended or time when PREPARE
for this query ended.

CompEndTimeCompile End Time

Amount of actual time to prepare the query.CompElapsedTimeCompile Elapsed Time

Time when query execution started.ExeStartTimeExecute Start Time

Time when query execution ended. When a query is executing,
Execute End Time is –1.

ExeEndTimeExecute End Time

Amount of actual time used by the SQL executor to execute the
query.

ExeElapsedTimeExecute Elapsed Time

Internally used.StateState

Represents the number of rows affected by the INSERT, UPDATE,
or DELETE (IUD) SQL statements. Value of –1 for SELECT statements
or non-IUD SQL statements.

RowsAffectedRows Affected

Top-level error code returned by the query, indicating whether the
query completed with warnings, errors, or successfully. A positive

SQLErrorCodeSQL Error Code

number indicates a warning. A negative number indicates an

Displaying SQL Runtime Statistics 447

Table 3 RMS Counter Information for SQL Runtime Statistics (continued)

Description
Tokens in STATISTICS
Table-Valued FunctionCounter Name

error. The value returned may not be accurate up to the point GET
STATISTICS was executed.

Error code returned to the statistics collector while obtaining
statistics from RMS. If an error code, counter values may be
incorrect. Reissue the GET STATISTICS command.

StatsErrorCodeStats Error Code

Type of DML statement and enum value:QueryTypeQuery Type
• SQL_SELECT_UNIQUE=1

• SQL_SELECT_NON_UNIQUE=2

• SQL_INSERT_UNIQUE=3

• SQL_INSERT_NON_UNIQUE=4

• SQL_UPDATE_UNIQUE=5

• SQL_UPDATE_NON_UNIQUE=6

• SQL_DELETE_UNIQUE=7

• SQL_DELETE_NON_UNIQUE=8

• SQL_CONTROL=9

• SQL_SET_TRANSACTION=10

• SQL_SET_CATALOG=11

• SQL_SET_SCHEMA=12

• SQL_CALL_NO_RESULT_SETS=13

• SQL_CALL_WITH_RESULT_SETS=14

• SQL_SP_RESULT_SET=15

• SQL_INSERT_ROWSET_SIDETREE=16

• SQL_CAT_UTIL=17

• SQL_EXE_UTIL=18

• SQL_OTHER=1

• SQL_UNKNOWN=0

Compiler's estimated number of rows accessed by the executor
in TSE.

EstRowsAccessedEstimated Accessed Rows

Compiler's estimated number of rows returned by the executor in
TSE after applying the predicates.

EstRowsUsedEstimated Used Rows

A unique ID for the parent query. If there is no parent query ID
associated with the query, RMS returns NONE. For more
information, see “Using the Parent Query ID” (page 455).

parentQidParent Qid

A unique ID for the child query. If there is no child query, then
there will be no child query ID and RMS returns NONE. For more
information, see “Child Query ID” (page 456).

childQidChild Qid

Represents the number of SQL processes (excluding TSE processes)
involved in executing the query.

numSqlProcsNumber of SQL Processes

Represents the number of nodes that SQL is processing the query.numCpusNumber of CPUs

Represents the transaction ID of the transaction involved in
executing the query. When no transaction exists, the Transaction
ID is -1.

transIdTransaction ID

Contains the first 254 bytes of source string.sqlSrcSource String

The actual length of the SQL source string.sqlSrcLenSQL Source Length

448 SQL Runtime Statistics

Table 3 RMS Counter Information for SQL Runtime Statistics (continued)

Description
Tokens in STATISTICS
Table-Valued FunctionCounter Name

Represents the number of rows returned from the root operator at
the master executor process.

rowsReturnedRows Returned

Represents the actual time that the first row is returned by the
master root operator.

firstRowReturnTimeFirst Row Returned Time

The error code that triggered Automatic Query Retry (AQR) for
the most recent retry. If the value is not 0, this is the error code
that triggered the most recent AQR.

LastErrorBeforeAQRLast Error Before AQR

The number of retries for the current query until now.AQRNumRetriesNumber of AQR retries

Delay in seconds that SQL waited before initiating AQR.DelayBeforeAQRDelay before AQR

When a process is under virtual memory pressure, the execution
space occupied by the queries executed much earlier will be

reclaimSpaceCntNo. of times reclaimed

reclaimed to free up space for the upcoming queries. This counter
represents how many times this particular query is reclaimed.

statsRowType can be one of the following:statsRowType
• SQLSTATS_DESC_OPER_STATS=0

• SQLSTATS_DESC_ROOT_OPER_STATS=1

• SQLSTATS_DESC_PERTABLE_STATS=11

• SQLSTATS_DESC_UDR_STATS=13

• SQLSTATS_DESC_MASTER_STATS=15

• SQLSTATS_DESC_RMS_STATS=16

• SQLSTATS_DESC_BMO_STATS=17

Collection type, which is OPERATOR_STATS by default. StatsType
can be one of the following:

StatsTypeStats Collection Type

• SQLCLI_NO_STATS=0

• SQLCLI_ACCUMULATED_STATS=2

• SQLCLI_PERTABLE_STATS=3

• SQLCLI_OPERATOR_STATS=5

Actual number of rows accessed by the executor in TSE.AccessedRowsAccessed Rows (Rows
Accessed)

Number of rows returned by TSE after applying the predicates.
In a push down plan, TSE may not return all the used rows.

UsedRowsUsed Rows (Rows Used)

Count of the number of messages sent to TSE.NumMessagesMessage Count

Count of the message bytes exchanged with TSE.MessageBytesMessage Bytes

Number of bytes returned for statistics counters from TSE.StatsBytesStats Bytes

Number of physical disk reads for accessing the tables.DiskIOsDisk IOs

Number of times this statement had to wait on a conflicting lock.LockWaitsLock Waits

Number of times row locks escalated to a file lock during the
execution of this statement.

EscalationsLock Escalations

An approximation of the total node time in microseconds spent
by TSE for executing the query.

ProcessBusyTimeDisk Process Busy Time

An approximation of the total node time in microseconds spent in
the master and ESPs involved in the query.

CpuTimeSQL Process Busy Time

An approximation of the total node time in microseconds spent in
the UDR server process.

udrCpuTimeUDR Process Busy Time
(same as UDR CPU Time)

Displaying SQL Runtime Statistics 449

Table 3 RMS Counter Information for SQL Runtime Statistics (continued)

Description
Tokens in STATISTICS
Table-Valued FunctionCounter Name

MXUDR process ID.UDRServerIdUDR Server ID

Actual timestamp of the recent request sent to MXUDR.Recent Request Timestamp

Actual timestamp of the recent request received by MXUDR.Recent Reply Timestamp

The amount of “space” type of memory in KB allocated in the
master and ESPs involved in the query.

SpaceTotal1SQL Space Allocated1

Amount of “space” type of memory in KB used in master and ESPs
involved in the query.

SpaceUsed1SQL Space Used1

Amount of “heap” type of memory in KB allocated in master and
ESPs involved in the query.

HeapTotal2SQL Heap Allocated2

Amount of “heap” type of memory in KB used in master and ESPs
involved in the query.

HeapUsed2SQL Heap Used2

Amount of “space” type of memory in KB allocated in the executor
in TSEs involved in the query.

Dp2SpaceTotalEID Space Allocated1

Amount of “space” type of memory in KB used in the executor in
TSEs involved in the query.

Dp2SpaceUsedEID Space Used1

Amount of “heap” memory in KB allocated in the executor in TSEs
involved in the query.

Dp2HeapTotalEID Heap Allocated2

Amount of “heap” memory in KB used in the executor in TSEs
involved in the query.

Dp2HeapUsedEID Heap Used2

Number of OPEN calls performed by the SQL executor on behalf
of this statement.

OpensOpens

Time (in microseconds) this process spent doing OPENs on behalf
of this statement.

OpenTimeOpen Time

The number of processes (ESPs and MXCMPs) created by the
master executor for this statement.

NewprocessProcesses Created

The elapsed time taken to create these processes.NewprocessTimeProcess Create Time

Name of a table in the query.AnsiNameTable Name

Number of messages initiated from the master to ESPs or from the
ESP to ESPs.

reqMsgCntRequest Message Count

Number of message bytes that are sent from the master to ESPs
or from the ESP to ESPs as part of the request messages.

regMsgBytesRequest Message Bytes

Number of reply messages from the ESPs for the message requests.replyMsgCntReply Message Count

Number of bytes sent as part of the reply messages.replyMsgBytesReply Message Bytes

Represents the scratch overflow mode. Modes are DISK_TYPE or
SSD_TYPE.

scrOverFlowModeScr. Overflow Mode

Number of scratch files created to execute the query. Default file
size is 2 GB.

scrFileCountScr. File Count

Size of buffer block that is used to read from/write to the scratch
file.

scrBufferBlockSizeScr. Buffer Blk Size

Number of scratch buffer blocks read from the scratch file.scrBufferReadScr. Buffer Blks Read

Number of scratch buffer blocks written to the scratch file. Exact
size of scratch file can be obtained by multiplying Scr. Buffer Blk
Size by this counter.

scrBufferWrittenScr. Buffer Blks Written

450 SQL Runtime Statistics

Table 3 RMS Counter Information for SQL Runtime Statistics (continued)

Description
Tokens in STATISTICS
Table-Valued FunctionCounter Name

Number of file-system calls involved in reading buffer blocks from
scratch files. One call reads multiple buffer blocks at once.

scrReadCountScr. Read Count

Number of file-system calls involved in writing buffer blocks to
scratch files. One call writes multiple buffer blocks at once.

scrWriteCountScr. Write Count

Amount of “heap” type of memory in KB used in the BMO
operator(s). The BMO operators are HASH_JOIN (and all varieties

bmoHeapUsedBMO Heap Used

of HASH_JOIN), HASH_GROUPBY (and all varieties of
HASH_GROUPBY), and SORT (and all varieties of SORT).

Amount of “heap” type of memory in KB allocated in the BMO
operator(s).

bmoHeapTotalBMO Heap Total

Maximum amount of memory used in the BMO operator.bmoHeapWMBMO Heap High
Watermark

Size in KB for space buffers allocated for the type of memory.bmoSpaceBufferSizeBMO Space Buffer Size

Count of space buffers allocated for the type of memory.bmoSpaceBufferCountBMO Space Buffer Count

Actual number of rows accessed by the executor in TSE.Records Accessed
(Estimated / Actual)

Number of rows returned by TSE after applying the predicates.
In a push-down plan, TSE may not return all the used rows.

Records Used (Estimated
/ Actual)

TDB ID of the operator at the time of execution of the query.ID

Left child operator ID.LCID

Right child operator ID.RCID

Parent operator ID (TDB-ID).PaID

Explain plan operator ID.ExID

Fragment ID to which this operator belongs.Frag

Number of times the operator is scheduled in SQL executor.Dispatches

Approximation of the node time spent by the operator to execute
the query.

OperCpuTimeOper CPU Time

Approximation of the number of tuples that would flow up to the
parent operator.

Est. Records Used

Actual number of tuples that flowed up to the parent operator.Act. Records Used

Name of the process ID (PID) in the format: $Znnn. The process
name can be for the master (MXOSRVR) or executor server process
(ESP).

ProcessId

1 Space is memory allocated from a pool owned by the executor. The executor operators requesting the memory are not
expected to return the memory until the statement is deallocated.

2 Heap memory is used for temporary allocations. Operators may return heap memory before the statement is deallocated.
This allows the memory to be reused as needed.

Examples of Displaying SQL Runtime Statistics

Statistics of a Prepared Statement
This example shows the output of the currently prepared statement:
SQL>get statistics for qid current;

Qid MXID1100000649721215837305997952000000001930000_4200_Q1

Displaying SQL Runtime Statistics 451

Compile Start Time 2010/12/06 10:55:40.931000
Compile End Time 2010/12/06 10:55:42.131845
Compile Elapsed Time 0:00:01.200845
Execute Start Time -1
Execute End Time -1
Execute Elapsed Time 0:00:00.000000
State CLOSE
Rows Affected -1
SQL Error Code 0
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 100,010
Estimated Used Rows 100,010
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 0
Number of Cpus 0
Execution Priority -1
Transaction Id -1
Source String select * from t100k where b in (select b from t10)
SQL Source Length 50
Rows Returned 0
First Row Returned Time -1
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS

--- SQL operation complete.

PERTABLE Statistics of an Executing Statement
This example shows the PERTABLE statistics of an executing statement:
SQL>get statistics for qid current;

Qid MXID1100000649721215837305997952000000001930000_4200_Q1
Compile Start Time 2010/12/06 10:55:40.931000
Compile End Time 2010/12/06 10:55:42.131845
Compile Elapsed Time 0:00:01.200845
Execute Start Time 2010/12/06 10:56:16.254686
Execute End Time 2010/12/06 10:56:18.434873
Execute Elapsed Time 0:00:02.180187
State CLOSE
Rows Affected 0
SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 100,010
Estimated Used Rows 100,010
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 7
Number of Cpus 1
Execution Priority -1
Transaction Id 18121
Source String select * from t100k where b in (select b from t10)
SQL Source Length 50
Rows Returned 100
First Row Returned Time 2010/12/06 10:56:18.150977
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
SQL Process Busy Time 600,000
UDR Process Busy Time 0
SQL Space Allocated 1,576 KB
SQL Space Used 1,450 KB
SQL Heap Allocated 199 KB
SQL Heap Used 30 KB
EID Space Allocated 704 KB
EID Space Used 549 KB
EID Heap Allocated 582 KB
EID Heap Used 6 KB
Processes Created 4
Process Create Time 750,762
Request Message Count 701
Request Message Bytes 135,088
Reply Message Count 667
Reply Message Bytes 3,427,664
Scr. Overflow Mode DISK

452 SQL Runtime Statistics

Scr File Count 0
Scr. Buffer Blk Size 0
Scr. Buffer Blks Read 0
Scr. Buffer Blks Written 0

Table Name
 Records Accessed Records Used Disk Message Message Lock Lock Disk Process Open Open

 Estimated/Actual Estimated/Actual I/Os Count Bytes Escl wait Busy Time Count Time
NEO.SCTEST.T10
 10 10
 10 10 0 2 5,280 0 0 2,000 0 0
NEO.SCTEST.T100K
 100,000 100,000
 100,000 100,000 0 110 3,235,720 0 0 351,941 4
48,747

--- SQL operation complete.

ACCUMULATED Statistics of an Executing Statement
This example shows the ACCUMULATED statistics of an executing statement:
SQL>get statistics for qid current accumulated;

Qid MXID1100000649721215837305997952000000001930000_4200_Q1
Compile Start Time 2010/12/06 10:55:40.931000
Compile End Time 2010/12/06 10:55:42.131845
Compile Elapsed Time 0:00:01.200845
Execute Start Time 2010/12/06 10:56:16.254686
Execute End Time 2010/12/06 10:56:18.434873
Execute Elapsed Time 0:00:02.180187
State CLOSE
Rows Affected 0
SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 100,010
Estimated Used Rows 100,010
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 7
Number of Cpus 1
Execution Priority -1
Transaction Id 18121
Source String select * from t100k where b in (select b from t10)
SQL Source Length 50
Rows Returned 100
First Row Returned Time 2010/12/06 10:56:18.150977
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
Accessed Rows 100,010
Used Rows 100,010
Message Count 112
Message Bytes 3,241,000
Stats Bytes 2,904
Disk IOs 0
Lock Waits 0
Lock Escalations 0
Disk Process Busy Time 353,941
SQL Process Busy Time 600,000
UDR Process Busy Time 0
SQL Space Allocated 1,576 KB
SQL Space Used 1,450 KB
SQL Heap Allocated 199 KB
SQL Heap Used 30 KB
EID Space Allocated 704 KB
EID Space Used 549 KB
EID Heap Allocated 582 KB
EID Heap Used 6 KB
Opens 4
Open Time 48,747
Processes Created 4

Displaying SQL Runtime Statistics 453

Process Create Time 750,762
Request Message Count 701
Request Message Bytes 135,088
Reply Message Count 667
Reply Message Bytes 3,427,664
Scr. Overflow Mode DISK
Scr. File Count 0
Scr. Buffer Blk Size 0
Scr. Buffer Blks Read 0
Scr. Buffer Blks Written 0

--- SQL operation complete.

PROGRESS Statistics of an Executing Statement
This example shows the PROGRESS statistics of an executing statement:
SQL>get statistics for qid current PROGRESS;
Qid MXID1100000649721215837305997952000000001930000_4200_Q1
Compile Start Time 2010/12/06 10:55:40.931000
Compile End Time 2010/12/06 10:55:42.131845
Compile Elapsed Time 0:00:01.200845
Execute Start Time 2010/12/06 10:56:16.254686
Execute End Time 2010/12/06 10:56:18.434873
Execute Elapsed Time 0:00:02.180187
State CLOSE
Rows Affected 0
SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 100,010
Estimated Used Rows 100,010
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 7
Number of Cpus 1
Execution Priority -1
Transaction Id 18121
Source String select * from t100k where b in (select b from t10)
SQL Source Length 50
Rows Returned 100
First Row Returned Time 2010/12/06 10:56:18.150977
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS
SQL Process Busy Time 600,000
SQL Space Allocated 1,576 KB
SQL Space Used 1,450 KB
SQL Heap Allocated 199 KB
SQL Heap Used 30 KB
EID Space Allocated 704 KB
EID Space Used 549 KB
EID Heap Allocated 582 KB
EID Heap Used 6 KB
Processes Created 4
Process Create Time 750,762
Request Message Count 701
Request Message Bytes 135,088
Reply Message Count 667
Reply Message Bytes 3,427,664

Table Name
 Records Accessed Records Used Disk Message Message Lock Lock Disk
 Process Open Open
 Estimated/Actual Estimated/Actual I/Os Count Bytes Escl wait
Busy Time Count Time
NEO.SCTEST.T10
 10 10
 10 10 0 2 5,280 0 0
 2,000 0 0
NEO.SCTEST.T100K
 100,000 100,000
 100,000 100,000 0 110 3,235,720 0 0
 351,941 4 48,747

 Id TDB Name Mode Phase Phase Start Time
 BMO Heap Used BMO Heap Total BMO Heap WM BMO Space BufSz BMO Space BufCnt
 File Count Scratch Buffer Block Size/Read/Written Cpu Time
 16 EX_HASHJ DISK
 0 0 0 56 0
 0 -1 0 0 60,000

DEFAULT Statistics of an Executing Statement
This example shows the DEFAULT statistics of an executing statement:

454 SQL Runtime Statistics

SQL>get statistics for qid current DEFAULT;
Qid MXID1100000649721215837305997952000000001930000_4200_Q1
Compile Start Time 2010/12/06 10:55:40.931000
Compile End Time 2010/12/06 10:55:42.131845
Compile Elapsed Time 0:00:01.200845
Execute Start Time 2010/12/06 10:56:16.254686
Execute End Time 2010/12/06 10:56:18.434873
Execute Elapsed Time 0:00:02.180187
State CLOSE
Rows Affected 0
SQL Error Code 100
Stats Error Code 0
Query Type SQL_SELECT_NON_UNIQUE
Estimated Accessed Rows 100,010
Estimated Used Rows 100,010
Parent Qid NONE
Child Qid NONE
Number of SQL Processes 7
Number of Cpus 1
Execution Priority -1
Transaction Id 18121
Source String select * from t100k where b in (select b from t10)
SQL Source Length 50
Rows Returned 100
First Row Returned Time 2010/12/06 10:56:18.150977
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS

Id LCId RCId PaId ExId Frag TDB Name Dispatches Oper CPU Time Est. Records Used Act. Records
 Used Details

21 20 . . 10 0 EX_ROOT 15 0 0
 100
20 19 . 21 9 0 EX_SPLIT_TOP 13 0 100
 100
19 18 . 20 9 0 EX_SEND_TOP 20 0 100
 100
18 17 . 19 9 2 EX_SEND_BOTTOM 72 0 100
 100
17 16 . 18 9 2 EX_SPLIT_BOTTOM 88 0 100
 100
16 15 7 17 8 2 EX_HASHJ 1,341 60,000 100
 100
15 14 . 16 7 2 EX_SPLIT_TOP 1,343 20,000 100,000
 100,000
14 13 . 15 7 2 EX_SEND_TOP 1,343 120,000 100,000
 100,000
13 12 . 14 7 5 EX_SEND_BOTTOM 1,534 200,000 100,000
 100,000
12 11 . 13 7 5 EX_SPLIT_BOTTOM 493 70,000 100,000
 100,000
11 10 . 12 6 5 EX_SPLIT_TOP 486 70,000 100,000
 100,000
10 9 . 11 5 5 EX_PARTN_ACCESS 1,634 60,000 100,000
 100,000
9 8 . 10 5 6 EX_EID_ROOT 12 0 100,000
 0
8 . . 9 4 6 EX_DP2_SUBS_OPER 160 170,000 100,000
 100,000
7 6 . 16 3 2 EX_SPLIT_TOP 16 0 10
 10
6 5 . 7 3 2 EX_SEND_TOP 17 0 10
 10
5 4 . 6 3 3 EX_SEND_BOTTOM 17 0 10
 10
4 3 . 5 3 3 EX_SPLIT_BOTTOM 9 0 10
 10
3 2 . 4 2 3 EX_PARTN_ACCESS 6 0 10
 10
2 1 . 3 2 4 EX_EID_ROOT 3 0 10
 0
1 . . 2 1 4 EX_DP2_SUBS_OPER 3 10,000 10
 10

--- SQL operation complete.

Using the Parent Query ID
When executed, some SQL statements execute additional SQL statements, resulting in a parent-child
relationship. For example, when executed, the UPDATE STATISTICS, MAINTAIN, and CALL
statements execute other SQL statements called child queries. The child queries might execute even
more child queries, thus introducing a hierarchy of SQL statements with parent-child relationships.
The parent query ID maps the child query to the immediate parent SQL statement, helping you to
trace the child SQL statement back to the user-issued SQL statement.

Displaying SQL Runtime Statistics 455

The parent query ID is available as a counter, Parent Qid, in the runtime statistics output. See
Table 1-1 (page 11). A query directly issued by a user will not have a parent query ID and the
counter will indicate "None."

Child Query ID
In many cases, a child query will execute in the same node as its parent. In such cases, the GET
STATISTICS report on the parent query ID will contain a query ID value for the child query which
executed most recently. Conversely, if no child query exists, or the child query is executing in a
different node, no child query ID will be reported.
The following examples shows GET STATISTICS output for both the parent and one child query
which are executed when the user issues a CREATE TABLE AS command:
SQL> -- get statistics for the parent query

SQL>get statistics for qid
+>MXID01001091200212164828759544076000000000217DEFAULT_MXCI_USER00_34___SQLCI_DML_LAST__
+>;
Qid MXID11001091200212164828759544076000000000217DEFAULT_MXCI_USER00_34___SQLCI_DML_LAST__
Compile Start Time 2011/02/18 14:49:04.606513
Compile End Time 2011/02/18 14:49:04.631802
Compile Elapsed Time 0:00:00.025289
Execute Start Time 2011/02/18 14:49:04.632142
Execute End Time -1
Execute Elapsed Time 0:03:29.473604
State CLOSE
Rows Affected -1
SQL Error Code 0
Stats Error Code 0
Query Type SQL_INSERT_NON_UNIQUE
Estimated Accessed Rows 0
Estimated Used Rows 0
Parent Qid NONE
Child Qid MXID11001091200212164828759544076000000000217DEFAULT_MXCI_USER00_37_86
Number of SQL Processes 1
Number of Cpus 1
Execution Priority 148
Transaction Id -1
Source String create table odetail hash partition by (ordernum, partnum) as select * from
SALES.ODETAIL;
SQL Source Length 91
Rows Returned 0
First Row Returned Time -1
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS

Id LCId RCId PaId ExId Frag TDB Name Dispatches Oper CPU Time Est. Records Used Act. Records
 Used Details

2 1 . . 2 0 EX_ROOT 0 0 0
 0
1 . . 2 1 0 CREATE_TABLE_AS 0 0 0
 0

--- SQL operation complete.

SQL> -- get statistics for the child query

SQL>get statistics for qid
+>MXID11001091200212164828759544076000000000217DEFAULT_MXCI_USER00_37_86
+>;
Qid MXID01001091200212164828759544076000000000217DEFAULT_MXCI_USER00_37_86
Compile Start Time 2011/02/18 14:49:07.632898
Compile End Time 2011/02/18 14:49:07.987334
Compile Elapsed Time 0:00:00.354436
Execute Start Time 2011/02/18 14:49:07.987539
Execute End Time -1
Execute Elapsed Time 0:02:33.173486
State OPEN
Rows Affected -1
SQL Error Code 0
Stats Error Code 0
Query Type SQL_INSERT_NON_UNIQUE
Estimated Accessed Rows 101
Estimated Used Rows 101
Parent Qid MXID101001091200212164828759544076000000000217DEFAULT_MXCI_USER00_34___SQLCI_DML_LAST__
Child Qid NONE
Number of SQL Processes 1
Number of Cpus 1
Execution Priority 148
Transaction Id \ARC0101(2).9.9114503
Source String insert using sideinserts into CAT.SCH.ODETAIL select * from SALES.ODETAIL;

456 SQL Runtime Statistics

SQL Source Length 75
Rows Returned 0
First Row Returned Time -1
Last Error before AQR 0
Number of AQR retries 0
Delay before AQR 0
No. of times reclaimed 0
Stats Collection Type OPERATOR_STATS

Id LCId RCId PaId ExId Frag TDB Name Dispatches Oper CPU Time Est. Records Used Act. Records
 Used Details

4 3 . 9 3 0 EX_SPLIT_TOP 1 10,062 100
 0
3 2 . 4 2 0 EX_PARTN_ACCESS 66 9,649 100
 0

--- SQL operation complete.

Gathering Statistics About RMS
Use the GET STATISTICS FOR RMS command to get information about RMS itself. The GET
STATISTICS FOR RMS statement can be used to retrieve information about one node or all nodes.
An individual report is provided for each node.

DescriptionCounter

The node number of the Trafodion cluster.CPU

Internal version of RMSRMS Version

SQL Statistics control process ID.SSCP PID

Actual timestamp when SQL statistics control process was
created.

SSCP Creation Timestamp

SQL statistics merge process ID.SSMP PID

Timestamp when SQL statistics merge was created.SSMP Creation Timestamp

Storage length of source string.Source String Store Len

Amount of memory allocated by all the queries executing
in the given node in the RMS shared segments at this
instance of time.

Stats Heap Allocated

Amount of memory used by all the queries executing in the
given node in the RMS shared segment at this instance of
time.

Stats Heap Used

High amount of memory used by all the queries executing
in the given node in the RMS shared segment until now.

Stats Heap High WM

Number of processes registered in the shared segment.No. of Process Regd.

Number of query fragments registered in the shared
segment.

No. of Query Fragments Regd.

Process ID that locked the semaphore at this instance of
time.

RMS Semaphore Owner

Number of Statistics Control Processes opened. Normally,
this should be equal to the number of nodes in the
Trafodion cluster.

No. of SSCPs Opened

Number of Statistics Control Processes with broken
communication. Usually, this should be 0.

No. of SSCPs Open Deleted

The recent timestamp at which the shared segment was
garbage collected.

Last GC Time

Number of queries that were garbage collected in the
recent GC run.

Queries GCed in Last Run

Gathering Statistics About RMS 457

DescriptionCounter

Total number of queries that were garbage collected since
the statistics reset timestamp.

Total Queries GCed

Count of the number of messages sent from the SSMP
process since the statistics reset timestamp.

SSMP Request Message Count

Number of messages bytes that are sent as part of the
request from the SSMP process since the statistics reset
timestamp.

SSMP Request Message Bytes

Count of the number of reply messages received by the
SSMP process since the statistics reset timestamp.

SSMP Reply Message Count

Number of messages bytes that are sent as part of the reply
messages received by the SSMP process since the statistics
reset timestamp.

SSMP Reply Message Bytes

Count of the number of messages sent from the SSCP
process since the statistics reset timestamp.

SSCP Request Message Count

Number of messages bytes are sent as part of the request
from the SSCP process since the statistics reset timestamp.

SSCP Request Message Bytes

Count of the number of reply messages received by the
SSCP process since the statistics reset timestamp.

SSCP Reply Message Count

Number of messages bytes that are sent as part of the reply
messages received by the SSCP process since the statistics
reset timestamp.

SSCP Reply Message Bytes

Timestamp for resetting RMS statistics.RMS Stats Reset Timestamp

SQL>get statistics for rms all;
Node name
CPU 0
RMS Version 2511
SSCP PID 19521
SSCP Priority 0
SSCP Creation Timestamp 2010/12/05 02:32:33.642752
SSMP PID 19527
SSMP Priority 0
SSMP Creation Timestamp 2010/12/05 02:32:33.893440
Source String Store Len 254
Stats Heap Allocated 0
Stats Heap Used 3,002,416
Stats Heap High WM 3,298,976
No.of Process Regd. 157
No.of Query Fragments Regd. 296
RMS Semaphore Owner -1
No.of SSCPs Opened 1
No.of SSCPs Open Deleted 0
Last GC Time 2010/12/06 10:53:46.777432
Queries GCed in Last Run 55
Total Queries GCed 167
SSMP Request Message Count 58,071
SSMP Request Message Bytes 14,161,144
SSMP Reply Message Count 33,466
SSMP Reply Message Bytes 15,400,424
SSCP Request Message Count 3,737
SSCP Request Message Bytes 837,744
SSCP Reply Message Count 3,736
SSCP Reply Message Bytes 5,015,176
RMS Stats Reset Timestamp 2010/12/05 14:32:33.891083

458 SQL Runtime Statistics

--- SQL operation complete.

Using the QUERYID_EXTRACT Function
Use the QUERYID_EXTRACT function within an SQL statement to extract components of a query ID
for use in a SQL query. The query ID, or QID, is a unique, clusterwide identifier for a query and
is generated for dynamic SQL statements whenever a SQL string is prepared.

Syntax of QUERYID_EXTRACT
The syntax of the QUERYID_EXTRACT function is:

QUERYID_EXTRACT ('query-id', 'attribute')

query-id

is the query ID in string format.
attribute

is the attribute to be extracted. The value of attribute can be one of these parts of the query
ID:

DescriptionAttribute Value

Logical node ID in Trafodion clusterSEGMENTNUM

Logical node ID in Trafodion clusterCPUNUM or CPU

Linux process ID numberPIN

Executor start timeEXESTARTTIME

Session numberSESSIONNUM

User nameUSERNAME

Session nameSESSIONNAME

Session IDSESSIONID

Query numberQUERYNUM

Statement ID or handleSTMTNAME

NOTE: The SEGMENTNUM and CPUNUM attributes are the same.

The result data type of the QUERYID_EXTRACT function is a VARCHAR with a length sufficient to
hold the result. All values are returned in string format. Here is the QUERYID_EXTRACT function in
a SELECT statement:
select queryid_extract('query-id', 'attribute-value') from (values(1)) as t1;

Examples of QUERYID_EXTRACT
• This command returns the node number of the query ID:

SQL>select substr(queryid_extract('MXID11000022675212170554548762240000000000206U6553500_21_S1', 'CPU'),1,
 20) from (values(1)) as t1;

(EXPR)
--

0

Using the QUERYID_EXTRACT Function 459

--- 1 row(s) selected.

• This command returns the PIN of the query ID:
SQL>select substr(queryid_extract('MXID11000022675212170554548762240000000000206U6553500_21_S1', 'PIN'),1,
 20) from (values(1)) as t1;

(EXPR)
--

22675

--- 1 row(s) selected.

Statistics for Each Fragment-Instance of an Active Query
You can retrieve statistics for a query while it executes by using the STATISTICS table-valued
function. Depending on the syntax used, you can obtain statistics summarizing each parallel
fragment-instance of the query, or for any operator in each fragment-instance.

Syntax of STATISTICS Table-Valued Function

table(statistics (NULL, 'qid-str'))

qid-str is:
QID=query-id[,{TDBID_DETAIL=tdb-id|DETAIL=1}]

query-id

is the system-generated query ID. For example:
QID=MXID11000022675212170554548762240000000000206U6553500_21_S1

tdb-id

is the TDB ID of a given operator. TDB values can be obtained from the report returned from
the GET STATISTICS command.

Considerations For Obtaining Statistics For Each Fragment-Instance of an Active
Query

If the DETAIL=1 or TDBID_DETAIL=tdb_id options are used when the query is not executing, the
STATISTICS table-valued function will not return any results.
The STATISTICS table-valued function can be used with a SELECT statement to return several columns.
Many different counters exist in the variable_info column. The counters in this column are
formatted as token-value pairs and the counters reported will depend on which option is used:
DETAIL=1 or TDBID_DETAIL=tdb_id. If the TDBID_DETAIL option is used, the counters reported
will also depend on the type of operator specified by the tdb_id. The reported counters can also
be determined by the statsRowType counter.
For the counter descriptions, see Table 3 (page 447). The tokens for these counters are listed in the
column “Tokens in STATISTICS Table-Valued Function”.
This query lists process names of all ESPs of an executing query identified by the given QID:
SQL>select
+>substr(variable_info,
+> position('ProcessId:' in variable_info), 20) as processes
+>from
+>table(statistics(NULL,
+>'QID=MXID11000032684212170811581160672000000000206U6553500_19_S1,DETAIL=1'))
+>group by 1;

PROCESSES

ProcessId: $Z0000GS
ProcessId: $Z0000GT

460 SQL Runtime Statistics

ProcessId: $Z0000GU
ProcessId: $Z0000GV
ProcessId: $Z0102IQ
ProcessId: $Z000RNU
ProcessId: $Z0102IR
ProcessId: $Z0102IS
ProcessId: $Z0102IT

--- 9 row(s) selected.

This query gives BMO heap used for the hash join identified as TDB #15 in an executing query
identified by the given QID:
SQL>select cast (
+> substr(variable_info,
+> position('bmoHeapUsed:' in variable_info),
+> position('bmoHeapUsed:' in variable_info) +
+> 13 + (position(' ' in
+> substr(variable_info,
+> 13 + position('bmoHeapUsed:' in variable_info))) -
+> position('bmoHeapUsed:' in variable_info)))
+> as char(25))
+> from table(statistics(NULL,
+>'QID=MXID11000021706212170733911504160000000000206U6553500_25_S1,TDBID_DETAIL=15'));

(EXPR)

bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147
bmoHeapUsed: 3147

--- 8 row(s) selected.

Statistics for Each Fragment-Instance of an Active Query 461

A Reserved Words
The words listed in this appendix are reserved for use by Trafodion SQL. To prevent syntax errors,
avoid using these words as identifiers in Trafodion SQL. In Trafodion SQL, if an operating system
name contains a reserved word, you must enclose the reserved word in double quotes (") to access
that column or object.

NOTE: In Trafodion SQL, ABSOLUTE, DATA, EVERY, INITIALIZE, OPERATION, PATH, SPACE,
STATE, STATEMENT, STATIC, and START are not reserved words.

Reserved Trafodion SQL Identifiers
Trafodion SQL treats these words as reserved when they are part of Trafodion SQL stored text.
They cannot be used as identifiers unless you enclose them in double quotes.

Table 4 Reserved SQL Identifiers — A

AGGREGATEAFTERADMINADDACTION

ANDALTERALLOCATEALLALIAS

ASCASARRAYAREANY

AVGAUTHORIZATIONATASYNCASSERTION

Table 5 Reserved SQL Identifiers — B

BITBINARYBETWEENBEGINBEFORE

BREADTHBOTHBOOLEANBLOBBIT_LENGTH

BY

Table 6 Reserved SQL Identifiers — C

CASTCASECASCADEDCASCADECALL

CHAR_LENGTHCHARACTER_LENGTHCHARACTERCHARCATALOG

COALESCECLOSECLOBCLASSCHECK

COMPLETIONCOMMITCOLUMNCOLLATIONCOLLATE

CONSTRUCTORCONSTRAINTSCONSTRAINTCONNECTIONCONNECT

CREATECOUNTCORRESPONDINGCONVERTCONTINUE

CURRENT_PATHCURRENT_DATECURRENTCUBECROSS

CURRNT_USR_INTNCURRENT_USERCURRENT_TIMESTAMPCURRENT_TIMECURRENT_ROLE

CYCLECURSOR

Table 7 Reserved SQL Identifiers — D

DECDEALLOCATEDAYDATETIMEDATE

DEFERREDDEFERRABLEDEFAULTDECLAREDECIMAL

DESCRIBEDESCDEREFDEPTHDELETE

DIAGNOSTICSDETERMINISTICDESTRUCTORDESTROYDESCRIPTOR

DOUBLEDOMAINDISTINCTDISCONNECTDICTIONARY

DYNAMICDROP

462 Reserved Words

Table 8 Reserved SQL Identifiers — E

END-EXECENDELSEIFELSEEACH

EXECEXCEPTIONEXCEPTESCAPEEQUALS

EXTRACTEXTERNALEXISTSEXECUTE

Table 9 Reserved SQL Identifiers — F

FORFLOATFIRSTFETCHFALSE

FROMFREEFRACTIONFOUNDFOREIGN

FUNCTIONFULL

Table 10 Reserved SQL Identifiers — G

GOTOGOGLOBALGETGENERAL

GROUPINGGROUPGRANT

Table 11 Reserved SQL Identifiers — H

HOURHOSTHAVING

Table 12 Reserved SQL Identifiers — I

INIMMEDIATEIGNOREIFIDENTITY

INPUTINOUTINNERINITIALLYINDICATOR

INTERSECTINTEGERINTINSERTINSENSITIVE

ITERATEISOLATIONISINTOINTERVAL

Table 13 Reserved SQL Identifiers — J

JOIN

Table 14 Reserved SQL Identifiers — K

KEY

Table 15 Reserved SQL Identifiers — L

LEADINGLATERALLASTLARGELANGUAGE

LIKELEVELLESSLEFTLEAVE

LOCATORLOCALTIMESTAMPLOCALTIMELOCALLIMIT

LOWERLOOP

Table 16 Reserved SQL Identifiers — M

MAXMATCHEDMATCHMAPMAINTAIN

MODIFYMODIFIESMINUTEMINMERGE

MONTHMODULE

Reserved Trafodion SQL Identifiers 463

Table 17 Reserved SQL Identifiers — N

NCLOBNCHARNATURALNATIONALNAMES

NOTNONENONEXTNEW

NUMERICNULLIFNULL

Table 18 Reserved SQL Identifiers — O

OLDOIDOFFOFOCTET_LENGTH

OPTIONOPERATORSOPENONLYON

OTHERSORDINALITYORDEROROPTIONS

OVERLAPSOUTPUTOUTEROUT

Table 19 Reserved SQL Identifiers — P

PENDANTPARTIALPARAMETERSPARAMETERPAD

PREORDERPREFIXPRECISIONPOSTFIXPOSITION

PRIVATEPRIORPRIMARYPRESERVEPREPARE

PUBLICPROTOTYPEPROTECTEDPROCEDUREPRIVILEGES

Table 20 Reserved SQL Identifiers — Q

QUALIFY

Table 21 Reserved SQL Identifiers — R

REFRECURSIVEREALREADSREAD

REORGANIZEREORGRELATIVEREFERENCINGREFERENCES

RETURNRESULTRESTRICTRESIGNALREPLACE

ROLLUPROLLBACKRIGHTREVOKERETURNS

ROWSROWROUTINE

Table 22 Reserved SQL Identifiers — S

SEARCHSCROLLSCOPESCHEMASAVEPOINT

SESSIONSENSITIVESELECTSECTIONSECOND

SIGNALSETSSETSESSN_USR_INTNSESSION_USER

SPECIFICSOMESMALLINTSIZESIMILAR

SQL_DECIMALSQL_DATESQL_CHARSQLSPECIFICTYPE

SQL_REALSQL_INTEGERSQL_INTSQL_FLOATSQL_DOUBLE

SQLCODESQL_VARCHARSQL_TIMESTAMPSQL_TIMESQL_SMALLINT

STRUCTURESQLWARNINGSQLSTATESQLEXCEPTIONSQLERROR

SYSTEM_USERSYNONYMSUMSUBSTRING

Table 23 Reserved SQL Identifiers — T

THANTESTTERMINATETEMPORARYTABLE

TIMEZONE_HOURTIMESTAMPTIMETHERETHEN

464 Reserved Words

Table 23 Reserved SQL Identifiers — T (continued)

TRANSLATETRANSACTIONTRAILINGTOTIMEZONE_MINUTE

TRIMTRIGGERTREATTRANSPOSETRANSLATION

TRUE

Table 24 Reserved SQL Identifiers — U

UNNESTUNKNOWNUNIQUEUNIONUNDER

USERUSAGEUPSHIFTUPPERUPDATE

USING

Table 25 Reserved SQL Identifiers — V

VARYINGVARIABLEVARCHARVALUESVALUE

VISIBLEVIRTUALVIEW

Table 26 Reserved SQL Identifiers — W

WHILEWHEREWHENEVERWHENWAIT

WRITEWORKWITHOUTWITH

Table 27 Reserved SQL Identifiers — Y

YEAR

Table 28 Reserved SQL Identifiers — Z

ZONE

Reserved Trafodion SQL Identifiers 465

B Control Query Default (CQD) Attributes
This appendix describes CQDs that are used to override system-level default settings.

HBase Environment CQDs
This section describes the CQD, “HBASE_INTERFACE” (page 466), which defines the HBase interface.

HBASE_INTERFACE

HBaseCategory

Interface to use to access HBase.Description

Specify one of these values:Values
• JNI to use a JNI interface

• JNI_TRX to use a transactional interface with HBase-trx via JNI

The default value is JNI_TRX.

Hive Environment CQDs
This section describes the CQD, “HIVE_MAX_STRING_LENGTH” (page 466), which defines the
maximum string length for the string data type in Hive.

HIVE_MAX_STRING_LENGTH

HiveCategory

Maximum supported string length for the string data type in Hive. All string columns
in Hive tables get converted to VARCHAR(n BYTES) CHARACTER SET UTF8, with n being
the value of this CQD.

Description

The default value is 32000.Values

Managing Histograms
This section describes these CQDs that are used to manage histograms:
• “CACHE_HISTOGRAMS_REFRESH_INTERVAL” (page 466)
• “HIST_NO_STATS_REFRESH_INTERVAL” (page 467)
• “HIST_PREFETCH” (page 467)
• “HIST_ROWCOUNT_REQUIRING_STATS” (page 468)

CACHE_HISTOGRAMS_REFRESH_INTERVAL

HistogramsCategory

Defines the time interval after which timestamps for cached histograms are checked to be
refreshed.

Description

Values Unit is seconds.Unsigned integer

The default value is ‘3600’ (1 hour).

Histogram statistics are cached so that the compiler can avoid access to the metadata tables,
thereby reducing compile times. The timestamp of the tables are checked against those of

Usage

the cached histograms at an interval specified by this CQD, in order to see if the cached
histograms need to be refreshed.
You can increase the interval to reduce the impact on compile times as long as you do not
need to obtain fresh statistics more frequently in order to improve query performance. It may

466 Control Query Default (CQD) Attributes

be that the default interval is too long and you would rather refresh the statistics more
frequently than the default one hour, in order to improve query performance at the cost of
increased compile times.
This setting depends on how frequently you are updating statistics on tables. There is no
point in refreshing statistics frequently when statistics are not being updated during that time.
On the other hand if you are updating statistics, or generating them for the first time on freshly
loaded tables frequently enough, and you want these to be picked up immediately by the
compiler because you have seen this to have a dramatic impact on plan quality, then you
can make the refresh more frequent.

Not applicableProduction usage

Longer histogram refresh intervals can improve compile times. However, the longer the refresh
interval the more obsolete the histograms. That could result in poor performance for queries
that could leverage recently updated statistics.

Impact

System or ServiceLevel

Not applicableAddressing the real
problem

HIST_NO_STATS_REFRESH_INTERVAL

HistogramsCategory

Defines the time interval after which the fake histograms in the cache should be refreshed
unconditionally.

Description

Values Unit is seconds.Integer

The default value is ‘3600’ (1 hour).

Histogram statistics are “fake” when update statistics is not being run, but instead the customer
is updating the histogram tables directly with statistics to guide the optimizer. This may be

Usage

done if the data in the table is very volatile (such as for temporary tables), update statistics
is not possible because of constant flush and fill of the table occurring, and statistics are
manually set to provide some guidance to the optimizer to generate a good plan.
If these fake statistics are updated constantly to reflect the data churn, this default can be set
to 0. This would ensure that the histograms with fake statistics are not cached, and are always
refreshed. If these fake statistics are set and not touched again, then this interval could be
set very high.

Not applicableProduction usage

Setting a high interval improves compilation time. However, if statistics are being updated,
the compiler may be working with obsolete histogram statistics, potentially resulting in poorer
plans.

Impact

ServiceLevel

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

HIST_PREFETCH

HistogramsCategory

Influences the compiler to pre-fetch the histograms and save them in cache.Description

Values Pre-fetches the histograms.‘ON’

Does not pre-fetch the histograms.‘OFF’

The default value is ‘ON’.

You may want to turn this off if you don’t want to pre-fetch a large number of histograms,
many of which may not be used.

Usage

Managing Histograms 467

Not applicableProduction usage

Though it makes compilation time faster, it may result in the histogram cache to be filled with
histograms that may never be used.

Impact

System or ServiceLevel

Use this CQD with CACHE_HISTOGRAMS. If CACHE_HISTOGRAMS is OFF, then this CQD
has no effect.

Conflicts/Synergies

Not applicableAddressing the real
problem

HIST_ROWCOUNT_REQUIRING_STATS

HistogramsCategory

Specifies the minimum row count for which the optimizer needs histograms, in order to
compute better cardinality estimates. The optimizer does not issue any missing statistics
warnings for tables whose size is smaller than the value of this CQD.

Description

Values Integer

The default value is ‘50000’.

Use this CQD to reduce the number of statistics warnings.Usage

Not applicableProduction usage

Missing statistics warnings are not displayed for smaller tables, which in most cases don't
impact plan quality much. However, there may be some exceptions where missing statistics
on small tables could result in less than optimal plans.

Impact

SystemLevel

Use this CQD with HIST_MISSING_STATS_WARNING_LEVEL. If the warning level CQD is
0, then this CQD does not have any effect. Also, for tables having fewer rows than set in
this CQD, no warnings are displayed irrespective of the warning level.

Conflicts/Synergies

Not applicableAddressing the real
problem

Optimizer
This section describes these CQDs that are used by the Optimizer:
• “JOIN_ORDER_BY_USER” (page 468)
• “MDAM_SCAN_METHOD” (page 469)
• “SUBQUERY_UNNESTING” (page 469)

JOIN_ORDER_BY_USER

Influencing Query PlansCategory

Enables or disables the join order in which the optimizer joins the tables to be the sequence
of the tables in the FROM clause of the query.

Description

Values Join order is forced.‘ON’

Join order is decided by the optimizer.‘OFF’

The default value is ‘OFF’.

When set to ON, the optimizer considers only execution plans that have the join order
matching the sequence of the tables in the FROM clause.

Usage

This setting is to be used only for forcing a desired join order that was not generated by
default by the optimizer. It can be used as a workaround for query plans with inefficient join
order.

Production usage

468 Control Query Default (CQD) Attributes

Because you are in effect forcing the optimizer to use a plan that joins the table in the order
specified in the FROM clause, the plan generated may not be the optimal one.

Impact

QueryLevel

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

MDAM_SCAN_METHOD

Influencing Query PlansCategory

Enables or disables the Multi-Dimensional Access Method.Description

Values MDAM is considered.‘ON’

MDAM is disabled.‘OFF’

The default value is ‘ON’.

In certain situations, the optimizer might choose MDAM inappropriately, causing poor
performance. In such situations you may want to turn MDAM OFF for the query it is effecting.

Usage

Not applicableProduction usage

Table scans with predicates on non-leading clustering key column(s) could benefit from MDAM
access method if the leading column(s) has a small number of distinct values. Turning MDAM
off results in a longer scan time for such queries.

Impact

Set this CQD at the query level when MDAM is not working efficiently for a specific query.
However, there may be cases (usually a defect) where a larger set of queries is being

Level

negatively impacted by MDAM. In those cases you may want to set it at the service or system
level.

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

SUBQUERY_UNNESTING

Influencing Query PlansCategory

Controls the optimizer’s ability to transform nested sub-queries into regular join trees.Description

Values Subquery un-nesting is considered.‘ON’

Subquery un-nesting is disabled.‘OFF’

The default value is ‘ON’.

Use this control to disable subquery un-nesting in the rare situation when un-nesting results
in an inefficient query execution plan

Usage

Not applicableProduction usage

In general, subquery un-nesting results in more efficient execution plans for queries with
nested sub-queries. Use only as a workaround for observed problems due to un-nesting.

Impact

QueryLevel

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

Optimizer 469

Managing Schemas
This section describes these CQDs that are used for managing schemas:
• “SCHEMA” (page 470)

SCHEMA

Schema controlsCategory

Sets the default schema for the session.Description

SQL identifierValues
The default is SEABASE.

A SET SCHEMA statement, or a CONTROL QUERY DEFAULT SCHEMA statement, can be
used to override the default schema name.

Usage

It is a convenience so you do not have to type in two-part names.Production usage

Not applicableImpact

AnyLevel

Alternately you can use the SET SCHEMA statement.Conflicts/Synergies

Not applicableAddressing the real
problem

Transaction Control and Locking
This section describes these CQDs that are used for transaction control and locking:
• “BLOCK_TO_PREVENT_HALLOWEEN” (page 470)
• “UPD_ORDERED” (page 471)

BLOCK_TO_PREVENT_HALLOWEEN

Runtime controlsCategory

A self-referencing insert is one which inserts into a target table and also scans from the same
target table as part of the query that produces rows to be inserted. Inconsistent results are

Description

produced by the insert statement if the statement scans rows which have been inserted by
the same statement. This is sometimes called the “Halloween problem.” Trafodion prevents
the Halloween problem using one of two methods: 1) the blocking method uses a SORT
operation to ensure all rows have been scanned before any are inserted, or 2) the disk
process (ESAM) locks method tracks the rows which have already been inserted and the
SCAN operator skips these rows.
The compiler chooses the blocking method in cases in which static analysis of the plan
indicates that the disk process locks method cannot be used. However, the compiler does
not evaluate one condition that would prevent the use of the disk process locks method: the
AUTOCOMMIT setting in which the statement is executed. Instead the compiler assumes that
the statement is executed with the default setting for AUTOCOMMIT, ‘ON’. If AUTOCOMMIT
is set to ‘OFF’ and self-referencing insert statement which uses the disk process locks method
is executed, then a runtime error (SQLCODE 8107) is raised.
This CQD is used to force the compiler to use the blocking method to prevent error 8107.

Values The compiler is free to choose which method to use to prevent the
Halloween problem.

‘OFF’

The compiler is forced to use the blocking method.‘ON’

The default value is ‘ON’.

Change this default to ‘ON’ if error 8107 is raised for a self-referencing insert statement
which is executed in a session with AUTOCOMMIT set to ‘OFF’.

Usage

Not applicableProduction usage

470 Control Query Default (CQD) Attributes

Using the ‘ON’ value in conditions that require it allows successful completion of the insert
statement. Using the ‘ON’ value when not required can decrease performance of some
self-referencing insert statements.

Impact

If self-referencing insert statements which execute with AUTOCOMMIT ‘OFF’ can be restricted
to a service level, then this default should be set to ‘ON’ only for that service level. Otherwise
the setting should be made for the system.

Level

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

UPD_ORDERED

Influencing Query PlansCategory

Controls whether rows should be inserted, updated, or deleted in clustering key order.Description

Values The optimizer generates and considers plans where the rows are
inserted, updated, or deleted in clustering key order.

‘ON’

The optimizer does not generate plans where the rows must be
inserted, updated, or deleted in clustering key order.

‘OFF’

The default value is ‘ON’.

Inserting, updating or deleting rows in the clustering key order is most efficient and highly
recommended. Turning this CQD OFF may result in saving the data sorting cost but at the
expense of having less efficient random I/O Insert/Update/Delete operations.

Usage

If you know that he data is already sorted in clustering key order, or is mostly in clustering
key order, so that it would not result in random I/O, you could set this CQD to OFF.

Not applicableProduction usage

If turned OFF, the system may perform large number of inefficient Random I/Os when
performing Insert/Update/Delete operations.

Impact

QueryLevel

Not applicableConflicts/Synergies

Not applicableAddressing the real
problem

Transaction Control and Locking 471

C Limits
This appendix lists limits for various parts of Trafodion SQL.

Up to 128 characters long, or 256 bytes of UTF8 text,
whichever is less.

Column names

Up to 128 characters long, or 256 bytes of UTF8 text,
whichever is less.

Schema names

ANSI names are of the form schema.object, where each
part can be up to 128 characters long, or 256 bytes of
UTF8 text, whichever is less.

Table names

472 Limits

Index

A
ABS function

examples of, 285
syntax diagram of, 285

Access options
summary of, 25
DELETE statement use of, 86
DML statements use of, 25
INSERT statement use of, 118
READ COMMITTED, 25
SELECT statement use of, 146
UPDATE statement use of, 170

Access privileges
tables, 111

ACOS function
examples of, 286
syntax diagram of, 286

Active query, 443
ADD_MONTHS function

examples of, 287
syntax diagram of, 287

Aggregate functions
summary of, 278
AVG, 293
COUNT, 313
DISTINCT clause, 147, 278
MAX/MAXIMUM, 360
MIN, 361
STDDEV, 410
SUM, 414
VARIANCE, 426

Aliases, schemas, 249
ALTER LIBRARY statement, 34

considerations for, 34
examples of, 34
syntax diagram of, 34

ALTER TABLE statement
authorization and availability requirements, 40
considerations for, 40
constraints implemented with indexes, 40
DEFAULT clause, 257
description for, 37
examples of, 40
RENAME TO clause, 39
syntax diagram of, 36

ALTER USER statement
considerations for, 41
examples of, 41
syntax diagram of, 41

ANSI
compliance, description of, 27
names, schemas, 249

ASCII function
examples of, 288
syntax diagram of, 288

ASIN function
examples of, 289
syntax diagram of, 289

ATAN function
examples of, 290
syntax diagram of, 290

ATAN2 function
examples of, 291
syntax diagram of, 291

AUTHNAME function
considerations for, 292
example of, 292
syntax diagram of, 292

Authorization ID
description of, 193

Automated UPDATE STATISTICS, 190
AVG function

DISTINCT clause use of, 293
examples of, 293
operand requirements, 293
syntax diagram of, 293

AVG window function
examples of, 433
syntax diagram of, 433

B
BEGIN WORK statement

considerations for, 42
example of, 42
syntax diagram of, 42

BETWEEN predicate
examples of, 234
logical equivalents, 234
operand requirements, 233
syntax diagram of, 233

Big memory operators (BMOs), 442
Bignum, 59
BITAND function

examples of, 295
syntax diagram of, 295

BLOCK_TO_PREVENT_HALLOWEEN, 470
Boolean operators

NOT, AND, OR, 250
search condition use of, 250

Bulk Loader, 177
Bulk Unloader, 183

C
CACHE_HISTOGRAMS_REFRESH_INTERVAL, 466
CALL statement

considerations for, 43
description for, 43
examples of, 44
required privileges, 43
syntax diagram of, 43
usage restrictions, 43

473

CASE expression
data type of, 297
examples of, 297
searched CASE form, 296
syntax diagram of, 296

CAST expression
data type conversion, 299
examples of, 300
syntax diagram of, 299
valid type combinations, 299

CEILING function
examples of, 301
syntax diagram of, 301

CHAR data type, 204, 205
CHAR function

examples of, 302
syntax diagram of, 302

CHAR VARYING data type, 204
CHAR_LENGTH function

examples of, 303
syntax diagram of, 303

Character sets
setting default, 224
supported in Trafodion SQL, 193

Character string data types
CHAR and VARCHAR, differences, 205

Character string functions
summary of, 279
ASCII, 288
CHAR, 302
CHAR_LENGTH , 303
CODE_VALUE, 305
CONCAT, 306
INSERT, 348
LCASE, 352
LEFT, 353
LOCATE, 354
LOWER, 357
LPAD, 358
LTRIM, 359
OCTET_LENGTH, 378
POSITION, 381
REPEAT, 388
REPLACE, 389
RIGHT, 390
RPAD, 395
RTRIM, 396
SPACE, 408
SUBSTRING/SUBSTR, 412
TRANSLATE, 420
TRIM, 421
UCASE, 422
UPPER, 423
UPSHIFT, 424

Character string literals, 224
Character value expression

examples of, 212
syntax diagram of, 211

CHECK constraint, 38, 39, 73, 195

Clauses
DEFAULT, 257
FORMAT, 259
SAMPLE, 261
SEQUENCE BY, 268
TRANSPOSE, 271

Clustering key
description of, 223

COALESCE function
example of, 304
syntax diagram of, 304

CODE_VALUE function
example of, 305
syntax diagram of, 305

Columns
column reference, 193
default values, 194
description of, 193
qualified name, 193

COMMIT WORK statement
considerations for, 46
example of, 46
syntax diagram of, 46

Comparable data types, 119, 201
Comparison predicates

comparison operators, 235
data conversions, 236
examples of, 236
operand requirements, 235
syntax diagram of, 235

Compatible data types, 119, 201
Component privilege statements

GRANT COMPONENT PRIVILEGE, 114
REVOKE COMPONENT PRIVILEGE, 133

CONCAT function
examples of, 306
syntax diagram of, 306

Concatenation operator (||)
description of, 306
examples of, 303, 306

Concurrency
DELETE statement, 87
description of, 26
INSERT statement, 119
UPDATE statement, 170

Constraints
CHECK, 38, 39, 73, 195
description of, 195
FOREIGN KEY, 38, 39, 73, 195
NOT NULL, 38, 72, 195
PRIMARY KEY, 72, 195
UNIQUE, 38, 39, 72, 195

CONTROL QUERY CANCEL statement
considerations for, 47
example of, 48
syntax diagram of, 47

CONTROL QUERY DEFAULT statement
considerations for, 49
examples of, 49

474 Index

syntax diagram of, 49
CONVERTTIMESTAMP function

examples of, 310
JULIANTIMESTAMP inverse relationship to, 310
syntax diagram of, 310

CONVERTTOHEX function
examples of, 308
syntax diagram of, 308

Correlation names
examples of, 196
purpose of, 196
table reference use of, 196

COS function
examples of, 311
syntax diagram of, 311

COSH function
examples of, 312
syntax diagram of, 312

COUNT function
DISTINCT clause within, 313
examples of, 313
syntax diagram of, 313

COUNT window function
examples of, 434
syntax diagram of, 434

Counters, 447
CREATE FUNCTION statement, 50

considerations for, 52
examples of, 52
syntax diagram of, 50

CREATE INDEX statement
authorization requirements , 55
considerations for, 54
examples of, 55
limits on indexes, 55
syntax diagram of, 53
volatile index, 53

CREATE LIBRARY statement, 56
considerations for, 56
examples of, 57
syntax diagram of, 56

CREATE PROCEDURE statement, 58
considerations for, 62
examples of, 63
syntax diagram of, 58

CREATE ROLE statement
considerations for, 66
examples of, 66
syntax diagram of, 66

CREATE SCHEMA statement, 249
examples of, 68
reserved schema names, 67
syntax diagram of, 67

CREATE TABLE AS statement
examples of, 79
LOAD IF EXISTS, 78
syntax diagram of, 69

CREATE TABLE LIKE statement
COMPRESSION attribute, 77

considerations for, 77
file attributes, 77
syntax diagram of, 69

CREATE TABLE statement
considerations for volatile tables, 75
DEFAULT clause, 257
examples of, 79
STORE BY clause, 70
syntax diagram of, 69
Trafodion SQL extensions, 78

CREATE VIEW statement
considerations for, 82
examples of, 84
ORDER BY clause, 83
syntax diagram of, 81
updatability requirements, 83
vertical partition example, 84
WITH CHECK OPTION within, 81

CREATE VOLATILE INDEX statement
syntax diagram of, 53

CREATE VOLATILE TABLE statement
considerations for, 75
examples of, 77
nullable constraints, 76
nullable keys, 75
restrictions, 75
suitable keys, 75
syntax diagram of, 69

CROSS JOIN, description of, 143
CURRENT_DATE function

examples of, 316
syntax diagram of, 316

CURRENT_TIME function
examples of, 317
precision specification within, 317
syntax diagram of, 317

CURRENT_TIMESTAMP function
examples of, 315, 318
precision specification within, 315, 318
syntax diagram of, 315, 318

CURRENT_USER function
considerations for, 319
example of, 319
syntax diagram of, 319

D
Data Definition Language (DDL) statements

summary of, 30
ALTER LIBRARY, 34
ALTER TABLE, 36
ALTER USER, 41
CREATE FUNCTION, 50
CREATE INDEX , 53
CREATE LIBRARY, 56
CREATE PROCEDURE, 58
CREATE ROLE, 66
CREATE SCHEMA, 67
CREATE TABLE, 69
CREATE VIEW, 81

475

DROP FUNCTION, 88
DROP INDEX, 89
DROP LIBRARY, 90
DROP PROCEDURE, 92
DROP ROLE, 93
DROP SCHEMA, 95
DROP TABLE, 96
DROP VIEW, 97
GRANT, 111
GRANT COMPONENT PRIVILEGE, 114
GRANT ROLE, 117
REGISTER USER, 128
REVOKE, 130
REVOKE COMPONENT PRIVILEGE, 133
REVOKE ROLE, 135
UNREGISTER USER, 168

Data Manipulation Language (DML) statements
summary of, 31
DELETE, 86
INSERT, 118
MERGE, 123
SELECT, 138
TABLE, 167
UPDATE, 169
VALUES, 175

Data type conversion, CAST expression, 299
Data types

approximate numeric
descriptions of, 209
DOUBLE PRECISION, 210
FLOAT, 209
REAL, 210

character, 204
comparable and compatible, 201
datetime

DATE, 205
TIME, 205
TIMESTAMP, 205

exact numeric
DECIMAL, 209
descriptions of, 209
INTEGER, 209
LARGEINT, 209
NUMERIC, 209
SMALLINT, 209

extended numeric precision, 202
fixed length character

CHAR, 204
NATIONAL CHAR, 204
NCHAR, 204

interval, 207
Java, 60
literals, examples of

datetime literals, 226
interval literals, 229
numeric literals, 230

SQL, 60
varying-length character

CHAR VARYING, 204

NATIONAL CHAR VARYING, 204
NCHAR VARYING, 204
VARCHAR, 204

Database object name, 198
Database objects, 197
DATE_ADD function

examples of, 320
syntax diagram of, 320

DATE_PART (of a timestamp) function
examples of, 326
syntax diagram of, 326

DATE_PART (of an interval) function
examples of, 325
syntax diagram of, 325

DATE_SUB function
examples of, 321
syntax diagram of, 321

DATE_TRUNC function
examples of, 327
syntax diagram of, 327

DATEADD function
examples of, 322
syntax diagram of, 322

DATEDIFF function
examples of, 323
syntax diagram of, 323

DATEFORMAT function
examples of, 324
syntax diagram of, 324

Datetime data types
DATE, 205
description of, 205
examples of literals, 226
TIME, 205
TIMESTAMP, 205

Datetime functions
summary of, 280
ADD_MONTHS, 287
CONVERTTIMESTAMP, 310
CURRENT, 315
CURRENT_DATE, 316
CURRENT_TIME, 317
CURRENT_TIMESTAMP, 318
DATE_ADD, 320
DATE_PART (interval), 325
DATE_PART (timestamp), 326
DATE_SUB, 321
DATE_TRUNC, 327
DATEADD, 322
DATEDIFF, 323
DATEFORMAT, 324
DAY, 328
DAYNAME, 329
DAYOFMONTH, 330
DAYOFWEEK, 331
DAYOFYEAR, 332
EXTRACT, 345
HOUR, 347
JULIANTIMESTAMP, 350

476 Index

MINUTE, 362
MONTH, 364
MONTHNAME, 365
QUARTER, 383
SECOND, 404
TIMESTAMPADD, 418
TIMESTAMPDIFF, 419
WEEK, 428
YEAR, 429

Datetime literals
description of, 226

Datetime value expression
examples of, 213
syntax diagram of, 212

DAY function
examples of, 328
syntax diagram of, 328

DAYNAME function
examples of, 329
syntax diagram of, 329

DAYOFMONTH function
examples of, 330
syntax diagram of, 330

DAYOFWEEK function
examples of, 331
syntax diagram of, 331

DAYOFYEAR function
examples of, 332
syntax diagram of, 332

DDL statements see Data Definition Language (DDL)
statements

DECIMAL data type, 209
DECODE function

examples of, 334
syntax diagram of, 333

DEFAULT clause
ALTER TABLE use of, 37
CREATE TABLE use of, 72, 257
examples of, 257
syntax diagram of, 257

Default settings
changing, 49

DEGREES function
examples of, 336
syntax diagram of, 336

DELETE statement
access options, 86
authorization requirements, 86
considerations for, 86
examples of, 87
isolation levels, 87
syntax diagram of, 86
WHERE clause, 86

Delimited identifiers, 221
DENSE_RANK window function

examples of, 435
syntax diagram of, 435

Derived column names
examples of, 194

syntax of, 193
DETAIL_COST in EXPLAIN output

CPU_TIME, 344
IDLETIME, 344
IO_TIME, 344
MSG_TIME, 344
PROBES, 344

DIFF1 function
equivalent definitions, 337
examples of, 337
syntax diagram of, 337

DIFF2 function
equivalent definitions, 339
examples of, 339
syntax diagram of, 339

DISTINCT clause
aggregate functions, 147, 278
AVG function use of, 293
COUNT function use of, 313
MAX function use of, 360
MAXIMUM function use of, 360
MIN function use of, 361
STDDEV function use of, 410
SUM function use of, 414
VARIANCE function use of, 426

DML statements see Data Manipulation Language (DML)
statements

DOUBLE PRECISION data type, 210
DROP FUNCTION statement, 88

considerations for, 88
examples of, 88
syntax diagram of, 88

DROP INDEX statement
authorization and availability requirements, 89
considerations for, 89
example of, 89
syntax diagram of, 89

DROP LIBRARY statement, 90
considerations for, 90
examples of, 90
syntax diagram of, 90

DROP PROCEDURE statement, 92
considerations for, 92
examples of, 92
syntax diagram of, 92

DROP ROLE statement
considerations for, 93
examples of, 93
syntax diagram of, 93

DROP SCHEMA statement, 249
authorization and availability requirements, 95
considerations for, 95
example of, 95
syntax diagram of, 95

DROP TABLE statement
authorization requirements, 96
considerations for, 96
examples of, 96
syntax diagram of, 96

477

DROP VIEW statement
authorization requirements, 97
considerations for, 97
example of, 97
syntax diagram of, 97

DROP VOLATILE INDEX statement
considerations for, 89
examples of, 89
syntax diagram of, 89

DROP VOLATILE TABLE statement
authorization requirements, 96
examples of, 96
syntax diagram of, 96

E
Error messages, 29
EXECUTE statement

considerations for, 99
examples of, 99
scope of, 99
syntax diagram of, 98

EXISTS predicate
correlated subquery within, 238
examples of, 238
syntax diagram of, 238

EXP function
examples of, 341
syntax diagram of, 341

EXPLAIN function
columns in result, 343
examples of, 344
operator tree, 343
plan in running query, 342
syntax diagram of, 342

Explain statement
displayed, 101
examples of, 102
operators, 101
OPTIONS ’f’ considerations, 102
plan in running query, 101
reviewing query execution plans, 101
syntax, 101

Expression
character (or string) value, 211
datetime value, 212, 213, 217
description of, 211
interval value, 213, 217
numeric value, 218

Extended numeric precision, 202
Extensions, statements, 28
EXTRACT function

examples of, 345
syntax diagram of, 345

F
File options

CREATE TABLE use of, 69
Fixed-length character column, 205
FLOAT data type, 209

FLOOR function
examples of, 346
syntax diagram of, 346

FOREIGN KEY constraint, 39, 73, 195
FORMAT clause

considerations for date formats, 260
considerations for other formats, 260
examples of, 260
syntax diagram, 259

FULL join, description of, 143
Function statements, 32
Functions, ANSI compliant, 28

G
GET HBASE OBJECTS statement

examples of, 107
syntax diagram of, 107

GET statement
considerations for, 104
examples of, 105
syntax diagram of, 103

GET STATISTICS command
process ID (PID), 443
query ID (QID), 443
syntax, 443

GET VERSION OF METADATA statement
considerations for, 109
examples of, 109
syntax diagram of, 109

GET VERSION OF SOFTWARE statement
considerations for, 110
examples of, 110
syntax diagram of, 110

GRANT COMPONENT PRIVILEGE statement, 114
authorization and availability requirements, 116
considerations for, 116
example of, 116
syntax diagram of, 114

GRANT ROLE statement
considerations for, 117
example of, 117
syntax diagram of, 117

GRANT statement
authorization and availability requirements, 112
considerations for, 112
examples of, 112
syntax diagram of, 111

H
HBASE_INTERFACE, 466
HIST_NO_STATS_REFRESH_INTERVAL, 467
HIST_PREFETCH, 467
HIST_ROWCOUNT_REQUIRING_STATS, 468
Histograms

clearing, 186
UPDATE STATISTICS use of, 187

HIVE_MAX_STRING_LENGTH, 466
HOUR function

examples of, 347

478 Index

syntax diagram of, 347

I
Identifiers, 221
IN predicate

examples of, 240
logical equivalent using ANY, 240
operand requirements, 240
syntax diagram of, 239

Index keys, 223
Indexes

and transactions, 54
CREATE INDEX statement, 53
CREATE VOLATILE INDEX statement, 53
description of, 222
DROP INDEX statement, 89
LOAD statement, 177
UNLOAD statement, 183

INSERT function
examples of, 348
syntax diagram of, 348

INSERT statement
compatible data types, 119
considerations for, 118
examples of, 120
self-referencing, 119
side tree, 55
syntax diagram of, 118
target column list, 118
VALUES specification within, 119

INTEGER data type, 209
Interval data types

description of, 207
Interval literals

description of, 227
examples of, 229

Interval value expression
examples of, 216
syntax diagram of, 215

INVOKE statement
considerations for, 122
example of, 122
syntax diagram of, 122

ISNULL function
examples of, 349
syntax diagram of, 349

Isolation levels
READ COMMITTED, 26

J
Java data types, 60
Join

CROSS, 143
FULL, 143
JOIN ON, 143
join predicate, 151
LEFT, 143
limits, 147
NATURAL, 143

NATURAL FULL, 143
NATURAL LEFT, 143
NATURAL RIGHT, 143
optional specifications, 142
RIGHT, 143
types, 142

JOIN ON join, description of, 143
JOIN_ORDER_BY_USER, 468
JULIANTIMESTAMP function

examples of, 350
syntax diagram of, 350

K
Keys

clustering, 223
index, 223
primary, 223
SYSKEY, 223

L
LARGEINT data type, 209
LASTNOTNULL function

examples of, 351
syntax diagram of, 351

LCASE function
examples of, 352
syntax diagram of, 352

LEFT function
examples of, 353
syntax diagram of, 353

LEFT join, description of, 143
LIKE predicate

considerations for, 241
syntax of, 241

Limits
IN predicate, 239
indexes, 55
number of tables joined, 147
tables, 472

Literals
datetime, examples of, 226
description of, 224
examples of, 224
interval, examples of, 229
numeric, examples of, 230

LOAD statement
considerations for, 178
example of, 179
syntax diagram of, 177

Loading data into tables
LOAD IF EXISTS option, 78

LOCATE function
examples of, 354
result of, 354
syntax diagram of, 354

Locking
READ COMMITTED access option, 25

LOG function
examples of, 355

479

syntax diagram of, 355
LOG10 function

examples of, 356
syntax diagram of, 356

Logical name
Trafodion SQL objects, 198

Logical operators
NOT, AND, OR, 250
search condition use of, 250

LOWER function
examples of, 357
syntax diagram of, 357

LPAD function
examples of, 358
syntax diagram of, 358

LTRIM function
examples of, 359
syntax diagram of, 359

M
Magnitude, 220
Math functions

summary of, 281
ABS, 285
ACOS, 286
ASIN, 289
ATAN, 290
ATAN2, 291
CEILING, 301
COS, 311
COSH, 312
DEGREES, 336
EXP, 341
FLOOR, 346
LOG, 355
LOG10, 356
MOD, 363
NULLIFZERO, 376
PI, 380
POWER, 382
RADIANS, 384
ROUND, 391
SIGN, 405
SIN, 406
SINH, 407
SQRT, 409
TAN, 415
TANH, 416
ZEROIFNULL, 430

MAX function
considerations for, 360
DISTINCT clause within, 360
examples of, 360
syntax diagram of, 360

MAX window function
examples of, 436
syntax diagram of, 435

MAXIMUM function
considerations for, 360

DISTINCT clause within, 360
examples of, 360
syntax diagram of, 360

MDAM_SCAN_METHOD, 469
MERGE statement

considerations for, 123
description of, 123
example of, 125
merge from one table to another, 125
restrictions, 124
syntax diagram of, 123
upsert, single row, 123

MIN function
DISTINCT clause within, 361
examples of, 361
syntax diagram of, 361

MIN window function
examples of, 437
syntax diagram of, 436

MINUTE function
examples of, 362
syntax diagram of, 362

MOD function
examples of, 363
syntax diagram of, 363

MONTH function
examples of, 364
syntax diagram of, 364

MONTHNAME function
examples of, 365
syntax diagram of, 365

MOVINGAVG function
examples of, 366
syntax diagram of, 366

MOVINGCOUNT function
examples of, 367
syntax diagram of, 367

MOVINGMAX function
examples of, 368
syntax diagram of, 368

MOVINGMIN function
examples of, 369
syntax diagram of, 369

MOVINGSTDDEV function
examples of, 370
syntax diagram of, 370

MOVINGSUM function
examples of, 372
syntax diagram of, 372

MOVINGVARIANCE function
examples of, 373
syntax diagram of, 373

N
NATIONAL CHAR data type, 204
NATIONAL CHAR VARYING data type, 204
NATURAL FULL join, description of, 143
NATURAL join, description of, 143
NATURAL LEFT join, description of, 143

480 Index

NATURAL RIGHT join, description of, 143
NCHAR data type, 204
NCHAR VARYING data type, 204
NOT CASESPECIFIC, 72
NOT NULL constraint, 38, 72, 195
NULL predicate

examples of, 243
syntax diagram of, 243

Null symbol, 231
NULL, using, 169
NULLIF function

example of, 375
syntax diagram of, 375

NULLIFZERO function
examples of, 376
syntax diagram of, 376

Numeric data types
approximate numeric, 209
exact numeric, 209
extended numeric , 202
literals, examples of, 230

Numeric literals
approximate, 229
exact, 229
examples of, 230

Numeric value expression
evaluation order, 219
examples of, 220
syntax diagram of, 218

NVL function
examples of, 377
syntax diagram of, 377

O
Object names, 198
Object namespace, 198
Objects

description of, 198
logical names, 198

OCTET_LENGTH function
CHAR_LENGTH similarity to, 378
examples of, 378
syntax diagram of, 378

OFFSET function
examples of, 379
syntax diagram of, 379

OLAP window functions, 431
AVG window function, 433
COUNT window function, 434
DENSE_RANK window function, 435
limitations, 432
MAX window function, 435
MIN window function, 436
ORDER BY clause, 431
RANK window function, 437
ROW_NUMBER window function, 438
STDDEV window function, 438
SUM window function, 439
VARIANCE window function, 440

Operator statistics, 442
Operators in query execution plan, 101
OPTIONS on Explain statement

’f’, 102
ORDER BY clause

AS and ORDER BY conflicts, 147
guidelines for CREATE VIEW, 83

Other functions and expressions
AUTHNAME, 292
BITAND , 295
CASE expression, 296
CAST expression, 299
COALESCE, 304
CONVERTTOHEX, 308
CURRENT_USER, 319
DECODE, 333
EXPLAIN, 342
ISNULL, 349
NULLIF, 375
NVL, 377
USER, 425

P
Parent query ID (QID), 455
Performance

CAST, 299
ORDER BY clause, 148
updating rows, 170

PERTABLE statistics, 442
PI function

examples of, 380
syntax diagram of, 380

POPULATE INDEX utility
considerations for, 180
examples of, 181
syntax diagram of, 180

POSITION function
examples of, 381
result of, 381
syntax diagram of, 381

POWER function
examples of, 382
syntax diagram of, 382

Precision, description of, 220
Predicates

summary of, 233
BETWEEN, 233
comparison, 235
description of, 233
EXISTS, 238
IN, 239
LIKE, 241
NULL, 243
quantified comparison, 244

PREPARE statement
availability, 126
considerations for, 126
examples of, 126
syntax diagram of, 126

481

Prepared statements, 32, 33
PRIMARY KEY constraint, 72, 195
Primary key, description of, 223
Primary role

described, 248
Privileges, 247

GRANT COMPONENT PRIVILEGE statement use of,
114

GRANT ROLE statement use of, 117
GRANT statement use of, 111
REVOKE COMPONENT PRIVILEGE statement use of,

133
REVOKE ROLE statement use of, 135
REVOKE statement use of, 130

PURGEDATA utility
considerations for, 182
example of, 182
syntax diagram of, 182

Q
Quantified comparison predicates

ALL, ANY, SOME, 244
examples of, 245
operand requirements, 244
result of, 245
syntax diagram of, 244

QUARTER function
examples of, 383
syntax diagram of, 383

Query execution plan
displayed, 101
in running query, 101
operators, 101
reviewing, 101

Query expression
SELECT statement use of, 141

Query ID (QID)
child QID, 456
components of, 459
extracting, 459
obtaining, 443
parent QID, 455

Query specification
SELECT statement use of, 144
simple table, form of , 144

QUERYID_EXTRACT function, 459

R
RADIANS function

examples of, 384
syntax diagram of, 384

RANK window function
examples of, 438
syntax diagram of, 437

RANK/RUNNINGRANK function
example for, 385
syntax diagram of, 385

READ COMMITTED, 25
REAL data type, 210

Referential integrity
FOREIGN KEY constraint, 38, 39, 73

REGISTER USER statement
considerations for, 128
examples of, 129
syntax diagram of, 128

RENAME TO clause, 39
Renaming tables, 39
REPEAT function

examples of, 388
syntax diagram of, 388

REPLACE function
examples of, 389
syntax diagram of, 389

Reserved
schema names, 67
words, Trafodion SQL, 462

Resource control statements
EXECUTE statement, 98
PREPARE statement, 126
UPDATE STATISTICS statement, 186

REVOKE COMPONENT PRIVILEGE statement, 133
authorization and availability requirements, 134
considerations for, 134
example of, 134
syntax diagram of, 133

REVOKE ROLE statement
considerations for, 135
examples of, 136
syntax diagram of, 135

REVOKE statement
authorization and availability requirements, 131
considerations for, 131
examples of, 131
syntax diagram of, 130

RIGHT function
examples of, 390
syntax diagram of, 390

RIGHT join, description of, 143
RMS

adaptive statistics, 442
big memory operators, 442
counters, 447
displaying, 443
features, 442
operator statistics, 442
overview, 442
PERTABLE statistics, 442
statistics about RMS, 457

Roles
CREATE ROLE statement use of, 66
description of, 248
DROP ROLE statement use of, 93
GRANT ROLE statement use of, 117
REVOKE ROLE statement use of, 135

ROLLBACK WORK statement
considerations for, 137
example of, 137
syntax diagram of, 137

482 Index

ROUND function
examples of, 391
syntax diagram of, 391

Row value constructor
BETWEEN predicate use of, 233
comparison predicates use of, 235
IN predicate use of, 239
NULL predicate use of, 243
quantified comparison predicates use of, 244

ROW_NUMBER window function
examples of, 438
syntax diagram of, 438

ROWS SINCE CHANGED function
considerations for, 394
examples of, 394
syntax diagram of, 394

ROWS SINCE function
examples of, 392
syntax diagram of, 392

RPAD function
examples of, 395
syntax diagram of, 395

RTRIM function
examples of, 396
syntax diagram of, 396

RUNNINGAVG function
equivalent definition, 397
examples of, 397
syntax diagram of, 397

RUNNINGCOUNT function
examples of, 398
syntax diagram of, 398

RUNNINGMAX function
examples of, 399
syntax diagram of, 399

RUNNINGMIN function
examples of, 400
syntax diagram of, 400

RUNNINGSTDDEV function
equivalent definition, 401
examples of, 401
syntax diagram of, 401

RUNNINGSUM function
examples of, 402
syntax diagram of, 402

RUNNINGVARIANCE function
examples of, 403
syntax diagram of, 403

Runtime Management System (RMS) see RMS
Runtime statistics see RMS

S
SAMPLE clause

examples of, 262
SELECT statement use of, 261
syntax diagram of, 261

Scale, 220
SCHEMA, 470
Schemas

creating, 249
description of, 249
dropping, 249
reserved, 67

Search condition
Boolean operators within, 250
CASE expression use of, 297
DELETE statement use of, 86
description of, 252
examples of, 251
predicate within, 250
syntax diagram of, 250
UPDATE statement use of, 170

SECOND function
examples of, 404
syntax diagram of, 404

SELECT statement
access options, 146
authorization requirements, 146
considerations for, 146
DISTINCT clause , 140
embedded delete, 141
embedded insert, 142
embedded update, 142
examples of, 150
FROM clause , 141
GROUP BY clause , 145, 148
HAVING clause, 145
joined table within, 142
LIMIT clause, 146
limit on join tables, 147
ORDER BY clause , 146, 148
RETURN list, 141
select list elements, 140
SEQUENCE BY clause, 145
simple table within, 143
syntax diagram of, 138
TRANSPOSE clause, 144
UNION ALL operation, 150
union operation within, 146, 149
views and, 146
WHERE clause, 144

Self-referencing INSERT, 119
SEQUENCE BY clause

examples of, 269
SELECT statement use of, 268
syntax diagram of, 268

Sequence functions
summary of, 282
DIFF1, 337
DIFF2, 339
LASTNOTNULL, 351
MOVINGAVG, 366
MOVINGCOUNT, 367
MOVINGMAX, 368
MOVINGMIN, 369
MOVINGSTDDEV, 370
MOVINGSUM, 372
MOVINGVARIANCE, 373

483

OFFSET, 379
RANK/RUNNINGRANK, 385
ROWS SINCE, 392
ROWS SINCE CHANGED, 394
RUNNINGAVG, 397
RUNNINGCOUNT, 398
RUNNINGMAX, 399
RUNNINGMIN, 400
RUNNINGSTDDEV, 401
RUNNINGSUM, 402
RUNNINGVARIANCE, 403
THIS, 417

Set functions, 278
SET PARAM command, 98
SET SCHEMA statement

considerations for, 156
example of, 156
syntax diagram of, 156

SET TRANSACTION statement
autocommit option, 157
considerations for, 157
examples of, 157
explicit transactions, 157
implicit transactions, 157
syntax diagram of, 157

SHOWCONTROL statement
example of, 159
syntax diagram of, 159

SHOWDDL SCHEMA statement
considerations for, 163
example of, 163
syntax diagram of, 163

SHOWDDL statement
considerations for, 160
differences between output and original DDL, 161
examples of, 161
for a user or a role, 160
syntax diagram of, 160

SHOWSTATS statement
examples of, 165
syntax diagram of, 164

Side tree insert
definition of, 55

SIGN function
examples of, 405
syntax diagram of, 405

Simple table, in SELECT statement, 143
SIN function

examples of, 406
syntax diagram of, 406

SINH function
examples of, 407
syntax diagram of, 407

SMALLINT data type, 209
SPACE function

examples of, 408
syntax diagram of, 408

SQL data types, 60
SQL runtime statistics see RMS

SQL statements
ANSI compliant, 27
Trafodion SQL extensions, 28

SQL Utilities
Automated UPDATE STATISTICS, 190
POPULATE INDEX utility, 180
PURGEDATA utility, 182

SQL value expression, 211
SQRT function

examples of, 409
syntax diagram of, 409

Statements, SQL
ANSI compliant, 27
Trafodion SQL extensions, 28

Statistics, 442
clearing, 186
UPDATE STATISTICS statement, 189, 191

STATISTICS table-valued function, 460
TDB_ID detail, 460

STDDEV function
DISTINCT clause within, 410
examples of, 411
statistical definition of, 410
syntax diagram of, 410

STDDEV window function
examples of, 439
syntax diagram of, 438

STORE BY clause, 70
Stored procedure statements, 32

ALTER LIBRARY, 34
CALL, 43
CREATE LIBRARY, 56
CREATE PROCEDURE, 58
DROP LIBRARY, 90
DROP PROCEDURE, 92

Stored text
reserved words, 462

String literals, 224
String value expression

examples of, 212
syntax diagram of, 211

Subquery
correlated, 238, 252
description of, 252
inner query, 252
outer query, 252
outer reference, 252
row

BETWEEN predicate, 233
comparison predicate, 235
IN predicate, 239
NULL predicate, 243
quantified comparison predicate, 244
UPDATE statement, 170
UPSERT SELECT statement, 173

scalar
BETWEEN predicate , 233
comparison predicate , 235
IN predicate , 239

484 Index

NULL predicate, 243
quantified comparison predicate, 244

table, 239
SUBQUERY_UNNESTING, 469
SUBSTR function

examples of, 413
operand requirements, 412
syntax diagram of, 412

SUBSTRING function
examples of, 413
operand requirements, 412
syntax diagram of, 412

Suitable keys
guidelines for selecting, 75

SUM function
DISTINCT clause within, 414
examples of, 414
syntax diagram of, 414

SUM window function
examples of, 440
syntax diagram of, 439

SYSKEY
system-defined clustering key, 223

T
Table

creating, 69
description of, 254
dropping, 96
limits, 472
renaming, 39
subquery, 239

Table reference
description of, 141
SELECT statement use of, 141

TABLE statement
considerations for, 167
examples, 167
syntax diagram for, 167

Table value constructor
description of, 143
simple table, form of, 143

TAN function
examples of, 415
syntax diagram of, 415

TANH function
examples of, 416
syntax diagram of, 416

THIS function
examples of, 417
syntax diagram of, 417

TIMESTAMPADD function
description, 418
examples, 418

TIMESTAMPDIFF function
description, 419
examples, 419

Trafodion SQL objects, logical names, 198
Transaction control statements

BEGIN WORK, 42
COMMIT WORK, 46
ROLLBACK WORK, 137
SET TRANSACTION statement, 157

Transaction isolation levels
READ COMMITTED, 26

Transaction management, 26
AUTOCOMMIT, effect of, 26
BEGIN WORK, 42
COMMIT WORK, 46
ROLLBACK WORK, 137
rules for DML statements, 26
SET TRANSACTION , 157

TRANSLATE function, syntax diagram of, 420
TRANSPOSE clause

cardinality of result, 273
degree of result, 272
examples of, 273
SELECT statement use of, 271
syntax diagram of, 271

TRIM function
examples of, 421
syntax diagram of, 421

U
UCASE function

examples of, 422
syntax diagram of, 422

Union operation
associative, UNION ALL, 150
columns, characteristics of, 149
ORDER BY clause restriction, 149
SELECT statement use of, 146

UNIQUE constraint, 38, 39, 72, 195
UNLOAD statement

considerations for, 184
example of, 184
syntax diagram of, 183

UNREGISTER USER statement
considerations for, 168
examples of, 168
syntax diagram of, 168

UPD_ORDERED, 471
Updatable view, requirements for, 83
UPDATE statement

authorization requirements, 170
conflicting updates, 171
description of, 169
examples of, 172
isolation levels, 170
performance, 170
SET clause, 169
syntax diagram of, 169
WHERE clause, 170

UPDATE STATISTICS
histogram statistics, 189

UPDATE STATISTICS statement
automating, 190
column groups, 187

485

column lists, 187
considerations, 189
examples of, 191
histogram tables, 187
syntax diagram of, 186

UPPER function
examples of, 423
syntax diagram of, 423

Upsert
using single row, 123

UPSERT statement
examples of, 173
syntax diagram of, 173

UPSHIFT function
syntax diagram of, 424

USER function
considerations for, 425
examples of, 425
syntax diagram of, 425

User-defined function (UDF) statements, 32
Utilities

Automated UPDATE STATISTICS, 190
POPULATE INDEX utility, 180
PURGEDATA utility, 182

V
Value expressions, 211

summary of, 284
CASE (Conditional) expression, 296
CAST expression, 299

VALUES statement
considerations for, 175
examples, 175
syntax diagram for, 175

VARCHAR data type, 204, 205
Variable-length character column, 205
VARIANCE function

DISTINCT clause within, 426
examples of, 427
statistical definition of, 426
syntax diagram of, 426

VARIANCE window function
examples of, 441
syntax diagram of, 440

Vertical partition
example, 84

Views
CREATE VIEW statement, 81
description of, 255
DROP VIEW statement, 97
relationship to tables, 254
updatability requirements, 83

Volatile tables
considerations, 75
examples, 77
nullable constraints, 76
nullable keys, 75
nullable primary key, 76
suitable keys, 75

W
WEEK function

example of, 428
syntax diagram of, 428

window functions
AVG , 433
considerations, 431
COUNT , 434
DENSE_RANK , 435
limitations, 432
MAX , 435
MIN , 436
ORDER BY clause, use of, 431
RANK , 437
ROW_NUMBER, 438
STDDEV, 438
SUM, 439
VARIANCE, 440

Y
YEAR function

examples of, 429
syntax diagram of, 429

Z
ZEROIFNULL function

example of, 430
syntax diagram of, 430

486 Index

	Trafodion SQL Reference Manual
	Contents
	About This Document
	Intended Audience
	New and Changed Information in This Edition
	Document Organization
	Notation Conventions
	General Syntax Notation

	Publishing History
	We Encourage Your Comments

	1 Introduction
	SQL Language
	Using Trafodion SQL to Access HBase Tables
	Initializing the Trafodion Metadata
	Ways to Access HBase Tables
	Accessing Trafodion SQL Tables
	Cell-Per-Row Access to HBase Tables (Technology Preview)
	Rowwise Access to HBase Tables (Technology Preview)

	Trafodion SQL Tables Versus Native HBase Tables
	Supported SQL Statements With HBase Tables

	Using Trafodion SQL to Access Hive Tables
	ANSI Names for Hive Tables
	Type Mapping From Hive to Trafodion SQL
	Supported SQL Statements With Hive Tables

	Data Consistency and Access Options
	READ COMMITTED

	Transaction Management
	User-Defined and System-Defined Transactions
	User-Defined Transactions
	System-Defined Transactions

	Rules for DML Statements
	Effect of AUTOCOMMIT Option
	Concurrency
	Transaction Isolation Levels
	READ COMMITTED

	ANSI Compliance and Trafodion SQL Extensions
	ANSI-Compliant Statements
	Statements That Are Trafodion SQL Extensions
	ANSI-Compliant Functions

	Trafodion SQL Error Messages

	2 SQL Statements
	Categories
	Data Definition Language (DDL) Statements
	Data Manipulation Language (DML) Statements
	Transaction Control Statements
	Data Control and Security Statements
	Stored Procedure and User-Defined Function Statements
	Prepared Statements
	Control Statements
	Object Naming Statements
	SHOW, GET, and EXPLAIN Statements

	ALTER LIBRARY Statement
	Syntax Description of ALTER LIBRARY
	Considerations for ALTER LIBRARY
	Required Privileges

	Examples of ALTER LIBRARY

	ALTER TABLE Statement
	Syntax Description of ALTER TABLE
	Considerations for ALTER TABLE
	Effect of Adding a Column on View Definitions
	Authorization and Availability Requirements
	Required Privileges
	Privileges Needed to Create a Referential Integrity Constraint

	Example of ALTER TABLE

	ALTER USER Statement
	Syntax Description of ALTER USER
	Considerations for ALTER USER
	Examples of ALTER USER

	BEGIN WORK Statement
	Considerations for BEGIN WORK
	Example of BEGIN WORK

	CALL Statement
	Syntax Description of CALL
	Considerations for CALL
	Usage Restrictions
	Required Privileges
	Input Parameter Arguments
	Output Parameter Arguments
	Data Conversion of Parameter Arguments
	Null Input and Output
	Transaction Semantics

	Examples of CALL

	COMMIT WORK Statement
	Considerations for COMMIT WORK
	Example of COMMIT WORK

	CONTROL QUERY CANCEL Statement
	Syntax Description of CONTROL QUERY CANCEL
	Considerations for CONTROL QUERY CANCEL
	Benefits of CONTROL QUERY CANCEL
	Restrictions on CONTROL QUERY CANCEL
	Required Privileges

	Example of CONTROL QUERY CANCEL

	CONTROL QUERY DEFAULT Statement
	Syntax Description of CONTROL QUERY DEFAULT
	Considerations for CONTROL QUERY DEFAULT
	Scope of CONTROL QUERY DEFAULT

	Examples of CONTROL QUERY DEFAULT

	CREATE FUNCTION Statement
	Syntax Description of CREATE FUNCTION
	Considerations for CREATE FUNCTION
	Required Privileges

	Examples of CREATE FUNCTION

	CREATE INDEX Statement
	Syntax Description of CREATE INDEX
	Considerations for CREATE INDEX
	Authorization and Availability Requirements
	Required Privileges

	Limits on Indexes

	Examples of CREATE INDEX

	CREATE LIBRARY Statement
	Syntax Description of CREATE LIBRARY
	Considerations for CREATE LIBRARY
	Required Privileges

	Examples of CREATE LIBRARY

	CREATE PROCEDURE Statement
	Syntax Description of CREATE PROCEDURE
	Considerations for CREATE PROCEDURE
	Required Privileges
	Effects of the Transaction Attribute on SPJs
	Transaction Required
	No Transaction Required

	Examples of CREATE PROCEDURE

	CREATE ROLE Statement
	Syntax Description of CREATE ROLE
	Considerations for CREATE ROLE
	Role Ownership

	Examples of CREATE ROLE

	CREATE SCHEMA Statement
	Syntax Description of CREATE SCHEMA
	Considerations for CREATE SCHEMA
	Reserved Schema Names
	AUTHORIZATION Clause
	Who Can Create a Schema

	Examples of CREATE SCHEMA

	CREATE TABLE Statement
	Syntax Description of CREATE TABLE
	Considerations for CREATE TABLE
	Authorization and Availability Requirements
	Required Privileges
	Privileges Needed to Create a Referential Integrity Constraint

	Considerations for CREATE VOLATILE TABLE
	Restrictions for CREATE VOLATILE TABLE
	How Trafodion SQL Supports Nullable Keys for Volatile Tables
	How Trafodion SQL Selects Suitable Keys for Volatile Tables
	Creating Nullable Constraints in a Volatile Table
	Creating a Volatile Table With a Nullable Primary Key
	Examples for Selecting Suitable Keys for Volatile Tables

	Considerations for CREATE TABLE ... LIKE
	CREATE TABLE ... LIKE and File Attributes

	Considerations for CREATE TABLE AS
	Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS

	Trafodion SQL Extensions to CREATE TABLE
	Examples of CREATE TABLE
	Examples of CREATE TABLE AS

	CREATE VIEW Statement
	Syntax Description of CREATE VIEW
	Considerations for CREATE VIEW
	Effect of Adding a Column on View Definitions
	Authorization and Availability Requirements
	Updatable and Non-Updatable Views
	ORDER BY Clause Guidelines
	When to Use ORDER BY
	ORDER BY in a View Definition With No Override
	ORDER BY in a View Definition With User Override
	Nested View Definitions

	Examples of CREATE VIEW
	Vertical Partition Example

	DELETE Statement
	Syntax Description of DELETE
	Considerations for DELETE
	Authorization Requirements
	Transaction Initiation and Termination
	Isolation Levels of Transactions and Access Options of Statements

	Examples of DELETE

	DROP FUNCTION Statement
	Syntax Description of DROP FUNCTION
	Considerations for DROP FUNCTION
	Required Privileges

	Examples of DROP FUNCTION

	DROP INDEX Statement
	Syntax Description of DROP INDEX
	Considerations for DROP INDEX
	Required Privileges

	Examples of DROP INDEX

	DROP LIBRARY Statement
	Syntax Description of DROP LIBRARY
	Considerations for DROP LIBRARY
	Required Privileges

	Examples of DROP LIBRARY

	DROP PROCEDURE Statement
	Syntax Description of DROP PROCEDURE
	Considerations for DROP PROCEDURE
	Required Privileges

	Examples of DROP PROCEDURE

	DROP ROLE Statement
	Syntax Description of DROP ROLE
	Considerations for DROP ROLE
	Before You Drop a Role
	Active Sessions for the User
	Examples of DROP ROLE

	DROP SCHEMA Statement
	Syntax Description of DROP SCHEMA
	Considerations for DROP SCHEMA
	Authorization Requirements

	Example of DROP SCHEMA

	DROP TABLE Statement
	Syntax Description of DROP TABLE
	Considerations for DROP TABLE
	Authorization Requirements

	Examples of DROP TABLE

	DROP VIEW Statement
	Syntax Description of DROP VIEW
	Considerations for DROP VIEW
	Authorization Requirements

	Example of DROP VIEW

	EXECUTE Statement
	Syntax Description of EXECUTE
	Considerations for EXECUTE
	Scope of EXECUTE

	Examples of EXECUTE

	EXPLAIN Statement
	Syntax Description of EXPLAIN
	Considerations for EXPLAIN
	Required Privileges
	Obtaining EXPLAIN Plans While Queries Are Running
	Case Considerations
	Number Considerations
	Formatted [OPTIONS 'f'] Considerations

	GET Statement
	Syntax Description of GET
	Considerations for GET
	Required Privileges

	Examples of GET

	GET HBASE OBJECTS Statement
	Syntax Description of GET HBASE OBJECTS
	Examples of GET HBASE OBJECTS

	GET VERSION OF METADATA Statement
	Considerations for GET VERSION OF METADATA
	Examples of GET VERSION OF METADATA

	GET VERSION OF SOFTWARE Statement
	Considerations for GET VERSION OF SOFTWARE
	Examples of GET VERSION OF SOFTWARE

	GRANT Statement
	Syntax Description of GRANT
	Considerations for GRANT
	Authorization and Availability Requirements

	Examples of GRANT

	GRANT COMPONENT PRIVILEGE Statement
	Syntax Description of GRANT COMPONENT PRIVILEGE
	Considerations for GRANT COMPONENT PRIVILEGE
	Authorization and Availability Requirements

	Example of GRANT COMPONENT PRIVILEGE

	GRANT ROLE Statement
	Syntax Description of GRANT ROLE
	Considerations for GRANT ROLE
	Example of GRANT ROLE

	INSERT Statement
	Syntax Description of INSERT
	Considerations for INSERT
	Authorization Requirements
	Transaction Initiation and Termination
	Self-Referencing INSERT and BEGIN WORK or AUTOCOMMIT OFF
	Isolation Levels of Transactions and Access Options of Statements
	Use of a VALUES Clause for the Source Query Expression
	Requirements for Inserted Rows
	Using Compatible Data Types

	Examples of INSERT
	Examples of Self-Referencing Inserts

	INVOKE Statement
	Syntax Description of INVOKE
	Considerations for INVOKE
	Required Privileges

	Example of INVOKE

	MERGE Statement
	Syntax Description of MERGE
	Considerations for MERGE
	Upsert Using Single Row
	Conditional Upsert Using Single Row
	Restrictions
	MERGE From One Table Into Another

	Example of MERGE

	PREPARE Statement
	Syntax Description of PREPARE
	Considerations for PREPARE
	Availability of a Prepared Statement

	Examples of PREPARE

	REGISTER USER Statement
	Syntax Description of REGISTER USER
	Considerations for REGISTER USER
	Who Can Register a User
	Add the User to the Directory Before Registering the User
	AS database-username Clause
	Reserved Names
	Username Length

	Examples of REGISTER USER

	REVOKE Statement
	Syntax Description of REVOKE
	Considerations for REVOKE
	Authorization and Availability Requirements

	Examples of REVOKE

	REVOKE COMPONENT PRIVILEGE Statement
	Syntax Description of REVOKE COMPONENT PRIVILEGE
	Considerations for REVOKE COMPONENT PRIVILEGE
	Authorization and Availability Requirements

	Example of REVOKE COMPONENT PRIVILEGE

	REVOKE ROLE Statement
	Syntax Description of REVOKE ROLE
	Considerations for REVOKE ROLE
	Examples of REVOKE ROLE

	ROLLBACK WORK Statement
	Syntax Description of ROLLBACK WORK
	Considerations for ROLLBACK WORK
	Begin and End a Transaction

	Example of ROLLBACK WORK

	SELECT Statement
	Syntax Description of SELECT
	Considerations for SELECT
	Authorization Requirements
	Use of Views With SELECT
	Join Limits
	Object Names in SELECT
	AS and ORDER BY Conflicts
	Restrictions on Embedded Inserts
	DISTINCT Aggregate Functions
	Limitations of DISTINCT Aggregates
	Examples of Multiple Distinct Aggregates

	Considerations for Select List
	Considerations for GROUP BY
	Considerations for ORDER BY
	Considerations for UNION
	Characteristics of the UNION Columns
	ORDER BY Clause and the UNION Operator
	GROUP BY Clause, HAVING Clause, and the UNION Operator
	UNION ALL and Associativity

	Examples of SELECT

	SET SCHEMA Statement
	Syntax Description of SET SCHEMA
	Considerations for SET SCHEMA
	Example of SET SCHEMA

	SET TRANSACTION Statement
	Syntax Description of SET TRANSACTION
	Considerations for SET TRANSACTION
	Implicit Transactions
	Explicit Transactions

	Examples of SET TRANSACTION

	SHOWCONTROL Statement
	Syntax Description of SHOWCONTROL
	Example of SHOWCONTROL

	SHOWDDL Statement
	Syntax Description of SHOWDDL
	Considerations for SHOWDDL
	Required Privileges
	Differences Between SHOWDDL Output and Original DDL
	PRIVILEGES Option

	Examples of SHOWDDL

	SHOWDDL SCHEMA Statement
	Syntax Description for SHOWDDL SCHEMA
	Considerations for SHOWDDL SCHEMA
	Required Privileges

	Example of SHOWDDL SCHEMA

	SHOWSTATS Statement
	Syntax Description of SHOWSTATS
	Considerations for SHOWSTATS
	Required Privileges

	Examples of SHOWSTATS

	TABLE Statement
	Considerations for TABLE
	Relationship to SELECT Statement

	Example of TABLE

	UNREGISTER USER Statement
	Syntax Description of UNREGISTER USER
	Considerations for UNREGISTER USER
	Example of UNREGISTER USER

	UPDATE Statement
	Syntax Description of UPDATE
	Considerations for UPDATE
	Performance
	Authorization Requirements
	Transaction Initiation and Termination
	Isolation Levels of Transactions and Access Options of Statements
	Conflicting Updates in Concurrent Applications
	Requirements for Data in Row
	Reporting of Updates
	Updating Character Values
	SET Clause Restrictions and Error Cases

	Examples of UPDATE

	UPSERT Statement
	Syntax Description of UPSERT
	Examples of UPSERT

	VALUES Statement
	Considerations for VALUES
	Relationship to SELECT Statement
	Relationship to INSERT Statement

	Examples of VALUES

	3 SQL Utilities
	LOAD Statement
	Syntax Description of LOAD
	Considerations for LOAD
	Required Privileges
	Configuration Before Running LOAD
	Staging Folder for HFiles
	Hive Source Table
	HBase Snapshots

	Example of LOAD

	POPULATE INDEX Utility
	Syntax Description of POPULATE INDEX
	Considerations for POPULATE INDEX
	Required Privileges

	Examples of POPULATE INDEX

	PURGEDATA Utility
	Syntax Description of PURGEDATA
	Considerations for PURGEDATA
	Required Privileges
	Availability

	Example of PURGEDATA

	UNLOAD Statement
	Syntax Description of UNLOAD
	Considerations for UNLOAD
	Required Privileges

	Example of UNLOAD

	UPDATE STATISTICS Statement
	Syntax Description of UPDATE STATISTICS
	Considerations for UPDATE STATISTICS
	Using Statistics
	Histogram Statistics
	Required Privileges
	Locking
	Transactions
	Generating and Clearing Statistics for Columns
	Column Lists and Access Plans
	Automating Update Statistics

	Examples of UPDATE STATISTICS

	4 SQL Language Elements
	Authorization IDs
	Character Sets
	Columns
	Column References
	Derived Column Names
	Examples of Derived Column Names

	Column Default Settings

	Constraints
	Creating or Adding Constraints on SQL Tables
	Constraint Names

	Correlation Names
	Explicit Correlation Names
	Implicit Correlation Names
	Examples of Correlation Names

	Database Objects
	Ownership

	Database Object Names
	Logical Names for SQL Objects
	SQL Object Namespaces

	Data Types
	Comparable and Compatible Data Types
	Character Data Types
	Datetime Data Types
	Interval Data Types
	Numeric Data Types
	Extended Numeric Precision
	Considerations for Extended NUMERIC Precision Data Type
	Rules for Extended NUMERIC Precision Data Type
	Example of Extended NUMERIC Precision Data Type

	Character String Data Types
	Considerations for Character String Data Types

	Datetime Data Types
	Considerations for Datetime Data Types

	Interval Data Types
	Considerations for Interval Data Types

	Numeric Data Types

	Expressions
	Character Value Expressions
	Examples of Character Value Expressions

	Datetime Value Expressions
	Considerations for Datetime Value Expressions
	Examples of Datetime Value Expressions

	Interval Value Expressions
	Considerations for Interval Value Expressions
	Examples of Interval Value Expressions

	Numeric Value Expressions
	Considerations for Numeric Value Expressions
	Examples of Numeric Value Expressions

	Identifiers
	Regular Identifiers
	Delimited Identifiers
	Case-Insensitive Delimited Identifiers
	Examples of Identifiers

	Indexes
	SQL Indexes

	Keys
	Clustering Keys
	SYSKEY
	Index Keys
	Primary Keys

	Literals
	Character String Literals
	Considerations for Character String Literals
	Examples of Character String Literals

	Datetime Literals
	Examples of Datetime Literals

	Interval Literals
	Considerations for Interval Literals
	Examples of Interval Literals

	Numeric Literals
	Examples of Numeric Literals

	Null
	Using Null Versus Default Values
	Defining Columns That Allow or Prohibit Null
	Null in DISTINCT, GROUP BY, and ORDER BY Clauses
	Null and Expression Evaluation Comparison

	Predicates
	BETWEEN Predicate
	Considerations for BETWEEN
	Examples of BETWEEN

	Comparison Predicates
	Considerations for Comparison Predicates
	Examples of Comparison Predicates

	EXISTS Predicate
	Examples of EXISTS

	IN Predicate
	Considerations for IN
	Examples of IN

	LIKE Predicate
	Syntax
	Considerations
	Comparing the Value to the Pattern
	When a LIKE Predicate Is True
	Using NOT
	Wild-Card Characters
	Percent Sign (%)
	Underscore (_)

	Escape Characters
	Comparing the Pattern to CHAR Columns
	Comparing the Pattern to VARCHAR Columns

	Examples

	NULL Predicate
	Considerations for NULL
	Examples of NULL

	Quantified Comparison Predicates
	Considerations for ALL, ANY, SOME
	Examples of ALL, ANY, SOME

	Privileges
	Roles
	Schemas
	Creating and Dropping Schemas

	Search Condition
	Considerations for Search Condition
	Order of Evaluation
	Column References
	Subqueries

	Examples of Search Condition

	Subquery
	SELECT Form of a Subquery
	Using Subqueries to Provide Comparison Values
	Nested Subqueries When Providing Comparison Values
	Correlated Subqueries When Providing Comparison Values

	Tables
	Base Tables and Views
	Example of a Base Table

	Views
	SQL Views
	Example of a View

	5 SQL Clauses
	DEFAULT Clause
	Examples of DEFAULT

	FORMAT Clause
	Considerations for Date Formats
	Considerations for Other Formats
	Examples of FORMAT

	SAMPLE Clause
	Considerations for SAMPLE
	Sample Rows

	Examples of SAMPLE

	SEQUENCE BY Clause
	Considerations for SEQUENCE BY
	Examples of SEQUENCE BY

	TRANSPOSE Clause
	Considerations for TRANSPOSE
	Multiple TRANSPOSE Clauses and Sets
	Degree and Column Order of the TRANSPOSE Result
	Data Type of the TRANSPOSE Result
	Cardinality of the TRANSPOSE Result

	Examples of TRANSPOSE

	6 SQL Functions and Expressions
	Categories
	Standard Normalization
	Aggregate (Set) Functions
	Character String Functions
	Datetime Functions
	Mathematical Functions
	Sequence Functions
	Other Functions and Expressions

	ABS Function
	Example of ABS

	ACOS Function
	Examples of ACOS

	ADD_MONTHS Function
	Examples of ADD_MONTHS

	ASCII Function
	Considerations for ASCII
	Example of ASCII

	ASIN Function
	Examples of ASIN

	ATAN Function
	Examples of ATAN

	ATAN2 Function
	Example of ATAN2

	AUTHNAME Function
	Considerations for AUTHNAME
	Example of AUTHNAME

	AVG Function
	Considerations for AVG
	Data Type of the Result
	Operands of the Expression
	Nulls

	Examples of AVG

	BITAND Function
	Considerations for BITAND
	Restrictions for BITAND
	Examples of BITAND

	CASE (Conditional) Expression
	Considerations for CASE
	Data Type of the CASE Expression
	Character Data Type
	Numeric Data Type
	Datetime Data Type
	Interval Data Type

	Examples of CASE

	CAST Expression
	Considerations for CAST
	Valid Conversions for CAST
	Examples of CAST

	CEILING Function
	Example of CEILING

	CHAR Function
	Considerations for CHAR
	Example of CHAR

	CHAR_LENGTH Function
	Considerations for CHAR_LENGTH
	CHAR and VARCHAR Operands

	Examples of CHAR_LENGTH

	COALESCE Function
	Example of COALESCE

	CODE_VALUE Function
	Example of CODE_VALUE Function

	CONCAT Function
	Concatenation Operator (||)
	Considerations for CONCAT
	Operands
	SQL Parameters

	Examples of CONCAT

	CONVERTTOHEX Function
	Considerations for CONVERTTOHEX
	Examples of CONVERTTOHEX

	CONVERTTIMESTAMP Function
	Considerations for CONVERTTIMESTAMP
	Relationship to the JULIANTIMESTAMP Function
	Use of CONVERTTIMESTAMP

	Examples of CONVERTTIMESTAMP

	COS Function
	Example of COS

	COSH Function
	Example of COSH

	COUNT Function
	Considerations for COUNT
	Operands of the Expression
	Nulls

	Examples of COUNT

	CURRENT Function
	Example of CURRENT

	CURRENT_DATE Function
	Examples of CURRENT_DATE

	CURRENT_TIME Function
	Example of CURRENT_TIME

	CURRENT_TIMESTAMP Function
	Example of CURRENT_TIMESTAMP

	CURRENT_USER Function
	Considerations for CURRENT_USER
	Example of CURRENT_USER

	DATE_ADD Function
	Examples of DATE_ADD

	DATE_SUB Function
	Examples of DATE_SUB

	DATEADD Function
	Examples of DATEADD

	DATEDIFF Function
	Examples of DATEDIFF

	DATEFORMAT Function
	Considerations for DATEFORMAT
	Examples of DATEFORMAT

	DATE_PART Function (of an Interval)
	Examples of DATE_PART

	DATE_PART Function (of a Timestamp)
	Examples of DATE_PART

	DATE_TRUNC Function
	Examples of DATE_TRUNC

	DAY Function
	Example of DAY

	DAYNAME Function
	Considerations for DAYNAME
	Example of DAYNAME

	DAYOFMONTH Function
	Examples of DAYOFMONTH

	DAYOFWEEK Function
	Example of DAYOFWEEK

	DAYOFYEAR Function
	Example of DAYOFYEAR

	DECODE Function
	Considerations for DECODE
	Examples of DECODE

	DEGREES Function
	Examples of DEGREES

	DIFF1 Function
	Considerations for DIFF1
	Equivalent Result
	Datetime Arguments

	Examples of DIFF1

	DIFF2 Function
	Considerations for DIFF2
	Equivalent Result
	Datetime Arguments

	Examples of DIFF2

	EXP Function
	Examples of EXP

	EXPLAIN Function
	Considerations for EXPLAIN Function
	Using a Statement Pattern
	Obtaining an EXPLAIN Plan While Queries Are Running
	Result of the EXPLAIN Function

	Examples of EXPLAIN Function

	EXTRACT Function
	Examples of EXTRACT

	FLOOR Function
	Examples of FLOOR

	HOUR Function
	Example of HOUR

	INSERT Function
	Examples of INSERT

	ISNULL Function
	Examples of ISNULL

	JULIANTIMESTAMP Function
	Considerations for JULIANTIMESTAMP
	Examples of JULIANTIMESTAMP

	LASTNOTNULL Function
	Example of LASTNOTNULL

	LCASE Function
	Example of LCASE

	LEFT Function
	Examples of LEFT

	LOCATE Function
	Considerations for LOCATE
	Result of LOCATE
	Using UCASE

	Examples of LOCATE

	LOG Function
	Example of LOG

	LOG10 Function
	Example of LOG10

	LOWER Function
	Considerations for LOWER
	Example of LOWER

	LPAD Function
	Examples of LPAD

	LTRIM Function
	Considerations for LTRIM
	Result of LTRIM

	Example of LTRIM

	MAX/MAXIMUM Function
	Considerations for MAX/MAXIMUM
	Operands of the Expression

	Example of MAX/MAXIMUM

	MIN Function
	Considerations for MIN
	Operands of the Expression

	Example of MIN

	MINUTE Function
	Example of MINUTE

	MOD Function
	Example of MOD

	MONTH Function
	Example of MONTH

	MONTHNAME Function
	Considerations for MONTHNAME
	Example of MONTHNAME

	MOVINGAVG Function
	Example of MOVINGAVG

	MOVINGCOUNT Function
	Considerations for MOVINGCOUNT
	Example of MOVINGCOUNT

	MOVINGMAX Function
	Example of MOVINGMAX

	MOVINGMIN Function
	Example of MOVINGMIN

	MOVINGSTDDEV Function
	Example of MOVINGSTDDEV

	MOVINGSUM Function
	Example of MOVINGSUM

	MOVINGVARIANCE Function
	Example of MOVINGVARIANCE

	NULLIF Function
	Example of NULLIF

	NULLIFZERO Function
	Examples of NULLIFZERO

	NVL Function
	Examples of NVL

	OCTET_LENGTH Function
	Considerations for OCTET_LENGTH
	CHAR and VARCHAR Operands
	Similarity to CHAR_LENGTH Function

	Example of OCTET_LENGTH

	OFFSET Function
	Example of OFFSET

	PI Function
	Example of PI

	POSITION Function
	Considerations for POSITION
	Result of POSITION
	Using the UPSHIFT Function

	Examples of POSITION

	POWER Function
	Examples of POWER

	QUARTER Function
	Example of QUARTER

	RADIANS Function
	Examples of RADIANS

	RANK/RUNNINGRANK Function
	Considerations for RANK/RUNNINGRANK
	Sequence Order Dependency
	NULL Values

	Examples of RANK/RUNNINGRANK

	REPEAT Function
	Example of REPEAT

	REPLACE Function
	Example of REPLACE

	RIGHT Function
	Examples of RIGHT

	ROUND Function
	Examples of ROUND

	ROWS SINCE Function
	Considerations for ROWS SINCE
	Counting the Rows

	Examples of ROWS SINCE

	ROWS SINCE CHANGED Function
	Considerations for ROWS SINCE CHANGED
	Counting the Rows

	Examples of ROWS SINCE CHANGED

	RPAD Function
	Examples of RPAD Function

	RTRIM Function
	Considerations for RTRIM
	Result of RTRIM

	Example of RTRIM

	RUNNINGAVG Function
	Considerations for RUNNINGAVG
	Equivalent Result

	Example of RUNNINGAVG

	RUNNINGCOUNT Function
	Considerations for RUNNINGCOUNT
	No DISTINCT Clause

	Example of RUNNINGCOUNT

	RUNNINGMAX Function
	Example of RUNNINGMAX

	RUNNINGMIN Function
	Example of RUNNINGMIN

	RUNNINGRANK Function
	RUNNINGSTDDEV Function
	Considerations for RUNNINGSTDDEV
	Equivalent Result

	Examples of RUNNINGSTDDEV

	RUNNINGSUM Function
	Example of RUNNINGSUM

	RUNNINGVARIANCE Function
	Examples of RUNNINGVARIANCE

	SECOND Function
	Example of SECOND

	SIGN Function
	Examples of SIGN

	SIN Function
	Example of SIN

	SINH Function
	Example of SINH

	SPACE Function
	Example of SPACE

	SQRT Function
	Example of SQRT

	STDDEV Function
	Considerations for STDDEV
	Definition of STDDEV
	Data Type of the Result
	Operands of the Expression
	Nulls
	FLOAT(54) and DOUBLE PRECISION Data

	Examples of STDDEV

	SUBSTRING/SUBSTR Function
	Alternative Forms
	Considerations for SUBSTRING/SUBSTR
	Requirements for the Expression, Length, and Start Position

	Examples of SUBSTRING/SUBSTR

	SUM Function
	Considerations for SUM
	Data Type and Scale of the Result
	Operands of the Expression

	Example of SUM

	TAN Function
	Example of TAN

	TANH Function
	Example of TANH

	THIS Function
	Considerations for THIS
	Counting the Rows

	Example of THIS

	TIMESTAMPADD Function
	Examples of TIMESTAMPADD

	TIMESTAMPDIFF Function
	Examples of TIMESTAMPDIFF

	TRANSLATE Function
	TRIM Function
	Considerations for TRIM
	Result of TRIM

	Examples of TRIM

	UCASE Function
	Considerations for UCASE
	Examples of UCASE

	UPPER Function
	Example of UPPER

	UPSHIFT Function
	Examples of UPSHIFT

	USER Function
	Considerations for USER
	Examples of USER

	VARIANCE Function
	Considerations for VARIANCE
	Definition of VARIANCE
	Data Type of the Result
	Operands of the Expression
	Nulls
	FLOAT(54) and DOUBLE PRECISION Data

	Examples of VARIANCE

	WEEK Function
	Example of WEEK

	YEAR Function
	Example of YEAR

	ZEROIFNULL Function
	Example of ZEROIFNULL

	7 OLAP Functions
	Considerations for Window Functions
	ORDER BY Clause Supports Expressions For OLAP Functions
	Limitations for Window Functions

	AVG Window Function
	Examples of AVG Window Function

	COUNT Window Function
	Examples of COUNT Window Function

	DENSE_RANK Window Funtion
	Examples of DENSE_RANK Window Function

	MAX Window Function
	Examples of MAX Window Function

	MIN Window Function
	Examples of MIN Window Function

	RANK Window Function
	Examples of RANK Window Function

	ROW_NUMBER Window Function
	Examples of ROW_NUMBER Window Function

	STDDEV Window Function
	Examples of STDDEV

	SUM Window Function
	Examples of SUM Window Function

	VARIANCE Window Function
	Examples of VARIANCE Window Function

	8 SQL Runtime Statistics
	PERTABLE and OPERATOR Statistics
	Adaptive Statistics Collection
	Retrieving SQL Runtime Statistics
	Using the GET STATISTICS Command
	Syntax of GET STATISTICS
	Examples of GET STATISTICS

	Displaying SQL Runtime Statistics
	Examples of Displaying SQL Runtime Statistics
	Statistics of a Prepared Statement
	PERTABLE Statistics of an Executing Statement
	ACCUMULATED Statistics of an Executing Statement
	PROGRESS Statistics of an Executing Statement
	DEFAULT Statistics of an Executing Statement

	Using the Parent Query ID
	Child Query ID

	Gathering Statistics About RMS
	Using the QUERYID_EXTRACT Function
	Syntax of QUERYID_EXTRACT
	Examples of QUERYID_EXTRACT

	Statistics for Each Fragment-Instance of an Active Query
	Syntax of STATISTICS Table-Valued Function
	Considerations For Obtaining Statistics For Each Fragment-Instance of an Active Query

	A Reserved Words
	Reserved Trafodion SQL Identifiers

	B Control Query Default (CQD) Attributes
	HBase Environment CQDs
	HBASE_INTERFACE

	Hive Environment CQDs
	HIVE_MAX_STRING_LENGTH

	Managing Histograms
	CACHE_HISTOGRAMS_REFRESH_INTERVAL
	HIST_NO_STATS_REFRESH_INTERVAL
	HIST_PREFETCH
	HIST_ROWCOUNT_REQUIRING_STATS

	Optimizer
	JOIN_ORDER_BY_USER
	MDAM_SCAN_METHOD
	SUBQUERY_UNNESTING

	Managing Schemas
	SCHEMA

	Transaction Control and Locking
	BLOCK_TO_PREVENT_HALLOWEEN
	UPD_ORDERED

	C Limits
	Index

