Trafodion SQL Reference Manual

Part Number: T775-110-001
Published: April 2015
Edition: Trafodion Release 1.1.0

© Copyright 2015 Hewlett-Packard Development Company, L.P.
Legal Notice

The information contained herein is subject to change without notice. This documentation is distributed on an “AS IS” basis, without warranties or
conditions of any kind, either express or implied. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable

for technical or editorial errors or omissions contained herein.

NOTICE REGARDING OPEN SOURCE SOFTWARE: Project Trafodion is licensed under the Apache License, Version 2.0 (the "License"); you may
not use software from Project Trafodion except in compliance with the License. You may obtain a copy of the License at http://www.apache.org
licenses/LICENSE-2.0. Unless required by applicable law or agreed fo in writing, software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing

permissions and limitations under the License.

Acknowledgements

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. Java® is a registered trademark of Oracle and/or its affiliates.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents

About This DoCUMENt..........uuiiiiiiiiee e 17
Intended AUTIENCE.ooiiiiiiieii ettt e 17
New and Changed Information in This Edifion.............ooiiiiiiiiiiiiiiiiiiieeec e, 17
Document OrganiZOHON.uueiiiiiee ettt 17
NOIGHON CONVENTIONS. ...ttt e e 18

General Syntax NOTGHON.iiiiiiiiiiee e et eeeeeeaeeeeeas 18
PUBIIShING HiISTOrYee ittt e e et e e e e e e e 20
We Encourage Your CommMENtS.cco.uuuuuiiiiiiiiiie ettt ettt e e et eeeeees 20

T INtrOdUCHON. ... 21
SQIL LONGUAGE. .ttt ettt ettt e 21
Using Trafodion SQL to Access HBase Tables...........cccuuiiiiiiiiiiiiiiiiiiccece e 21

Initializing the Trafodion Metadata............uiiiiiiiiiiiiiie e 21
Ways to Access HBase Tables..............uiiiiiiiiiii e 22
Trafodion SQL Tables Versus Native HBase Tables...........c.oooiiiiiiiiiiiiiiiieiie e 23
Supported SQL Statements With HBase Tables................oooviiiiiiiiiiiiiiccee 23
Using Trafodion SQL to Access Hive Tables...........ooiiiiiiiiiiiiiiiie e 24
ANSI Names for Hive Tables...........oooiiiiiiiiii e 24
Type Mapping From Hive to Trafodion SQL..........c..coiiiiiiiiiiiiiie e 24
Supported SQL Statements With Hive Tables...............ooooiii 24
Data Consistency and Access OPHONS...........uiiieeiiiiiiiiieeee ittt e e e e ettt ee e e e e siieeeeeeeeennareeaaeeaaaes 25
READ COMMITTED. ...ttt e et e et e et e e ee e e neneees 25
Transaction MAnNAGEMENL...........oiiiiiiiiiiii ittt 25
User-Defined and System-Defined Transactions..............ccccvviiiiiiiiiiiiiieeeeiciiieee e, 26
Rules for DML SHOTEMENS.c..viiieiiiiie ettt et e et e et e ettt e e e eneraeeeeneneeas 26
Effect of AUTOCOMMIT OPHON.c.uviiieiiiieeeiiiiee ettt se et e e et e e e eirae e e snisaeeeennneeas 26
Qe TelT (=T ol PO SOPPPINt 26
Transaction 1SOlAHON LeVEIS........co.uiiiiiiiii e 26
ANSI Compliance and Trafodion SQL EXIENSIONS.ccuvviiiiieiiiiiiiiiee e 27
ANSI-Compliant STAIEMENS.eiiiiiiiiiiie e e e et e e e e e e e e 27
Statements That Are Trafodion SQL EXIENSIONS........couvviieiiiiiieeiiiiie et 28
ANSI-Compliant FUNCHONS.eiiiieeiiiiiiee ettt e e e e e e e e 28
Trafodion SQL Error MESSAGES.vviiiiiiiieieiiiee e eeiiee ettt e e e e aba e e e enaaeeeeens 29

2 SQL StOtEMENES. ...ttt 30

COEGOTIES. e e e e e ettt ettt ettt e e e e e e eeees 30
Data Definition Language (DDL) SIatements...........coouuiieiiiiieeeiiiie e et e et 30
Data Manipulation Language (DML) Statements..........cooiiviiiiieeiiiiiiie e 31
Transaction Control STATEMENES.iiiiiiiiiiiieee e 31
Data Control and Security SIAtemMents..........oooiiiiiiiiiiieeiiiiiie e 31
Stored Procedure and User-Defined Function Statements.............cccoeiiiiiiiiniiiiiiniiieciiceeee, 32
Prepared STOIEMENTS.iiiiiiiiiiiie ettt et e e e e aeaeaaaa 32
CONtTOl STAIEMENTS.ee ittt ettt e et e e et e e et ee e e 33
Object Naming SIOIEMENES.oiiiiiiiie et e e 33
SHOW, GET, and EXPLAIN STOEEMENTS. ... eeneeeee et 33

ALTER LIBRARY Statement.......cccoiiiiiiiiiiiiiiii e 34
Syntax Description of ALTER LIBRARYuuiiiiiiiiiiiiiiiie et 34
Considerations for ALTER LIBRARYccciiiiiiiiiiiieeiiiie ettt e e e 34
Examples of ALTER LIBRARYoiiiiiiiiiiiiiee oottt e e e e earaaae e e e 34

ALTER TABLE SHatemMent......coiiiiiiiiiiiii e e e e 36
Syntax Description of ALTER TABLE..........c..oiiiiiiiiieiiiiie ettt 37
Considerations for ALTER TABLE.cccuiiiiiieiiie ettt 40

Contents 3

4

Example of ALTER TABLE.iiiiiii et 40

ALTER USER SEot@MENt. ..o i 41
Syntax Description of ALTER USER...........cccuviiiiiiiiiiiiiie e 41
Considerations for ALTER USER.......u. ittt 4]
Examples of ALTER USER...........ccoiiuiiiiiiiiiie ittt ettt et et e et e et e e e sneaaeeeeneneeas 41

BEGIN WORK SEOIEMENT. ... e e 42
Considerations for BEGIN WORKcoouuiiiie e 42
Example of BEGIN WORKoiiiiiiiiiiiiiee ettt e e et e e e e e iataaaeeeeeeae 42

CALL SHOIEMENT . e e 43
Syntax Descriphon of CALL........c.uvviiiiiiiiiiie e 43
CoNSIAEraHONS TOr CALL. ... oo e e 43
EXAMPIES OF CALL....oiiiiiiiiiieiiiie ettt et e e et e e e e e e trae e e eeneeas 44

COMMIT WORK STOEEMENT. ..t 46
Considerations for COMMIT WORKc.uuneiee e e 46
Example of COMMIT WORKccoiiiiiiiiiii et e e e e evaaae e e e e 46

CONTROL QUERY CANCEL SIAt@MENT... e et 47
Syntax Description of CONTROL QUERY CANCEL.........coiiiiiiiiiiiiieeiiiiee e 47
Considerations for CONTROL QUERY CANCEL.......uuuuee e 47
Example of CONTROL QUERY CANGCEL........coiiiiiiiiiiiieiiiiiee et 48

CONTROL QUERY DEFAULT SO MENT. ...t 49
Syntax Description of CONTROL QUERY DEFAULT.........ccoiiiiiiiiieeeiiiieeee et 49
Considerations for CONTROL QUERY DEFAULT ...ttt 49
Examples of CONTROL QUERY DEFAULT..........uviiiiiiiiieeiiiiee et et 49

CREATE FUNCTION SEOI@MENT. .. e e e 50
Syntax Description of CREATE FUNCTION.........coiiiiiiiiiiiiiiiiiee et 50
Considerations for CREATE FUNCTION. ... coeumte et 52
Examples of CREATE FUNCTION.......coiuiiiiiiiiiieiiiieie ettt e e ivaaa e e e 52

CREATE INDEX SIAIEMENT.. ..ot e 53
Syntax Description of CREATE INDEX...........ccoiiiieiiiiieeiiiieeeeiiie e e et eeeiteeeeeiaaeeeeeraee e 53
Considerations for CREATE INDEX.......coouuuie ettt 54
Examples of CREATE INDEX.........ciiiiiiiiiiiiie ettt e ettt e e et e e e e eaaaaeee e e e e 55

CREATE LIBRARY SO EMENT. . ..ot 56
Syntax Description of CREATE LIBRARYoviiiiiiiiiiiiiiie et 56
Considerations for CREATE LIBRARYoouuntieiee et 56
Examples of CREATE LIBRARYciiiiiiieiiiiee ettt e et e e e e e enesae e e enenee s 57

CREATE PROCEDURE STAEMENT. ... oeieiii et 58
Syntax Description of CREATE PROCEDURE................viiiiiiiiiiiiiie e et 58
Considerations for CREATE PROCEDURE..........couuieeeiee e 62
Examples of CREATE PROCEDURE.............coiiiiiiiiiiiiie e e et e et iraaa e e 63

CREATE ROLE ST MENT. ..o e e e 66
Syntax Description of CREATE ROLE............cciiiiiiiiiiiiiee et 66
Considerations for CREATE ROLE..........ooimmieee et 66
Examples of CREATE ROLE............ooiiiiiiiiiiiee ettt e et e e e e e eitaaeee e e e e 66

CREATE SCHEMA SIOIeMENt. .. oo 67
Syntax Description of CREATE SCHEMAL...........ooiiiiiiiiiii e 67
Considerations for CREATE SCHEMA i e 67
Examples of CREATE SCHEMA.........ooiiiiiiiieiiie ettt e e e 68

CREATE TABLE SEOtEMENT. ... it 69
Syntax Description of CREATE TABLE.............ooiiiiiiiiiiiieeeeiiiieee ettt e e iaaaeaa e 70
Considerations for CREATE TABLE.coomeiiiie e e 74
Authorization and Availability Requirements.............cocoviiiiiiiiiiiiiiceeece e 74
Considerations for CREATE VOLATILE TABLE.......coomee e 75
Considerations for CREATE TABLE ... LIKE.......n ittt 77
Considerations for CREATE TABLE AS.....oemiiee et 78
Trafodion SQL Extensions to CREATE TABLE.coouuiiii e 78

Contents

Examples of CREATE TABLE..........ooiiiiiiiiiie ettt e et e e e e e eaanaeee e e e e 79

Examples of CREATE TABLE AS......oooiiiiiiiiiie oottt e ettt e et e e e e araaaee e e e e 79
CREATE VIEW SIOIEMENT. ..ottt e e e e et 81
Syntax Description of CREATE VIEWuuiiiiiiiiiiiiiieee et 81
Considerations for CREATE VIEW.........ccoiiiiiiiiie oo 82
Examples of CREATE VIEWoiiiiiiiie ittt ettt e 84
DELETE SHQEEMENT. ...ttt e e et eeeeeaaaans 86
Syntax Description of DELETE............oiiiiiiiiiiiiiee ettt 86
Considerations for DELETE.ccouuiiiiiiiiiiiiiii ettt e eaiaaee s 86
Examples of DELETE..........cooiiiiiiiii ettt e e e e e eaaae e e e e 87
DROP FUNCTION STOIEMENT. ... eeiiiieeee et et e e e e e e e e e et e e e e e eeaaa e e eeeeeennnns 88
Syntax Description of DROP FUNCTION........c.uiiiiiiiiiiiieiiie ettt 88
Considerations for DROP FUNCTION........couiiiiiiieeiiiiiie ettt 88
Examples of DROP FUNCTION.ccoiiiiiiiiiiiieiiiiie ettt e e e e iaraaaeeeeeaes 88
DROP INDEX SEHOEMENT. ...ttt et e e e e ettt e e e e et e e e e e eeeeennns 89
Syntax Description of DROP INDEX.........cuuuviiiiiiiiiiiiiiee et 89
Considerations for DROP INDEX............ccoiiuiiiiieiiiiiiiii e et 89
Examples of DROP INDEX..........ccoiiuiiiiiiiiieeiiiiee e ettt e e eiite e e st e e e eitaeeeeeiateeesinaeeesneraeeeeneneens 89
DROP LIBRARY SHOIEMENL......ciitiiieeiiiiie e ettt e ettt eit ettt e et e e et e e ettt e e e e eaaaeeeeeaaaeaeans 90
Syntax Description of DROP LIBRARYuviiiiiiiiiiiiiiiee ettt 90
Considerations for DROP LIBRARYcoiiiuriiiiieeieiiiiiee e e e ettt e e e e e e e e e e e e e e e eaaaaeee s 90
Examples of DROP LIBRARYuiiiiiiiiiiiie oottt e e e 90
DROP PROCEDURE STOIEMENT. ... uuiiieeeeeeiiiie e ettt e et e e e e e et e e e e e eeaa e e eeeeeennnns 92
Syntax Description of DROP PROCEDURE...........cccutiiiiiiiiieeiiie et 92
Considerations for DROP PROCEDURE..............cociiiiiiiiiiieeeeeiiiiiee e et 92
Examples of DROP PROCEDURE................ooiiiiiiiiiiiieee e et e e e e et e e e e e e e araaeeeeeeeaes 92
DROP ROLE STOEEMENT. ...ttt ettt e e e ettt e e e e e e e e e e eeeeennns 93
Syntax Description of DROP ROLE..........ccouviiiiiiiiiiiiiiee e 93
Considerations for DROP ROLE..............ccoiiuiiiiiiiieiiee e 93
Before You Drop @ ROIE......ccouuiiiiiiiiiie e 93
Active Sessions for the USer...........oooiiiiiiiiiiii e 93
Examples of DROP ROLE.............oiiiiiiiiiiiiieee ettt e et e et e e e e e e iaraaaeeeeeeaes 93
DROP SCHEMA SHQEEMENT. ...ttt e e e e e e e e e e eeeeaans 95
Syntax Description of DROP SCHEMA...........ooiiiiiiiiiii e 95
Considerations for DROP SCHEMAL.........ccouiiiiiieiiieee e 95
Example of DROP SCHEMAcoiiiiiiiiiie ettt 95
DROP TABLE SEOIEMENT. ...ttt e e e 96
Syntax Description of DROP TABLE..........ccuuviiiiiiiiiiiiiiiee ettt e 96
Considerations for DROP TABLE.............cooiiiiiiiiieiiiiiie et 96
Examples of DROP TABLE............ooiiiiiiiiiiiie e e e 96
DROP VIEW SEOEEMENL.etiieeeeeeeiie ettt e e e et e e e e e et e e e e eeaaaaeeeeeeesnnnns 97
Syntax Description of DROP VIEW........oiiiiiiiiiiieiiit oot 97
Considerations for DROP VIEW.........ooiiiiiiiiiiiiiee et 97
Example of DROP VIEWcooiiiiiiiieieieeee ettt e e e e eraaa e e e e e 97
EXECUTE SIOIEMENT. .ttt e e e ettt e e e e e e e e e e e eeeennns 98
Syntax Description of EXECUTE............cciiiiiiiiiiiieeiiiiee et 98
Considerations for EXECUTE.............uviiiiiiiiiiiii e e 99
Examples of EXECUTE.........ooiiiiiiiiiie ettt e e e e e etrae e e enanee s 99
EXPLAIN STOIEMENT. ...ttt e e ettt e e e eeeeae 101
Syntax Description of EXPLAINL..........coiiiiiiiiiiii ettt 101
Considerations for EXPLAIN...........uviiiiiiiiiiiiiii et 101
(] I} 01 =11 1T o PSSP 103
Syntax DescripHion of GET.......c..uiiiiiiiiieiiiie ettt et e e saree e 103
Considerations for GET...........coiuiiiiiiiiie ettt ettt e et e e et e e e saraeeeeaes 104
EXxamples of GET.......oviiiiiiiiie e e 105

Contents 5

6

GET HBASE OBJECTS SIOIEMENT. .. e 107

Syntax Description of GET HBASE OBJECTS.......ccoiiiiiiiiieeeeeiiiie et 107
Examples of GET HBASE OBJECTS......ccouiiieiiiiiee ettt e e e e 107
GET VERSION OF METADATA SEGemMENt......uuiiiiiiiiiiiie et 109
Considerations for GET VERSION OF METADATA.........oooiiiiiiiiiiiee e 109
Examples of GET VERSION OF METADATA.......ooiitiiiiiie et eeiee ettt 109
GET VERSION OF SOFTWARE SEOteMENt.......iiiiiiieeeeiiiiiiie e et e et e e 110
Considerations for GET VERSION OF SOFTWARE..........ccciiiiiiiiiieeeiiiiiieee e 110
Examples of GET VERSION OF SOFTWARE...........cuviiiiiiiiiiiiie et 110
GRANT SHOIEMENT. ..ttt et e e e ettt e e e e et e e e e e e ea e e e e eeeaannnnes 111
Syntax Descriphon of GRANT.........coiuiiiiiiii ettt e esaree e 111
Considerations for GRANTuiiiiiiiiii ettt e e e e e e e e earaeeeeees 112
Examples of GRANTooiiiiiiiii et e et e e e e e e e e e e e e eabaraeaeeeas 112
GRANT COMPONENT PRIVILEGE Statement..........coovuiiiiiiiiiiiiiiie e 114
Syntax Description of GRANT COMPONENT PRIVILEGE.............ccoooviiiiiiiieeiiiiiiieee e 114
Considerations for GRANT COMPONENT PRIVILEGE..........cccuvviiiiiiiiiiiiiieeeeeieee e 116
Example of GRANT COMPONENT PRIVILEGE............ccoiiiiiieiiiiie e 116
GRANT ROLE SEOIEMEN......iiiiiieeee ettt ettt e e ettt e e e e e e e e e e et aeeeeeeeenenseeeas 117
Syntax Description of GRANT ROLE.............oiiiiiiiiiiiiiiiee et 117
Considerations for GRANT ROLE...........cooiiiiiiiiiiiiiiiiieee et 117
Example of GRANT ROLE...........ooiiiiiiiiiiiiii et e e aae e 117
INSERT SHQEEMENT. ... e e ettt e e e e et e e e e e eaaaa e e eeeeenee 118
Syntax Description of INSERT.........coiiiiiiiiiie ettt et e e saree e 118
Considerations for INSERT...........iiiiiiiiiiiiie ettt ettt e et e et e e e sareeeeeees 118
Examples Of INSERT........ooiiiiiiiit et e et e e e e et e e e e e eatareeaeeeas 120
INVOKE SIOIEMENT. ...t e et e e e et et e e e e e eeeens 122
Syntax Description of INVOKEcooiiiiiiiiiiiiiie e 122
Considerations for INVOKE...............oiiiiiiiiiiiie e 122
Example of INVOKE..........ooiiiiiiiiiiie ettt e et e e ibae e e 122
MERGE STOIEMENT. ...ttt eeeeana 123
Syntax Description of MERGEooiiiiiiiiiiiiieieie e 123
Considerations for MERGEoiiiiiiiiiiiiii e ettt e s 123
Example of MERGEoiiiiiiiiiiic et e 125
[N o N] o1 (=11 1 T=T S PPPRSSPPPPR 126
Syntax Description of PREPARE.............oiiiiiiiiiiiiiie ettt et 126
Considerations for PREPARE............cccuiiiiiiiiiiiiiiie ettt 126
Examples of PREPARE.coiiiiiiiie ettt e e e e e e e e e e abaraeaee e 126
REGISTER USER SHatemMENt......oiiiiiiii e e e 128
Syntax Description of REGISTER USER...........ooiiiiiiiiiiiiiieeeeciiiee et 128
Considerations for REGISTER USER...........cccuuiiiiiiiiiiiiiiee e 128
Examples of REGISTER USER.......coouuiiiiiiiiieeiiii ettt 129
REVOKE STOIEMENT. ... ettt e e 130
Syntax Description of REVOKE.............ccoiiiiiiiiiiiiiiiiee et 130
Considerations for REVOKE..............uiiiiiiiiiiiiii ettt 131
Examples of REVOKE.cooiiiiiiiiieeeiiee e e e aaaae e 131
REVOKE COMPONENT PRIVILEGE Stat@ment...........ueiiiiiiieiiiiieeiiiiie e 133
Syntax Description of REVOKE COMPONENT PRIVILEGE..........ccc.coiiiiiiiiieiiiieeeeiiiee e, 133
Considerations for REVOKE COMPONENT PRIVILEGE.............cooiiiiiiiiiiieeiiieeeiie e, 134
Example of REVOKE COMPONENT PRIVILEGE............ccoiiuiiiiiiiieiiiiiee e 134
REVOKE ROLE SEGEEMENT ... et e e e 135
Syntax Description of REVOKE ROLE...............cooiiiiiiiiiiieeiiiiiie e 135
Considerations for REVOKE ROLE...........ccoouuiiiiiiiiiiiiiee e 135
Examples of REVOKE ROLE..........ccuuiiiiiiiiie ettt et ibae e 136
ROLLBACK WORK' STOIEMENT. ...ttt ettt eeeeeee 137
Syntax Description of ROLLBACK WORK.........ciiiiiiiiiiiieeeeeeiiiie e 137
Contents

Considerations for ROLLBACK WORKc.ueeee e 137

Example of ROLLBACK WORKcoiiiiiiiiiee ittt et e e raaee e 137
SELECT SEOIEMONT. .o 138
Syntax Description of SELECT..........ooiiiiiiiiiiiiiie e 140
Considerations for SELECT et 146
Considerations fOr SEIECH List.........u.eee e e 148
Considerations for GROUP BY........uuiiiiiee e 148
Considerations for ORDER BYouuuiiiiiee et 148
Considerations for UNION.ot 149
Examples of SELECT........oiiiiiiiiiiie et e e e 150
SET SCHEMA SEQIEMENT. ..o, 156
Syntax Description of SET SCHEMAL.......ccuiiiiiiiiii i 156
Considerations for SET SCHEMA.coomue e e 156
Example of SET SCHEMA.........oiiiiiiiiiiieie et e e rarae e 156
SET TRANSACTION SIAIEMENT... oot 157
Syntax Description of SET TRANSACTION.coiiiiiiiiiiiiieeiiiiie e 157
Considerations for SET TRANSACTION.eeeee et 157
Examples of SET TRANSACTION.ooiiiiiiiieiiiiee ettt et 157
SHOWCONTROL SIOIEMENL. .o e 159
Syntax Description of SHOWCONTROL.ccoiiiiiiiiiiiieeeiiiiiie et 159
Example of SHOWGCONTROL.cciiiiiiiiiiie ettt e e e ibaaae e 159
SHOWDDL SEOIEMENT. .. e e 160
Syntax Description of SHOWDDL..........ccoiiiiiiiiiiee ettt 160
Considerations for SHOWNDDL. ...t e 160
Examples of SHOWDDL...........uviiiiiiiiiiiiee et e e e e raea e 161
SHOWDDL SCHEMA STOtEMENT. ... e, 163
Syntax Description for SHOWDDL SCHEMAL...........uvviiiiiiiiiiiiie e 163
Considerations for SHOWDDL SCHEMAL. ..o e 163
Example of SHOWDDL SCHEMAcouiiiiiiiiiie ettt 163
SHOWSTATS SEIEEMENT. ... e e 164
Syntax Description of SHOWSTATS ...ttt 164
Considerations for SHOWSTATS ... e e 165
Examples of SHOWSTATSottt e e raee e 165
TABLE SEOIEMENT. ..o e e e e e 167
Considerations fOr TABLE. et 167
Example of TABLE.......co.uiiiiiiiiee e et et e e e 167
UNREGISTER USER STOIEMENT. ...ttt et 168
Syntax Description of UNREGISTER USER..........ccoiiiiiiiiiieiiiiiiie et 168
Considerations for UNREGISTER USER........oeeree et 168
Example of UNREGISTER USER..........coiiuiiiiiiieiiiiiiee et 168
UPDATE SEOIEMENT. ..o e e e e, 169
Syntax Description of UPDATE..........c..uiiiiiiiie ettt eaasee e 169
Considerations for UPDATE............oui ittt 170
Examples of UPDATE..........coiiiiiiiiiieeeeie et e et e e e e e e e e e abaaeeeeeeas 172
UPSERT SEOIEMENT. ..., 173
Syntax Description of UPSERT............ooiiiiiiiiiiiiiiiiiiieee e 173
EXAMPles Of UPSERT........oiiiiiiiiie ittt ettt e et e e et ee e e e e e e 173
VALUES SO EMENT. ..ot 175
Considerations for VALUEScooore e, 175
Examples of VALUES........ooooiiiiii et e e e e raraee e 175

3 SQL UHTHES. e e, 176
LOAD SEOIEMENT. .ot e e e e e, 177
Syntax Description of LOAD...........coiuiiiiiiiie ettt ettt 177
Considerations for LOAD........coouuee e e 178

Contents 7

Example of LOAD........uiiiiiiiiiieee et e e e e e raaa e 179

POPULATE INDEX UHTItY....ttieeeeiiiiite ettt et e e e e e nnaaaaeeeeeas 180
Syntax Description of POPULATE INDEX...........ccoiiiiiiiiiiiie et 180
Considerations for POPULATE INDEX........c..uutiiiiiiieiiiiee ettt 180
Examples of POPULATE INDEX..........cciiiiiitieiiiieeeiiiteeeeiieee e et e e e e eiaaeeeesnsaeeeennaeeeeneneas 181

PURGEDATA UHTHY ...ttt e e e e 182
Syntax Description of PURGEDATA.........couiiiiiiieeeieieee et 182
Considerations for PURGEDATA..........uiiiiiiiite ittt e 182
Example of PURGEDATA...... ..ottt e et e e e e raree e 182

UNLOAD STOIEMENT. ..ttt ettt 183
Syntax Description of UNLOAD...........uiiiiiiiiiieiiiie e ettt ettt e e s e st ee e e snareee e 183
Considerations for UNLOAD..............iiiiiiiiiie ettt ettt 184
Example of UNLOAD.........coiiiiiiiiie et e ettt e e e e e e e e e e e eibareeaeeaas 184

UPDATE STATISTICS SEAtemeNt......euiiieee e 186
Syntax Description of UPDATE STATISTICS.......ooiiiiiiiiiiie et 186
Considerations for UPDATE STATISTICS........oiiiiiiiie ittt 189
Examples of UPDATE STATISTICS........oiiiiiiiieeiiiie ettt ettt 191

4 SQL Language Elements..........ccooooiiiiiiiiiiiiiiiie e 192

AUTNOTIZAHON DSttt ettt e et e e ettt e et e e e e e 193

(@ ToT (oo =YY= S USRS 193

(@re [T TS PSSP PRRP 193
ColUmn REfErENCES.eiiiiiii ettt ettt e 193
Derived Column INGMES.oooiiiiiiii e e e e e e e e e e e e e 193
Column Default SEHINGS.viiiiiiiiiiiie et e sarae e 194

CONSIIAINTS. ...ttt 195
Creating or Adding Constraints on SQL Tables..........cccccooiiiiiiiiii e, 195
CONSHAINT INOMES. ...ttt 195

COrmelation INGMES.eeeeiiee ettt e e e et e e e e e et e e e e e e nneeeeeas 196
Explicit Correlation NGMES...........oiiiiiiiiiiiiie et e e eeea e 196
Implicit Correlation NAMES...........oiiiiiiiiiiiii e 196
Examples of Correlation NAmMeSs.........cccouviiiiiiiiiiiie e 196

Database ObJECLS.ccoiiiiiiiii e e e e e 197
OWNEISNID . .t as 197

Database Object NGMES............coiiiiiiiieiiit e e e e e e e e e eeeeeaeeeaan 198
Logical Names for SQL ObJects..........coiiiiiiieiiiiee ettt 198
SQL Object NOMESPACES.eeeeiiiiiiiie e e ettt e et e e e e et e e e e e e st eeeeeeenenneeeas 198

DAtA TYPES. .ttt et e et eeeaaaa 199
Comparable and Compatible Data Types...........ceeiiiiviiiiieeeiiiiiiie e 201
Character StHNG Data TYPES.uvieeiiiiie ettt ettt et e et e e aee e e snaeeeeens 204
Datetime Data TYPeS.ceeeiiiiiee et 205
INTErVAl DA TYPES. ... vttt e ettt ettt e e e ettt e e e e et e e e e e et raeaeeeas 207
NUMETIC DAtA TYPES .. e e 209

B X PIESSIONS. ..ttt e e 211
Character Value EXPressions...............ieeiiiiuiiiieeeeiiiiiiee e e e et e e e e e eiireee e e e e siaraeeee e e eenseeees 211
Datetime Value EXPressions.............cciiiuuiiiiieeiiiiiiee e e e e ettt e e ettt e e e e e e e e e e arareeee e 212
Inferval Value EXPressions............ooooiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e eaaas 215
NUMErC ValUe EXPreSSIONS.vviiieeeiiiiiiiie e e ettt e et e ettt e e e e et e e e e e e neaeeeaeeaas 218

o Lo =Y S PSP PPUUUPRUPPROPI 221
Regular 1dentifiers...........ooiiiiiiiiiii e 221
Delimited 1dentfIErs.c..viieiiiie e 221
Case-Insensitive Delimited Identifiers............c...oooiiiiiiiiiiiiiii e 221
Examples of Identifiers..........coooviiiiiiiiiie e 221

I EXES . .ttt e e e e e e e e e e e e aaaaaaaaaaas 222
SQIL INAEXES. ...ttt e e 222

8 Contents

Y S ettt ettt e e e e et e e eeaaaa 223

ClUSIEIING KYS. ..ttt et e et e e ettt e e et e e stee e e 223
SY SKEY .ttt ettt e e e e e bt e e et e e e ettt e e e antte e e e aeeeean 223
INAEX KEYS. ...ttt e e e et e e e e e e e e e e e e e 223
PrIMAIY KOYS. .. e ettt 223
OGS ettt e e e e et e e e e e et aaaaeeeeeenbaaeaans 224
Character String LIEerals............ooooiiiiiiiii e 224
Datetime LHEralS.........uvviiiiieiiieie e 226
INFErVAl LHEIQIS.eiiiiiiee et 227
NUMEIIC LHEIQIS. ...ttt e e e e e e e e e e e e eeeeaans 229
UL et e e e e e e e e e e e e e et annaee s 231
Using Null Versus Default Values...............ooooiiiiiiiiiiiiiiciieeee e 231
Defining Columns That Allow or Prohibit Null.............ccoooiiiii e 231
PrEAICAIES. ..ttt e e e e e et e e e e e et a e e e e e e taaaaeaeeaaas 233
BETWEEN PrediCate.uviii it e e e abaaae e e 233
ComparisOn PrediCOtes.uuuuiiiiiiiiiiie e 234
EXISTS PrediCOte. ... uviiiiiiiiiiiiee et e e e e e e e 238
IN PrediCOte. .. eeiieeeeee et et e e et e e e et e e e e e raaaee s 239
LIKE PrediClte. .. i ie et e e e e e e e e e e e e e et raeaee s 241
NULL PrediCte. ... oottt e et e e e e et e e e e e e nabaraeeeeaas 243
Quantified Comparison Predicates.ccocuuviiiiiiiiiiiiiiiee e 244
1] Yo =SSR PRSUR 247
ROIES. et e et a e e e e e e e e e e e e e e e aa 248
Yol (=T 1Yo T PRSP P UUR PP 249
Creating and Dropping SChemQs.ccooiuuiiiiiiiiiiiiiie et 249
SEAFCh CONAION.iiiiiiiiiit ittt e ettt e e e e ettt e e e e e e e itasaeeeeeeesnasaaeeeeaas 250
Considerations for Search Condition..............uiiiiiiiiiiiiiii e 250
Examples of Search Condition............ccccuvviiiiiiiiiiiii e 251

YT T 7T 2RSSR 252
SELECT Form of @ SUBQUETY........iiiiiiiiiiiiie e 252
Using Subqueries to Provide Comparison Values............coccuviiiiiiiiiiiiiiiieeccieee e 252
Nested Subqueries When Providing Comparison Values...............cooviiiiiniiiieiiiiieeiiieeee, 252
Correlated Subqueries When Providing Comparison Values..............cooiiiiiiiiiiiiniiiieeiieeee, 252
TABIES. .o e e e e e e e e e e e 254
Base Tables and VIEWs..........ccooiiiiiiiiieee e 254
Example of a Base Table............ooiiiiiiiiiiiciicccc e 254

VI BWS .ttt ettt e e e e s 255
SQAL VIBWS. .t e e 255
EXAMPIE OF G VIBW....eiiiiiiii et 255

5 SQL ClaUSES......coiiiiiieeeeeeeee e 256
DEFAULT ClAUSE. ...ttt ettt e e e e e e e e e e e e e ettt e e eaeaeaeeeeeeeeeeaas 257
Examples of DEFAULT.........ooiiiiiiiiiie ettt e s 257
FORMAT ClOUSE. ...ttt et e ettt e e ettt e ettt e et eeeeneaeee s 259
Considerations for Date FOrMQOIS..........ceiiiiiiiiiiieiiiiiiie et 260
Considerations for Other FOrMats...........cooiiuuiiiiiiiiiiiiiii et 260
Examples of FORMAToiiiiiiiiii et e e 260
SAMPLE ClaUSE. ...ttt e e e e e e e e e e e ettt e e e e e e e e e e e e e e 261
Considerations for SAMPLE.coiiiiiiiiiii et e 262
Examples of SAMPLE.oooiiiiii et 262
SEQUENCE BY ClAUSE.eveteeeiiiie ettt ettt e et e e et e e e ee e e 268
Considerations for SEQUENCE BY.........cccoouiiiiiiiiiiiiiiii ettt e 268
Examples of SEQUENCE BY..........ooiiiiiiiiiiiieeieeieeee e e 269
TRANSPOSE ClaUSE......cceeiiiieiei e e e e e e e e e e e e e e eaaaaaees 271
Considerations for TRANSPOSE............iiiiiiiiiiiiii ettt 272

Contents 9

Examples of TRANSPOSE...........oiiiiiiiiiiiii et e e e e e raeaeaeeeas 273

6 SQL Functions and EXPressions................oouvvviiiiiiiieeeeeeeeieeeeeieee e 278
COEGOTIES ettt e e e ettt ettt ettt e e e e e e 278
Standard NOrmMAliZAHON.cooiiiie e 278
Aggregate (Set) FUNCHONS........cooiiiiiiiiiiii e 278
Character StiNg FUNCHONS.coiiiiiiiee ettt e e 279
Datetime FUNCHONS. ... e 280
Mathematical FUNCHONS.iiiiiiii e 281
SEQUENCE FUNCHONS. ...t e e 282
Other FUNCons and EXPressions............ccoeeeiiiiiiiiiiiiiiiiiiieeeee e e e e e e e e e e e aeeeaeeee s 284
ABS FUNCHON. ... e 285
EXAMPle OF ABS......oiiiieiie e 285
ACOS FUNCHON. .t e e e e e e e e e e e aaaaas 286
Examples of ACOS........oiii i e e 286
ADD_MONTHS FUNCHON. e 287
Examples of ADD_MONTHS..........oiiiiiiiiiiii et 287
ASCI FUNCHON. ... e 288
Considerations for ASCIL...........uueiiiii e 288
Example of ASCIL......eiiiiiii e e e e 288
ASIN FUNCHON. ... e e e 289
Examples of ASIN Luiiiiiiii e 289
ATAN FUNCHON. .. e, 290
Examples of ATANLo.iiiiiii e et e et e e e nnae e e 290
ATANZ FUNCHON. ..ot e e e e e e e e e et e e et eeaanns 291
Example of ATANZooiiiiiii et e et e e e e et e e e e e e reeae e 291
AUTHNAME FUNCHON. ... e e 292
Considerations for AUTHNAME.oooiiiiiiiiieeee e 292
Example of AUTHNAME...........oviiiiiiiiiieee e e 292
AVG FUNCHON. ... 293
Considerations for AVG...........uuiiiiieiieeee e 293
EXAMPles Of AVG........uiiiiiiiii et 293
BITAND FUNCHON. ... e 295
Considerations for BITAND...........cccooiiiiiiiiiiee e 295
Restrichons for BITAND.oiiiiiiiiieeee ettt 295
Examples of BITAND..........coiiuiiiiiiiiie ettt et e et e e et e e e e senaeeeeeneas 295
CASE (Conditional) EXPression.u.viiieeiiiiiiiiie e e e et e ettt e e e et e e e e e eeee e e e eneneeeeas 296
Considerations for CASE.........oiii i 297
Examples of CASE..... ..ot 297
(7N B e £t T F PSPPSR 299
Considerations for CAST 299
Valid Conversions for CAST ... i, 299
EXAMPlES OF CAST ..ottt e e e e et e e e e ebae e e e nneas 300
CEILING FUNCHON. ...ttt 301
Example of CEILING.........cooiiiiiiii et e e e e e e e e e ataraeeeeaas 301
CHAR FUNCHON. ... e 302
Considerations for CHAR..........ccooiiiii e 302
Example of CHARoooi et e et e e e e 302
CHAR_LENGTH FUNCHON.cciiiiiiiiieeeeee e, 303
Considerations for CHAR _LENGTH. .. .coouiiiiie e, 303
Examples of CHAR_LENGTH.ccoiiiiiiiiiiieiiiiiie et e e baaae e 303
COALESCE FUNCHON. ..t 304
Example of COALESCE.........coouiiiiiie e e e e e e 304
CODE_VALUE FUNCHON. ..o e e e 305
Example of CODE_VALUE FUNCHON.uiiiiiiiiieeciiie et 305

10

Contents

CON AT FUNCHON. et e e e e e 306

Concatenation OPerator (||). e e e e 306
Considerations for CONCAT..........uviiiiiiiiiiiiee et e e 306
Examples of CONCATooiiiiiie et 306
CONVERTTOHEX FUNCHON. ...ttt et e e e e e e e eaaans 308
Considerations for CONVERTTOHEX...........uuviiiiiiiiiiiiieeee e 308
Examples of CONVERTTOHEX........ccciiiiiiiiiiee it e ettt e ettt e e e e e e e e enbaeeeaee s 308
CONVERTTIMESTAMP FUNCHON. ...ttt e e et e e e e e e eaaens 310
Considerations for CONVERTTIMESTAMP........coiiiiiiiiiiiiee et 310
Examples of CONVERTTIMESTAMP.........oviiiiiiiiiiiiie e 310
COS FUNCHON. ..t e e e e e e e e e e e et e e e et e e e aaa e e eaaans 311
ExamPple of COS.....oiiiiiiie e 311
COSH FUNCHON. .ttt e e e e s 312
Example of COSH.......uiiiiiiii et e e e e e taraee e 312
COUNT FUNCHON. ..t e ettt e e e e ettt e e e e e e et e e e e e eeaaannnes 313
Considerations for COUNT........couiiiiiiiiiiiiie e e 313
Examples of COUNT.......oiiiiiiiie ettt e et e e et e e e e e e e e e 313
CURRENT FUNCHON. ettt e e e 315
Example of CURRENT.......ooiiiiiiiii ittt e et e e e e et e e e e e e ennbaraeaeeeas 315
CURRENT_DATE FUNCHON. ...ttt et e e et e e et e e e et e e e aaa e e eeaanns 316
Examples of CURRENT_DATE..........ccoiiiiiiiiiieiiiiiiee ettt e e e barae e 316
CURRENT_TIME FUNCHON.uiiiiiie et e e e e e e e e et e e e e a e e eaaans 317
Example of CURRENT_TIME........coiiiiiiiiiiiie ettt 317
CURRENT_TIMESTAMP FUNCHON. ...ttt e e e 318
Example of CURRENT_TIMESTAMP.........uiiiiiiiiiiiiiie et 318
CURRENT_USER FUNCHON.uiiiii et e e e et e et e e e aaa e e aaanns 319
Considerations for CURRENT USER. .. .couuu it 319
Example of CURRENT_USER.........ooiiiiiiiiiiii e 319
DATE _ADD FUNCHON. ...t 320
Examples of DATE_ADD...........oiiiiiiiiieiiiieeeeiie ettt e e et e e e e e e e ibaeeeenneas 320
DATE _SUB FUNCHON. ..ot 321
Examples of DATE_SUB.......ccoiiiiiiiieeiiiie ettt e e e et e e e e e abareeaeeeas 321
DATEADD FUNCHON. ..ottt e e e et e e e e e et e e eeeeenen 322
Examples of DATEADD........ccoiuiiiiiee ettt e e e e itaaae e 322
DATEDIFF FUNCHON. ..ee e e e e e e e e e e e e e e e 323
Examples of DATEDIFF.........ccuiiiiiiiiiieiiee ettt e e et e e e abaeeeeeneas 323
DATEFORMAT FUNCHON.etieeeiiiiii ettt e e e e e e e e et aeeeeeennasaeeeeeeas 324
Considerations for DATEFORMAT..........ccoiiiiiiiiiieiiiiiiie ettt 324
Examples of DATEFORMAToiiiiiiiiiiieiee ettt e e e e e e e iraree e 324
DATE_PART Function (of an Interval).........coooimiiie e 325
Examples of DATE_PART......cuuiiiiiiiiee ettt ettt e e e et e e et e e e e nbaeeeeeneas 325
DATE_PART Function (of @ TIMESIAMP).....ccuviiiiiiiiieiiiiiie ettt 326
Examples of DATE_PART ..ottt e e e e ettt e e e e e e eabaraeaeeaas 326
DATE_TRUNGC FUNCHON . ..t 327
Examples of DATE_TRUNCuiiiiiiiiiiiiiiee et e et e e e e e irareea e 327
BN G VT Vet (1o o BSOS 328
EXAMPlE OF DAYooiiiiiiiiie et 328
DAYNAME FUNCHON. ...ttt et e et eeeeaees 329
Considerations for DAYNAME...........oiiiiiiiiiiiiii et e e 329
Example of DAYNAME.cooiiiiiiiiiie e e e e raraeae e 329
DAYOFMONTH FUNCHON ...ttt e e e e et e e e e eeeeees 330
Examples of DAYOFMONTH.oiiiiiiiiiiiieeiece et 330
DAYOFWEEK FUNCHON.eeiiiiii et e e e e e 331
Example of DAYOFWEEKcoiiiiiiiiiiiie et 331
DAYOFYEAR FUNCHON. ... ettt et e ettt e e e e et e e e e e et e e e e e e e ennssaaeeeeens 332

Contents 11

12

Example of DAYOFYEAR.iiiieiiiie ettt et e s 332

DECODE FUNCHON. .. e 333
Considerations for DECODE.........ouuut i e e 333
Examples of DECODE..........ccouuiiiiieeeeiieee et e e eaarae e 334

DEGREES FUNCHON. .. et e e e e e e e, 336
Examples of DEGREES.............ooiiiiiiiiiiiiie ettt e et inae e e 336

DIFF T FUNCHON. e e e 337
Considerations for DIFF To.u e 337
Examples of DIFFT.......oiiiiiiiieec e et e e rae e 337

DIFF 2 FUNCHON. . e e e e e, 339
ConSIerations FOr DIFF2. .. oo e 339
EXAMPlES Of DIFF2....cciiiiiiiiiiiiee e e e e et e e eebae e e 339

EXP FUNCHON. e 341
EXAMPIEs OF EXP...ooveiiiiiiiiieiee e e e e 341

EXPLAIN FUNCHON. e e e, 342
Considerations for EXPLAIN FUNCHON.uneeeeee e 342
Examples of EXPLAIN FUNCHON.viiiiiiiiieiiiiee ettt 344

EXTRACT FUNCHON. .. e e 345
Examples of EXTRACToiiiiiiiiiiee ettt e et e e ettt e e e e e sttt e e e e e e nbareeaeeaas 345

FLOOR FUNCHON. ..o e e, 346
Examples of FLOOR.........oooiiiiiiiii ettt e e e rarae e e 346

HOWUR FUNCHON. e e e e, 347
Example of HOUR......c.uiiiiiiiec et et aae e 347

INSERT FUNCHON. .. e e et ens 348
Examples Of INSERT........ooiiiiiiiit et e et e e e e et e e e e e eatareeaeeeas 348

ISNULL FUNCHON. .. e 349
EXamPles of ISNULL........ooiiiiiiiiiii ittt e e e e raree e 349

JULIANTIMESTAMP FUNCHON ...« e, 350
Considerations for JULIANTIMESTAMP. ... oot 350
Examples of JULIANTIMESTAMP.........coiiiiiiiiiiiieeeiit et 350

LASTINOTNULL FUNCHON. .« e 351
Example of LASTNOTNULL.uviiiiiiiiiii ettt e e arareeee e 351

L ASE FUNCHON. e e, 352
Example of LCASE.......ooiiiiiiie e 352

LB T FUNCHON . e e e e e e e e e, 353
EXAMPlES OF LEFT.. ..ottt ettt et e e et e e e e sabaeeeeaneas 353

LOCATE FUNCHON. .ot 354
Considerations for LOCATE.coouue e 354
Examples of LOCATE.ooiiiiiiiiie et e e e e e e e ebareee e 354

LOG FUNCHON. e e e e e e e e, 355
EXAMPle Of LOG......oiiiiiiiieiiiee ettt e et 355

LOGTO FUNCHON. .. e et 356
Example of LOGTO......uuiiiiiiiiiiiiiie et e ettt e e e e et e e e e e e irrraaeeeaas 356

LOWER FUNCHON. ..o e, 357
Considerations for LOWER. oo i e e 357
Example of LOWER........ooiiiiieee e 357

LPAD FUNCHON. e e e e e e e e, 358
EXAMPlES OF LPAD......couiiiiiiiiiie ettt e e et e s 358

LTRIM FUNCHON. e e 359
Considerations for LTRIM.........u. e iiee e 359
Example of LTRIM.......ouiiiiiiiiie e et e e rarae e e 359

MAX/MAXIMUM FUNCHON. .o, 360
Considerations for MAX/MAXIMUM . ..o e 360
Example of MAX/MAXIMUM.oouiiiiiiii e 360

IMIN FUNCHON. e e 361

Contents

Considerations FOr MIN . .. oo e e 361

Example of MIN L ..ot e e 361
MINUTE FUNCHON. ..ot 362
Example of MINUTE..........oooiiiiiiiii et e e aree e 362
MOD FUNCHON. .. e 363
EXAMPlE OF MOD......ooiiiiiiiiiiee et 363
MONTH FUNCHON. ..ccece e 364
Example of MONTH.ooiiiiiii et e e e e raraeee e 364
MONTHNAME FUNCHON. ... e 365
Considerations for MONTHNAME..........ooiiiiiiiieeeee e 365
Example of MONTHNAME..........ooiiiiiiiiiie ettt et e ebae e 365
MOVINGAVG FUNCHON. ...t 366
Example of MOVINGAVG...........oooiiiiiiiiiiiee et e e e e aaaeaaae e 366
MOVINGCOUNT FUNCHON. ...t 367
Considerations for MOVINGCOUNToumiie e 367
Example of MOVINGCOUNT........ooiiiiiiiiiii et e et 367
MOVINGMAX FUNCHON. ..o 368
Example of MOVINGMAX........cooiiiiiiiiiiie ettt e 368
MOVINGMIN FUNCHON. ...ttt e, 369
Example of MOVINGMIN.ottt e e e e e barae e e 369
MOVINGSTDDEV FUNCHON. ... e 370
Example of MOVINGSTDDEV.........cccoiiiiiiiieeieiiiiee et 370
MOVINGSUM FUNCHON. ..o 372
Example of MOVINGSUM........cooiiiiiiiiiiii et 372
MOVINGVARIANCE FUNCHON.ooiiiiiiiiieeeee e, 373
Example of MOVINGVARIANCE............uviiiiiiiiiiiiiie e e e baeae e 373
NULLIF FUNCHON. ...t 375
Example of NULLIF.........ooiiiiii et e et 375
NULLIFZERO FUNCHON. ... i 376
Examples of NULLIFZERO..........ccoiiiiiiiiiiie et ettt et aaae e 376
NVL FUNCHON. ..o e e e e e e e e e e et e eaaeeas 377
Examples of NVt e e 377
OCTET _LENGTH FUNCHON. e e e 378
Considerations for OCTET LENGTH.ooommmie i e 378
Example of OCTET_LENGTH.......coiiiiiiiiiiiie ettt e 378
OFFSET FUNCHON. ... e e 379
Example Of OFFSET.... ..ottt e ettt e e e e e et e e e e e e natareeaeeeas 379
Pl FUNGHION. e 380
EXAMPIE OF Pl...oiiiiiiiiiii e e 380
POSITION FUNCHON. ...ttt 381
Considerations for POSITION.ii e 381
Examples of POSITION........couuiiiiiiiiie ettt e et a e e abae e e eneas 381
POWER FUNCHON. ... e e e e e e e e e e 382
Examples of POWER..........ooiiiiiiii ettt e e raaae e 382
QUARTER FUNCHON. ... e e 383
Example of QUARTER..........cooiiiiiiie e e e 383
RADIANS FUNCHON. ..o e 384
Examples of RADIANSouiiiiiiiiie et e et e e e e 384
RANK/RUNNINGRANK FUNCHON. ... i 385
Considerations for RANK/RUNNINGRANK ... oottt 385
Examples of RANK/RUNNINGRANK...........ccoiiiiiiiiiiiiiiiiiie et 385
REPEAT FUNCHON. ... ettt 388
Example of REPEATttt ettt e et e e et e e e e nbaeeeeeneas 388
REPLACE FUNCHON. .. .oeiee e 389
Example of REPLACEooiiiiiiiie ettt e e et e e e e enbareeaee e 389

Contents 13

14

RIGHT FUNCHON. .t e e, 390

Examples of RIGHT..........ooiiiiiiii et e e rarae e 390
ROUND FUNCHON. .. e e e, 391
Examples of ROUND..........coiiiiiiiiii et e e 391
ROWS SINCE FUNCHON. ..o e e e e, 392
Considerations for ROWS SINCE........cooiiiiee et 392
Examples of ROWS SINCE.........ooiiiiiiiiiii e e e e 392
ROWS SINCE CHANGED FUNCHON. ...ttt 394
Considerations for ROWS SINCE CHANGED.........iiiie e 394
Examples of ROWS SINCE CHANGED............cccouuiiiiiiiieiiiiee e 394
RPAD FUNCHON. .. et e e e e e e e e, 395
Examples of RPAD FUNCHON.......cciiiiiiiiiiiiic ettt 395
RTRIM FUNCHON. .o e 396
Considerations for RTRIM.u. it e e e 396
Example of RTRIM........oiiiiiiiiii e e e erarae e e 396
RUNNINGAVG FUNCHON ., 397
Considerations for RUNNINGAVG........ouiieeoe e 397
Example of RUNNINGAVG.........ccvoiiiiiiiieeciiie ettt 397
RUNNINGCOUNT FUNCHON ... 398
Considerations for RUNNINGCOUNIT ...ttt 398
Example of RUNNINGCOUNT.......cooiiiiiiiiiieieiieee et e e rae e 398
RUNNINGMAX FUNCHON e e e e, 399
Example of RUNNINGMAX........cooiuiiiiiiiiie ittt e et e e e ibaee e 399
RUNNINGMIN FUNCHON .ot 400
Example of RUNNINGMIN..........oiiiiiiiiiiiiie et e e e e abaaeea e 400
RUNNINGRANK FUNCHON. ...t 400
RUNNINGSTDDEY FUNCHON. .. e, 401
Considerations for RUNNINGSTDDEV.........coouute e 401
Examples of RUNNINGSTDDEVccoiiiiiiiiiiieeiiiie ettt e iaae e 401
RUNNINGSUM FUNCHON. ..o 402
Example of RUNNINGSUM.ooiiiiiiiiiiii et e e irarae e 402
RUNNINGVARIANCE FUNCHON ... e, 403
Examples of RUNNINGVARIANCE.ooiiiiiiiiiiiiie ettt e e 403
SECOND FUNCHON. .. e e e 404
Example of SECOND.........coiiiiieiiiee ettt et e e et e e e e snbaeeeeeneas 404
SIGIN FUNCHON. e 405
Examples of SIGN........oiiiii e a e 405
SIN FUNCHON. e e, 406
Example of SINL ..o 406
SINH FUNCHON. e e e 407
Example of SINH.....oooiiiiii ettt e et e e 407
SPACE FUNCHON. . 408
Example of SPACE. e e e e 408
SQART FUNCHON. e e 409
Example of SQRT.......ouiiiiiiiii et e 409
STDDEY FUNCHON .« e e e e e 410
Considerations for STDDEV....... oo et 410
Examples of STDDEV........oiiiiiiiieiiiiie ettt et e et e e e nbae e e eaeas 411
SUBSTRING/SUBSTR FUNCHON. ...ttt e 412
ABEINAHVE FOIMS. ..o e e e e 412
Considerations for SUBSTRING/SUBSTR.omueeee e 412
Examples of SUBSTRING/SUBSTR..........uuviiiiiiiiiiiiiie et 413
SUM FUNCHON. e e e e e e e e e 414
Considerations TOr SUM.......oooi i 414
EXamPle of SUM ... a e 414

Contents

TAN FUNCHON e e e, 415

Example of TAN ... e e e e e e ae e 415
TANH FUNCHON. .. e e 416
Example of TANH.oiiii e 416
THIS FUNCHON. e e e e e e e 417
Considerations for THISo 417
Example of THIS ... et e e e rarae e 417
TIMESTAMPADD FUNCHON . .. 418
Examples of TIMESTAMPADD...........ccooiuuiiiiieeieiiiiee e e e e raaee e 418
TIMESTAMPDIFE FUNCHON. .« e e e e e 419
Examples of TIMESTAMPDIFF.ccuviiiiiiiiee ettt et bae e e 419
TRANSLATE FUNCHON. ...ttt 420
TRIM FUNCHON . e e 421
Considerations fOr TRIM......cooue et 421
Examples of TRIM........oiiiiiiiiii e et e et 421
UCASE FUNCHON. ..o e 4272
Considerations for UCASE. oot e 422
Examples of UCASE.........oooiiiiiie it e et ibae e 422
UPPER FUNCHON. e 423
Example of UPPER.........oiiiiiiiiiiiie ettt e e e e e e e e e abaraee e 423
UPSHIFT FUNCHON. .. e, 424
Examples of UPSHIFT.......oooiiiiiiiiiieeeeee e 424
USER FUNCHON. e e e e e e e e e, 425
Considerations fOr USER........cooeieeee e e 425
Examples of USER...... ..ot e ettt e e e e e e e et raea e 425
VARIANGCE FUNCHON. .. 426
Considerations for VARIANCEt e 426
Examples of VARIANCE............uuiiiiiiiiiiiee e e e 427
WVEEK FUNCHON. . e e 428
Example of WEEKottt 428
YEAR FUNCHON. e 429
Example of YEAR........ooiiiiiiiie et 429
ZEROIFNULL FUNCHON. ..o e 430
Example of ZEROIFNULL........c.uuviiiiiiiiiiiieie e e et 430

7 OLAP FUNCHONS. ..o 431
Considerations for Window FUNCHONS.........veeeeeeee e 431
ORDER BY Clause Supports Expressions For OLAP Functions.............cccccvviiieeiiiiiiiieeeeeeiine. 431
Limitations for WINdow FUNCHONS.ieeeee e 432
AVG WINAOW FUNCHON. ..o e 433
Examples of AVG Window FUNCHON...........oiiiiiiiiiiiiiic e 433
COUNT WINAOW FUNCHON. .. 434
Examples of COUNT Window FUNCHON........occuiiiiiiiiiieeiicc e 434
DENSE_RANK WiINdow FUNHON......oueiieiie e 435
Examples of DENSE_RANK Window FUNCHON..........ccoiiiiiiiiiiiiiiiiiiiieee e 435
MAX WINAOW FUNCHON. ..o 435
Examples of MAX Window FUNCHON...........ooiiiiiiiiiiiic e 436
MIN WINAOW FUNCHON. ..o 436
Examples of MIN Window FUNCHON.ooiiiiiiiiiiii e 437
RANK WINAOW FUNCHON. ... e e 437
Examples of RANK Window FUNCHON...........cooiiiiiiiiiiiiiiiiiiiie e 438
ROW_NUMBER WiINAOW FUNCHON. ... e 438
Examples of ROW_NUMBER Window FUNCHON............ccoiuiiiiiiiiiiiiiiice e 438
STDDEV WINAOW FUNCHON. ... e 438
Examples of STDDEV........oiiiiiiiieiiiiie ettt et e et e e e nbae e e eaeas 439

Contents 15

SUM WINAOW FUNCHON. .. e e 439

Examples of SUM Window FUNCHON...........oiiiiiiiiiiiiiic e 440
VARIANCE Window FUNCHON.c..eiiiiiiiiie ettt 440
Examples of VARIANCE Window FUNCHON.uviiiiiiiiiiiiiic e 441

8 SQL RUNtiMeE StAtSHCS. ..ueiveiiieiie e e 447
PERTABLE and OPERATOR SHGHSHES.veevtieeiiieitie ettt 442
Adaptive Statistics ColleCOon.coouiiiiiiiiiiii e 442
Retrieving SQL RUNtMeE SIAtSHCS.uuiieeeeeii i 443
Using the GET STATISTICS Command..........ccoiuuiieiiiiiieiiiiie et 443
Displaying SQL RUNIME SIAHSHCS.eeeeeeiieiiiee et e e e e 447
Examples of Displaying SQL Runtime SIaHSHCS......ccovvviieiiiiieeiiiii e 451

Using the Parent QUEry ID............ooiiiiiiiiiiiiie et e e iaeeea e 455

Child QUETY ID....ceiieee e et 456
Gathering Statistics ABout RMSooiiiiiiiiii e 457
Using the QUERYID_EXTRACT FUNCHON.tiiiiiiiiiee ettt 459
Syntax of QUERYID_EXTRACTuiiiiiiiiiiiiie ettt 459
Examples of QUERYID_EXTRACTooiiiiiiieeiiiiee ettt e et e ettt e et eeeesiaaeeeenraee e e 459
Statistics for Each Fragment-Instance of an Active QUENY............coviviiiiiiiiiieeiiiceeiee e 460
Syntax of STATISTICS Table-Valued FUNCHON.cccuvviiiiiiiiiieeeee e 460
Considerations For Obtaining Statistics For Each Fragment-Instance of an Active Query............. 460

A Reserved WOrds.eiiiiiiiiiiiiieeee e, 462
Reserved Trafodion SQL Identfiersccuiieiiiiiiieiiiiii et 462

B Control Query Default (CQD) Attributes................oovviiiiiieeeeiei, 466
HBase Environment CQDS...........uuuiiiiiiiiiiiiiiiiiiii e 466
HBASE_INTERFACE ettt et e et e e e 466

Hive Environment CQIDS.uuuiiiiiiieee e 466
HIVE_MAX_STRING _LENGTH. ..o 466
MaNAGING HISTOGIAMS.uiiiiiiie e e e e 466
CACHE_HISTOGRAMS _REFRESH_INTERVAL. ... ettt 466
HIST_NO_STATS_REFRESH_INTERVAL. ..ottt e 467
HIST_PREFETCH.ceeeieietee ettt ettt e et e et e e 467
HIST_ROWCOUNT_REQUIRING _STATS ... et 468

(@ o) 111112 OO SSPPPRRN 468
JOIN_ORDER_BY_USER. ...ttt et e et e e e e e eaeaanes 468
MDAM_SCAN_METHOD. ..ot e e e e e e e e eeaaeanns 469
SUBQUERY_UNNESTING. ...ttt 469
Managing SCREMAS.iiiiiiii e 470
SCHEMA .ottt e ettt e et e et e et et e s 470
Transaction Control and Locking..........oouiiiiiiiiiiiii e 470
BLOCK_TO_PREVENT_HALLOWEEN. ... 470
UPD_ORDERED..... ittt e e e e e e e e e e e e e et e e e e e eeaaa e eeeeeanes 471

(G 1 11 -SSP 472
INAEX .ttt 473

16 Contents

About This Document

This manual describes reference information about the syntax of SQL statements, functions, and
other SQL language elements supported by the Trafodion project’s database software.

Trafodion SQL statements and utilities are entered interactively or from script files using a client-based
tool, such as the Trafodion Command Interface (TrafCl). To install and configure a client application

that enables you to connect to and use a Trafodion database, see the Trafodion Client Installation
Guide.

NOTE: In this manual, SQL language elements, statements, and clauses within statements are
based on the ANSI SQL:1999 standard.

Intended Audience

This manual is intended for database administrators and application programmers who are using
SQL to read, update, and create Trafodion SQL tables, which map to HBase tables, and to access
native HBase and Hive tables.

You should be familiar with structured query language (SQL) and with the American National
Standard Database Language SQL:1999.

New and Changed Information in This Edition

This edition includes updates for these new features:

New Feature Location in the Manual

On Line Analytical Process (OLAP) window functions e “OLAP Functions” (page 431)

Ability to cancel DDL, update statistics, and additional child |« “CONTROL QUERY CANCEL Statement” (page 47)
query operations in addition to DML statements

Authorization required to run the CONTROL QUERY “CONTROL QUERY CANCEL Statement” (page 47)
CANCEL Statement

Ability to grant privileges on behalf of a role using the e “GRANT COMPONENT PRIVILEGE Statement”
GRANTED BY ClaUSe. (pqge]]4)

e “GRANT Statement” (page 111)

Authorization required for all SHOWDDL commands « “SHOWDDL Statement” (page 160)
e “SHOWDDL SCHEMA Statement” (page 163)

Ability to display the DDL syntax of a library object using |« “SHOWDDL Statement” (page 160)
the SHOWDDL LIBRARY command

Listing of HBase objects using the GET HBASE OBJECTS |+ “GET HBASE OBJECTS Statement” (page 107)

command through an SQL interface

Document Organization

Chapter or Appendix Description

Chapter 1: “Introduction” (page 21) Introduces Trafodion SQL and covers topics such as data
consistency, transaction management, and ANSI
compliance.

Chapter 2: “SQL Statements” (page 30) Describes the SQL statements supported by Trafodion SQL.

Chapter 3: “SQL Utilities” (page 176) Describes the SQL utilities supported by Trafodion SQL.

Intended Audience 17

Chapter or Appendix Description

Chapter 4: “SQL Language Elements” (page 192) Describes parts of the language, such as database obijects,
data types, expressions, identifiers, literals, and predicates,
which occur within the syntax of Trafodion SQLL statements.

Chapter 5: “SQL Clauses” (page 256) Describes clauses used by Trafodion SQL statements.

Chapter 6: “SQL Functions and Expressions” (page 278) Describes specific functions and expressions that you can
use in Trafodion SQL statements.

Chapter 8: “SQL Runtime Statistics” (page 442) Describes how to gather statistics for active queries or for
the Runtime Management System (RMS) and describes the
RMS counters that are returned.

Chapter 7: “OLAP Functions” (page 431) Describes specific on line analytical processing functions.
Appendix A: “Reserved Words” (page 462) Lists the words that are reserved in Trafodion SQL.
Appendix B: “Control Query Default (CQD) Attributes” Describes the Control Query Default (CQD) attributes that
(page 466) are supported in a Trafodion SQL environment.

Appendix C: “Limits” (page 472) Describes limits in Trafodion SQL.

Notation Conventions

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
ltems not enclosed in brackets are required. For example:

SELECT

Italic Letters

ltalic letters, regardless of font, indicate variable items that you supply. ltems not enclosed in
brackets are required. For example:

file-name

Computer Type

Computer type letters within text indicate case-sensitive keywords and reserved words. Type
these items exactly as shown. ltems not enclosed in brackets are required. For example:

myfile.sh
Bold Text
Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

[] Brackets
Brackets enclose optional syntax items. For example:

DATETIME [start-field TO] end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of

the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

DROP VIEW view [RESTRICT]
[CASCADE]

DROP VIEW view [RESTRICT | CASCADE]

{} Braces
Braces enclose required syntax items. For example:

FROM { granteel, granteel...}

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:

INTERVAL { start-field TO end-field }
{ single-field }

INTERVAL { start-field TO end-field | single-field }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

{expression | NULL}
... Ellipsis

An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:

ATTRIBUTE [S] attribute [, attribute]...

{, sgl-expression}...

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:

expression-n.

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

DAY (datetime-expression)

@script-file
Quotation marks around a symbol such as a bracket or brace indicate that the symbol is a
required character that you must type as shown. For example:

n [II ANY N II] n | n [II FIRST N II] n

According to the previous syntax, you must include square brackets around ANY and FIRST
clauses (for example, [ANY 10] or [FIRST 5]). Do not include the quotation marks.

ltem Spacing

Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:

Notation Conventions 19

Publishing History

DAY (datetime-expression)

DAY (datetime-expression)

If no space exists between two items, spaces are not permitted. In this example, no spaces are

permitted between the period and any other items:

myfile.sh

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes

items in a continuation line from items in a vertical list of selections. For example:

match-value [NOT] LIKE pattern

[ESCAPE esc-char-expression]

Part Number Product Version Publication Date
T775-110-001 Trafodion Release 1.1.0 April 2015
T775-100-001 Trafodion Release 1.0.0 January 2015
T775-090-001 Trafodion Release 0.9.0 Beta October 2014
T775-080-003 Trafodion Release 0.8.0 Beta August 2014
This edition of the manual includes updates to address
Launchpad bug 1354228. See the “CREATE TABLE
Statement” (page 69).
T775-080-002 Trafodion Release 0.8.0 Beta August 2014
This edition of the manual includes updates to address
Launchpad bug 1352479. See the “SELECT Statement”
(page 138).
T775-080-001 Trafodion Release 0.8.0 Beta June 2014

We Encourage Your Comments

20

The Trafodion community encourages your comments concerning this document. We are committed
to providing documentation that meets your needs. Send any errors found, suggestions for

improvement, or compliments to:

trafodion-documentation@lists.launchpad.net

Include the document title, part number, and any comment, error found, or suggestion for

improvement you have concerning this document.

https://bugs.launchpad.net/bugs/1354228
https://bugs.launchpad.net/bugs/1352479
mailto:trafodion-documentation@lists.launchpad.net

1 Introduction

The Trafodion SQL database software allows you to use SQL statements, which comply closely to
ANSI SQL:1999, to access data in Trafodion SQL tables, which map to HBase tables, and to
access native HBase tables and Hive tables.

This introduction describes:

e “SQL Language”

e “Using Trafodion SQL to Access HBase Tables”

e “Using Trafodion SQL to Access Hive Tables”

e “Data Consistency and Access Options”

e “Transaction Management”

e “ANSI Compliance and Trafodion SQL Extensions”
e “Trafodion SQL Error Messages”

Other sections of this manual describe the syntax and semantics of individual statements, commands,
and language elements.

SQL Language

The SQL language consists of statements and other language elements that you can use to access
SQL databases. For descriptions of individual SQL statements, see Chapter 2: “SQL Statements”
(page 30).

SQL language elements are part of statements and commands and include data types, expressions,
functions, identifiers, literals, and predicates. For more information, see Chapter 4: “SQL Language
Elements” (page 192) and Chapter 5: “SQL Clauses” (page 256). For information on specific functions
and expressions, see Chapter 6: “SQL Functions and Expressions” (page 278) and Chapter 7:
“OLAP Functions” (page 431).

Using Trafodion SQL to Access HBase Tables

You can use Trafodion SQL statements to read, update, and create HBase tables.
e “Initializing the Trafodion Metadata” (page 21)
e “Ways to Access HBase Tables” (page 22)
e “Trafodion SQL Tables Versus Native HBase Tables” (page 23)
e “Supported SQL Statements With HBase Tables” (page 23)
For a list of Control Query Default (CQD) settings for the HBase environment, see “HBase
Environment CQDs" (page 466).
Initializing the Trafodion Metadata

Before using SQL statements for the first time to access HBase tables, you will need to initialize the
Trafodion metadata. To initialize the Trafodion metadata, run this command:

initialize trafodion;

SQL language 21

Ways to Access HBase Tables
Trafodion SQL supports these ways to access HBase tables:
e “Accessing Trafodion SQL Tables” (page 22)
o “Cell-PerRow Access to HBase Tables (Technology Preview)” (page 22)

e “Rowwise Access to HBase Tables (Technology Preview)” (page 23)

Accessing Trafodion SQL Tables

A Trafodion SQL table is a relational SQL table generated by a CREATE TABLE statement and
mapped to an HBase table. Trafodion SQL tables have regular ANSI names in the catalog
TRAFODION. A Trafodion SQL table name can be a fully qualified ANSI name of the form
TRAFODION. schema-name.object-name.

To access a Trafodion SQL table, specity its ANSI table name in a Trafodion SQL statement, similar
to how you would specify an ANSI table name when running SQL statements in a relational
database. For example:
CREATE TABLE trafodion.sales.odetail
(ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,

partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,

unit price NUMERIC (8,2) NO DEFAULT NOT NULL,

gty ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,

PRIMARY KEY (ordernum, partnum)) ;

INSERT INTO trafodion.sales.odetail VALUES (900000, 7301, 425.00, 100);

SET SCHEMA trafodion.sales;
SELECT * FROM odetail;

For more information about Trafodion SQL tables, see “Trafodion SQL Tables Versus Native HBase
Tables” (page 23) and “Tables” (page 254).

Cell-Per-Row Access to HBase Tables (Technology Preview)

NOTE: This is a Technology Preview (Complete But Not Tested) feature, meaning that it is
functionally complete but has not been tested or debugged. For more information about what
Technology Preview means, see the Technology Preview Features page on the Trafodion wiki.

To access HBase data using cell-perrow mode, specity the schema HBASE. " CELL_" and the
full ANSI name of the table as a delimited table name. You can specify the name of any HBase
table, regardless of whether it was created through Trafodion SQL. For example:

select * from hbase." CELL_"."TRAFODION.MYSCH.MYTAB";

select * from hbase." CELL_"."table created in HBase";

All tables accessed through this schema have the same column layout:

>>invoke hbase." CELL "."table created in HBase';
(
ROW_ID VARCHAR (100)
, COL_ FAMILY VARCHAR (100)
, COL_NAME VARCHAR (100)
, COL_TIMESTAMP LARGEINT
, COL_VALUE VARCHAR (1000)

)
PRIMARY KEY (ROW_ID)
>>gselect * from hbase." CELL "."mytab";

22 Introduction

https://wiki.trafodion.org/wiki/index.php/Technology_Preview_Features

Rowwise Access to HBase Tables (Technology Preview)

NOTE: This is a Technology Preview (Complete But Not Tested) feature, meaning that it is
functionally complete but has not been tested or debugged. For more information about what
Technology Preview means, see the Technology Preview Features page on the Trafodion wiki.

To access HBase data using rowwise mode, specify the schema HBASE. " rRow " and the full
ANSI name of the table as a delimited table name. You can specify the name of any HBase table,
regardless of whether it was created through Trafodion SQL. For example:

select * from hbase." ROW "."TRAFODION.MYSCH.MYTAB";

select * from hbase." ROW "."table created in HBase";

All column values of the row are returned as a single, big varchar:

>>invoke hbase." ROW "."mytab";
(
ROW_ID VARCHAR (100)
, COLUMN DETATILS VARCHAR (10000)

)
PRIMARY KEY (ROW_ID)
>>select * from hbase." ROW_"."mytab";

Trafodion SQL Tables Versus Native HBase Tables

Trafodion SQL tables have many advantages over regular HBase tables:

o They can be made to look like regular, structured SQL tables with fixed columns.

o They support the usual SQL data types supported in relational databases.

e They support compound keys, unlike HBase tables that have a single row key (a string).
o They support indexes.

e They support salting, which is a technique of adding a hash value of the row key as a key
prefix to avoid hot spots for sequential keys. For the syntax, see the “CREATE TABLE Statement”
(page 69).

The problem with Trafodion SQL tables is that they use a fixed format to represent column values,
making it harder for native HBase applications to access them. Also, they have a fixed structure,
so users lose the flexibility of dynamic columns that comes with HBase.

Supported SQL Statements With HBase Tables
You can use these SQL statements with HBase tables:
e “SELECT Statement” (page 138)

e “INSERT Statement” (page 118)

e “UPDATE Statement” (page 169)

o “DELETE Statement” (page 86)

e “MERGE Statement” (page 123)

o “GET Statement” (page 103)

e “INVOKE Statement” (page 122)

e “ALTER TABLE Statement” (page 36)

e “CREATE INDEX Statement” (page 53)
e “CREATE TABLE Statement” (page 69)
o “CREATE VIEW Statement” (page 81)
e “DROP INDEX Statement” (page 89)

Using Trafodion SQL to Access HBase Tables 23

https://wiki.trafodion.org/wiki/index.php/Technology_Preview_Features

e “DROP TABLE Statement” (page 96)
e “DROP VIEW Statement” (page 97)
e “GRANT Statement” (page 111)
e “REVOKE Statement” (page 130)

Using Trafodion SQL to Access Hive Tables
You can use Trafodion SQL statements to access Hive tables.
e “ANSI Names for Hive Tables” (page 24)
e “Type Mapping From Hive to Trafodion SQL” (page 24)
e “Supported SQL Statements With Hive Tables” (page 24)
For a list of Control Query Default (CQD) settings for the Hive environment, see “Hive Environment
CQDs" (page 466).

ANSI Names for Hive Tables

Hive tables appear in the Trafodion Hive ANSI namespace in a special catalog and schema named
HIVE.HIVE.

To select from a Hive table named T, specify an implicit or explicit name, such as HIVE.HIVE.T, in
a Trafodion SQL statement. This example should work if a Hive table named T has already been

defined:

set schema hive.hive;

cgd hive max string length '20'; -- creates a more readable display
select * from t; -- implicit table name

set schema trafodion.seabase;

select * from hive.hive.t; -- explicit table name

Type Mapping From Hive to Trafodion SQL

Trafodion performs the following data-type mappings:

Hive Type Trafodion SQL Type

tinyint smallint

smallint smallint

int int

bigint largeint

string varchar(n bytes) character set utf8'
float real

double float(54)

timestamp iimestc:mp(é)2

' The value n is determined by CQD HIVE_MAX_STRING_LENGTH. See “Hive Environment CQDs” (page 466).
2 Hive supports timestamps with nanosecond resolution (precision of 9). Trafodion SQL supports only microsecond resolution
(precision 6).

Supported SQL Statements With Hive Tables

You can use these SQL statements with Hive tables:
e “SELECT Statement” (page 138)
e “lOAD Statement” (page 177)

24 Introduction

o GET TABLES (See the “GET Statement” (page 103).)
e “INVOKE Statement” (page 122)

Data Consistency and Access Options
Access options for DML statements affect the consistency of the data that your query accesses.

For any DML statement, you specify access options by using the FOR option ACCESS clause
and, for a SELECT statement, by using this same clause, you can also specify access options for
individual tables and views referenced in the FROM clause.

The possible settings for option in a DML statement are:

“READ COMMITTED” Specifies that the data accessed by the DML statement must
be from committed rows.
The SQL default access option for DML statements is READ COMMITTED.

For related information about transactions, see “Transaction Isolation Levels” (page 26).

READ COMMITTED

This option allows you to access only committed data.

The implementation requires that a lock can be acquired on the data requested by the DML
statement—but does not actually lock the data, thereby reducing lock request conflicts. If a lock
cannot be granted (implying that the row contains uncommitted data), the DML statement request
waits until the lock in place is released.

READ COMMITTED provides the next higher level of data consistency (compared to READ
UNCOMMITTED). A statement executing with this access option does not allow dirty reads, but
both nonrepeatable reads and phantoms are possible.

READ COMMITTED provides sufficient consistency for any process that does not require a repeatable
read capability.

READ COMMITTED is the default isolation level.

Transaction Management

A transaction (a set of database changes that must be completed as a group) is the basic recoverable
unit in case of a failure or transaction interruption. Transactions are controlled through client tools
that interact with the database using ODBC or JDBC. The typical order of events is:

1. Transaction is started.
2. Database changes are made.
3. Transaction is committed.

If, however, the changes cannot be made or if you do not want to complete the transaction, you
can abort the transaction so that the database is rolled back to its original state.

This subsection discusses these considerations for transaction management:
e “UserDefined and System-Defined Transactions” (page 26)

e “Rules for DML Statements” (page 26)

o “Effect of AUTOCOMMIT Option” (page 26)

e “Concurrency” (page 26)

e “Transaction Isolation Levels” (page 26)

Data Consistency and Access Options 25

User-Defined and System-Defined Transactions

User-Defined Transactions

Transactions you define are called user-defined transactions. To be sure that a sequence of statements
executes successfully or not at all, you can define one transaction consisting of these statements
by using the BEGIN WORK statement and COMMIT WORK statement. You can abort a transaction
by using the ROLLBACK WORK statement. If AUTOCOMMIT is on, you do not have to end the
transaction explicitly as Trafodion SQL will end the transaction automatically. Sometimes an error
occurs that requires the user-defined transaction to be aborted. Trafodion SQL will automatically
abort the transaction and return an error indicating that the transaction was rolled back.

System-Defined Transactions

In some cases, Trafodion SQL defines transactions for you. These transactions are called
system-defined transactions. Most DML statements initiate transactions implicitly at the start of
execution. See “Implicit Transactions” (page 157). However, even if a transaction is initiated
implicitly, you must end a transaction explicitly with the COMMIT WORK statement or the ROLLBACK
WORK statement. It AUTOCOMMIT is on, you do not need to end a transaction explicitly.

Rules for DML Statements

If deadlock occurs, the DML statement times out and receives an error.

Effect of AUTOCOMMIT Option

AUTOCOMMIT is an option that can be set in a SET TRANSACTION statement. It specifies whether
Trafodion SQL will commit automatically, or roll back if an error occurs, at the end of statement

execution. This option applies to any statement for which the system initiates a transaction. See
“SET TRANSACTION Statement” (page 157).

If this option is set to ON, Trafodion SQL automatically commits any changes, or rolls back any
changes, made to the database at the end of statement execution.

Concurrency

Concurrency is defined by two or more processes accessing the same data at the same time. The
degree of concurrency available—whether a process that requests access to data that is already
being accessed is given access or placed in a wait queue—depends on the purpose of the access

mode (read or update) and the isolation level. Currently, the only isolation level is READ
COMMITTED.

Trafodion SQL provides concurrent database access for most operations and controls database
access through concurrency control and the mechanism for opening and closing tables. For DML
operations, the access option affects the degree of concurrency. See “Data Consistency and Access
Options” (page 25).

Transaction Isolation Levels

A transaction has an isolation level that is “READ COMMITTED”.

READ COMMITTED

26

This option, which is ANSI compliant, allows your transaction to access only committed data.
No row locks are acquired when READ COMMITTED is the specified isolation level.

READ COMMITTED provides the next level of data consistency. A transaction executing with this
isolation level does not allow dirty reads, but both nonrepeatable reads and phantoms are possible.

READ COMMITTED provides sufficient consistency for any transaction that does not require a
repeatable-read capability.

The default isolation level is READ COMMITTED.

Introduction

ANSI Compliance and Trafodion SQL Extensions

Trafodion SQL complies most closely with Core SQL 99. Trafodion SQL also includes some features
from SQL 99 and part of the SQL 2003 standard, and special Trafodion SQL extensions to the
SQL language.

Statements and SQL elements in this manual are ANSI compliant unless specified as Trafodion
SQL extensions.

ANSI-Compliant Statements

These statements are ANSI compliant, but some might contain Trafodion SQL extensions:

ALTER TABLE statement

CALL statement

COMMIT WORK statement
CREATE FUNCTION statement
CREATE PROCEDURE statement
CREATE ROLE statement
CREATE SCHEMA statement
CREATE TABLE statement
CREATE VIEW statement
DELETE statement

DROP FUNCTION statement
DROP PROCEDURE statement
DROP ROLE statement

DROP SCHEMA statement
DROP TABLE statement

DROP VIEW statement
EXECUTE statement

GRANT statement

GRANT ROLE statement
INSERT statement

MERGE statement

PREPARE statement

REVOKE statement

REVOKE ROLE statement
ROLLBACK WORK statement
SELECT statement

SET SCHEMA statement

SET TRANSACTION statement
TABLE statement

UPDATE statement

VALUES statement

ANSI Compliance and Trafodion SQL Extensions 27

Statements That Are Trafodion SQL Extensions
These statements are Trafodion SQL extensions to the ANSI standard.
e ALTER LIBRARY statement
e ALTER USER statement
e BEGIN WORK statement
e CONTROL QUERY CANCEL statement
e CONTROL QUERY DEFAULT statement
e CREATE INDEX statement
o CREATE LIBRARY statement
e DROP INDEX statement
e DROP LIBRARY statement
e EXPLAIN statement
e GET statement
e GET HBASE OBJECTS statement
e GET VERSION OF METADATA statement
e GET VERSION OF SOFTWARE statement
e GRANT COMPONENT PRIVILEGE statement
e INVOKE statement
e LOAD statement
e REGISTER USER statement
e REVOKE COMPONENT PRIVILEGE statement
e SHOWCONTROL statement
e SHOWDDL statement
e SHOWDDL SCHEMA statement
e SHOWSTATS statement
e UNLOAD statement
e UNREGISTER USER statement
e UPDATE STATISTICS statement
e UPSERT statement

ANSI-Compliant Functions
These functions are ANSI compliant, but some might contain Trafodion SQL extensions:
e AVG function
e CASE expression
e CAST expression
e CHAR_LENGTH

e COALESCE
e COUNT Function
e CURRENT

28 Introduction

All other functions are Trafodion SQL extensions.

Tratodion SQL Error Messages

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
EXTRACT
LOWER

MAX

MIN

NULLIF
OCTET_LENGTH
POSITION
SESSION_USER
SUBSTRING
SUM

TRIM

UPPER

Trafodion SQL reports error messages and exception conditions. When an error condition occurs,

Trafodion SQL returns a message number and a brief description of the condition. For example,
Trafodion SQL might display this error message:

*** ERROR[1000]

value is 1000.

A syntax error occurred.

The message number is the SQLCODE value (without the sign). In this example, the SQLCODE

Trafodion SQL Error Messages

29

2 SQIL Statements

This section describes the syntax and semantics of Trafodion SQL statements.

Trafodion SQL statements are entered interactively or from script files using a client-based tool,
such as the Trafodion Command Interface (TrafCl). To install and configure a client application
that enables you to connect to and use a Trafodion database, see the Trafodion Client Installation

Guide.

Categories

The statements are categorized according fo their functionality:

e “Data Definition Language (DDL) Statements”

e “Data Manipulation Language (DML) Statements”

e “Transaction Control Statements”

e “Data Control and Security Statements”

e “Stored Procedure and User-Defined Function Statements”

e “Prepared Statements”
e “Control Statements”

e "“Object Naming Statements”

e “SHOW, GET, and EXPLAIN Statements”

Data Definition Language (DDL) Statements

Use these DDL statements to create, drop, or alter the definition of a Trafodion SQL schema or

object.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)

for the session.

“ALTER LIBRARY Statement” (page 34)

Updates the physical filename for a library object in a
Trafodion database.

“ALTER TABLE Statement” (page 36)

Changes a table.

“ALTER USER Statement” (page 41)

Changes attributes for a user.

“CREATE FUNCTION Statement” (page 50)

Registers a user-defined function (UDF) written in C as a
function within a Trafodion database.

“CREATE INDEX Statement” (page 53)

Creates an index on a table.

“CREATE LIBRARY Statement” (page 56)

Registers a library object in a Trafodion database.

“CREATE PROCEDURE Statement” (page 58)

Registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

“CREATE ROLE Statement” (page 66)

Creates a role.

“CREATE SCHEMA Statement” (page 67)

Creates a schema in the database.

“CREATE TABLE Statement” (page 69)

Creates a table.

“CREATE VIEW Statement” (page 81)

Creates a view.

“DROP FUNCTION Statement” (page 88)

Removes a user-defined function (UDF) from the Trafodion
database.

“DROP INDEX Statement” (page 89)

Drops an index.

30 SQL Statements

“DROP LIBRARY Statement” (page 90)

Removes a library object from the Trafodion database and
also removes the library file referenced by the library object.

“DROP PROCEDURE Statement” (page 92)

Removes a stored procedure in Java (SPJ) from the Trafodion
database.

“DROP ROLE Statement” (page 93)

Drops a role.

“DROP SCHEMA Statement” (page 95)

Drops a schema from the database.

“DROP TABLE Statement” (page 96)

Drops a table.

“DROP VIEW Statement” (page 97)

Drops a view.

“REGISTER USER Statement” (page 128)

Registers a user in the SQL database, associating the user's
login name with a database username.

“UNREGISTER USER Statement” (page 168)

Removes a database username from the SQL database.

Data Manipulation Language (DML) Statements

Use these DML statements to delete, insert, select, or update rows in one or more tables:

“DELETE Statement” (page 86)

Deletes rows from a table or view.

“INSERT Statement” (page 118)

Inserts data into tables and views.

“MERGE Statement” (page 123)

Either performs an upsert operation (that is, updates a table
if the row exists or inserts info a table if the row does not
exist) or updates (merges) matching rows from one table
to another.

“SELECT Statement” (page 138)

Retrieves data from tables and views.

“TABLE Statement” (page 167)

Equivalent to the query specification SELECT * FROM
table

“UPDATE Statement” (page 169)

Updates values in columns of a table or view.

“UPSERT Statement” (page 173)

Updates a table if the row exists or inserts into a table if
the row does not exist.

“VALUES Statement” (page 175)

Transaction Control Statements

Displays the results of the evaluation of the expressions and
the results of row subqueries within the row value
constructors.

Use these statements to specify user-defined transactions and to set attributes for the next transaction:

“BEGIN WORK Statement” (page 42)

Starts a transaction.

“COMMIT WORK Statement” (page 46)

Commits changes made during a transaction and ends the
transaction.

“ROLLBACK WORK Statement” (page 137)

Undoes changes made during a transaction and ends the
transaction.

“SET TRANSACTION Statement” (page 157)

Data Control and Security Statements

Sets attributes for the next SQL transaction — whether to
automatically commit database changes.

Use these statements to register users, create roles, and grant and revoke privileges:

“ALTER USER Statement” (page 41)

Changes attributes associated with a user who is registered
in the database.

“CREATE ROLE Statement” (page 66)

Creates an SQL role.

“DROP ROLE Statement” (page 93)

Deletes an SQL role.

Categories 31

“GRANT Statement” (page 111)

Grants access privileges on an SQL object to specified users
or roles.

“GRANT COMPONENT PRIVILEGE Statement” (page 114)

Grants one or more component privileges to a user or role.

“GRANT ROLE Statement” (page 117)

Grants one or more roles to a user.

“REGISTER USER Statement” (page 128)

Registers a user in the SQL database, associating the user's
login name with a database username.

“REVOKE Statement” (page 130)

Revokes access privileges on an SQL object from specified
users or roles.

“REVOKE COMPONENT PRIVILEGE Statement” (page 133)

Removes one or more component privileges from a user or
role.

“REVOKE ROLE Statement” (page 135)

Removes one or more roles from a user.

“UNREGISTER USER Statement” (page 168)

Removes a database username from the SQL database.

Stored Procedure and User-Defined Function Statements

Use these statements to create and execute stored procedures in Java (SPJs) or create user-defined
functions (UDFs) and to modify authorization to access libraries or to execute SPJs or UDFs:

“ALTER LIBRARY Statement” (page 34)

Updates the physical filename for a library object in a
Trafodion database.

“CALL Statement” (page 43)

Initiates the execution of a stored procedure in Java (SPJ)
in a Trafodion database.

“CREATE FUNCTION Statement” (page 50)

Registers a user-defined function (UDF) written in C as a
function within a Trafodion database.

“CREATE LIBRARY Statement” (page 56)

Registers a library object in a Trafodion database.

“CREATE PROCEDURE Statement” (page 58)

Registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

“DROP FUNCTION Statement” (page 88)

Removes a user-defined function (UDF) from the Trafodion
database.

“DROP LIBRARY Statement” (page 90)

Removes a library object from the Trafodion database and
also removes the library file referenced by the library object.

“DROP PROCEDURE Statement” (page 92)

Removes a stored procedure in Java (SPJ) from the Trafodion
database.

“GRANT Statement” (page 111)

Grants privileges for accessing a library object or executing
an SP)J or UDF to specified users.

“REVOKE Statement” (page 130)

Prepared Statements

32

Revokes privileges for accessing a library object or
executing an SPJ or UDF from specified users.

Use these statements to prepare and execute an SQL statement:

“EXECUTE Statement” (page 98)

Executes an SQL statement previously compiled by a

PREPARE statement.

“PREPARE Statement” (page 126)

SQL Statements

Compiles an SQL statement for later use with the EXECUTE
statement in the same session.

Control Statements

Use these statements to control the execution, default options, plans, and performance of DML

statements:

“CONTROL QUERY CANCEL Statement” (page 47) ‘ Cancels an executing query that you identify with a query
ID.

“CONTROL QUERY DEFAULT Statement” (page 49) ‘ Changes a default attribute to influence a query plan.

Object Naming Statements

Use this statements to specity default ANSI names for the schema:

“SET SCHEMA Statement” (page 156) Sets the default ANSI schema for unqualified object names

for the current session.

SHOW, GET, and EXPLAIN Statements

Use these statements to display information about database objects or query execution plans:

“EXPLAIN Statement” (page 101) Displays information contained in the query execution plan.

“GET Statement” (page 103) Displays the names of database objects, components,
component privileges, roles, or users that exist in the
Trafodion instance.

“GET HBASE OBJECTS Statement” (page 107) Displays a list of HBase objects through an SQL interface

“GET VERSION OF METADATA Statement” (page 109) | Displays the version of the metadata in the Trafodion
instance and indicates if the metadata is current.

“GET VERSION OF SOFTWARE Statement” (page 110) | Displays the version of the Trafodion software that is
installed on the system and indicates if it is current.

“INVOKE Statement” (page 122) Generates a record description that corresponds to a row
in the specified table or view.

“SHOWCONTROL Statement” (page 159) Displays the CONTROL QUERY DEFAULT attributes in effect.

“SHOWDDL Statement” (page 160) Describes the DDL syntax used to create an object as it

exists in the metadata, or it returns a description of a user,
role, or component in the form of a GRANT statement.

“SHOWDDL SCHEMA Statement” (page 163) Displays the DDL syntax used to create a schema as it exists
in the metadata and shows the authorization ID that owns
the schema.

“SHOWSTATS Statement” (page 164) Displays the histogram statistics for one or more groups of

columns within a table. These statistics are used to devise
optimized access plans.

Categories 33

ALTER LIBRARY Statement

e “Syntax Description of ALTER LIBRARY”
e “Considerations for ALTER LIBRARY”
e “Examples of ALTER LIBRARY”

The ALTER LIBRARY statement updates the physical filename for a library object in a Trafodion
database. A library object can be an SPJ's JAR file or a UDF's library file.

ALTER LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

ALTER LIBRARY [[catalog-name.]schema-name.]library-name
FILE library-filename
[HOST NAME host-name]
[LOCAL FILE host-filenamel]

Syntax Description of ALTER LIBRARY

[[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify the name of a library object that
has already been registered in the schema. If you do not fully quality the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“Identifiers” (page 221) and “Database Object Names” (page 198).

FILE 1ibrary-filename

specifies the full path of the redeployed library file, which either an SPJ's JAR file or a UDF's
library file.

HOST NAME host -name
specifies the name of the client host machine where the deployed file resides.

LOCAL FILE host-filename
specifies the path on the client host machine where the deployed file is stored.

Considerations for ALTER LIBRARY
e HOST NAME and LOCAL FILE are position dependent.

Required Privileges
To issue an ALTER LIBRARY statement, one of the following must be true:
e You are DB__ROQT.

* You are the owner of the library.
e You have the ALTER or ALTER_LIBRARY component privilege for the SQL_OPERATIONS

component.

Examples of ALTER LIBRARY

o This ALTER LIBRARY statement updates the JAR file (SPJs) for a library named SALESLIB in the
SALES schema:

34 SQL Statements

ALTER LIBRARY sales.saleslib FILE Sales2.jar;

This ALTER LIBRARY statement updates the library file (UDFs) for a library named MYUDFS in
the default schema:

ALTER LIBRARY myudfs FILE $TMUDFLIB;

ALTER LIBRARY Statement 35

ALTER TABLE Statement

36

e “Syntax Description of ALTER TABLE”

e “Considerations for ALTER TABLE”

e “Example of ALTER TABLE”

The ALTER TABLE statement changes a Trafodion SQL table. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

ALTER TABLE name alter-action

alter-action is:
ADD [COLUMN] column-definition
| ADD IF NOT EXISTS column-definition
| ADD [CONSTRAINT constraint-name] table-constraint
| DROP CONSTRAINT constraint-name [RESTRICT]
| RENAME TO new-name [CASCADE]
| DROP COLUMN [IF EXISTS] column-name

column-definition is:
column-name data-type
([DEFAULT default]
[[CONSTRAINT constraint-name] column-constraint]...)

data-type is:

CHAR [ACTER] [(Iength) [CHARACTERS]]
[CHARACTER SET char-set-name]
[UPSHIFT] [[NOT] CASESPECIFIC]

| CHAR [ACTER] VARYING (length)
[CHARACTER SET char-set-name]
[UPSHIFT] [I[NOT] CASESPECIFIC]
| VARCHAR (length) [CHARACTER SET char-set-name]

[UPSHIFT] [[NOT] CASESPECIFIC]
NUMERIC [(precision [,scale]l)] [SIGNED|UNSIGNED]
NCHAR [(length) [CHARACTER SET char-set-name]
[UPSHIFT] [[NOT] CASESPECIFIC]

| NCHAR VARYING (length) [CHARACTER SET char-set-name]
[UPSHIFT] [[NOT] CASESPECIFIC]

SMALLINT [SIGNED |UNSIGNED]

INT [EGER] [SIGNED|UNSIGNED]

LARGEINT

DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
FLOAT [(precision)]

REAL

DOUBLE PRECISION

DATE

TIME [(time-precision)]

TIMESTAMP [(timestamp-precision)]
INTERVAL { start-field TO end-field | single-field }

default is:

literal

NULL

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP }

SQL Statements

column-constraint is:
NOT NULL
| UNIQUE
| CHECK (condition)
| REFERENCES ref-spec

table-constraint is:
UNIQUE (column-1list)
| CHECK (condition)
| FOREIGN KEY (column-list) REFERENCES ref-spec

ref-spec is:
referenced-table [(column-1ist)]

column-list is:
column-name|[, column-name]...

Syntax Description of ALTER TABLE

name
specifies the current name of the object. See “Database Object Names” (page 198).

ADD [COLUMN] column-definition
adds a column to table.

The clauses for the column-definition are:

column-name

specifies the name for the new column in the table. column-name is an SQL identifier.
column-name must be unique among column names in the table. If the column name is
a Trafodion SQL reserved word, you must delimit it by enclosing it in double quotes. For
example: "sgl".myview. See “Identifiers” (page 221).

data-type

specifies the data type of the values that can be stored in column-name. See “Data Types”
(page 199). If a default is not specified, NULL is used.

DEFAULT default

specifies a default value for the column or specifies that the column does not have a default
value. You can declare the default value explicitly by using the DEFAULT clause, or you
can enable null to be used as the default by omitting both the DEFAULT and NOT NULL
clauses. If you omit the DEFAULT clause and specify NOT NULL, Trafodion SQL returns an
error. For existing rows of the table, the added column takes on its default value.

If you set the default to the datetime value CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP, Trafodion SQL uses January 1, 1 A.D. 12:00:00.000000 as the
default date and time for the existing rows.

For any row that you add after the column is added, if no value is specified for the column
as part of the add row operation, the column receives a default value based on the current
timestamp at the time the row is added.

[[CONSTRAINT constraint-name] column-constraint]

specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL
expands the constraint name by using the schema for table. See “Database Object
Names” (page 198).

If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

ALTER TABLE Statement 37

38

column-constraint options:

NOT NULL
is a column constraint that specifies that the column cannot contain nulls. If you omit
NOT NULL, nulls are allowed in the column. If you specify both NOT NULL and NO
DEFAULT, each row inserted in the table must include a value for the column. See “Null”
(page 231).

UNIQUE
is a column constraint that specifies that the column cannot contain more than one
occurrence of the same value. If you omit UNIQUE, duplicate values are allowed unless
the column is part of the PRIMARY KEY. Columns that you define as unique must be
specified as NOT NULL.

CHECK (condition)
is a constraint that specifies a condition that must be satisfied for each row in the table.
See “Search Condition” (page 250). You cannot refer to the CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP function in a CHECK constraint, and you

cannot use subqueries in a CHECK constraint.

REFERENCES ref-spec

specifies a REFERENCES column constraint. The maximum combined length of the
columns for a REFERENCES constraint is 2048 bytes.

ref-spec is:
referenced-table [(column-1ist)]

referenced-table is the table referenced by the foreign key in a referential
constraint. referenced-table cannot be a view. referenced-table cannot
be the same as table. referenced-table corresponds to the foreign key in
the table.

column-1ist specifies the column or set of columns in the referenced-table
that corresponds to the foreign key in table. The columns in the column list
associated with REFERENCES must be in the same order as the columns in the
column list associated with FOREIGN KEY. If column-1ist is omitted, the
referenced table's PRIMARY KEY columns are the referenced columns.

A table can have an unlimited number of referential constraints, and you can specify
the same foreign key in more than one referential constraint, but you must define
each referential constraint separately. You cannot create self-referencing foreign
key constraints.

ADD [CONSTRAINT constraint-name] table-constraint

adds a constraint to the table and optionally specifies constraint -name as the name for
the constraint. The new constraint must be consistent with any data already present in the table.

CONSTRAINT constraint-name

specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL
expands the constraint name by using the schema for table. See “Database Object Names’
(page 198).

If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

'’

SQL Statements

table-constraint options:

UNIQUE (column-1ist)

is a table constraint that specifies that the column or set of columns cannot contain more
than one occurrence of the same value or set of values.

column-1ist cannot include more than one occurrence of the same column. In
addition, the set of columns that you specify on a UNIQUE constraint cannot match the
set of columns on any other UNIQUE constraint for the table or on the PRIMARY KEY
constraint for the table. All columns defined as unique must be specified as NOT NULL.

A UNIQUE constraint is enforced with a unique index. If there is already a unique
index on column-1ist, Trafodion SQL uses that index. If a unique index does not
exist, the system creates a unique index.

CHECK (condition)

is a constraint that specifies a condition that must be satisfied for each row in the table.
See “Search Condition” (page 250). You cannot refer to the CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP function in a CHECK constraint, and you
cannot use subqueries in a CHECK constraint.

FOREIGN KEY (column-1ist) REFERENCES ref-spec NOT ENFORCED

is a table constraint that specifies a referential constraint for the table, declaring that

a column or set of columns (called a foreign key) in table can contain only values
that match those in a column or set of columns in the table specified in the REFERENCES
clause. However, because NOT ENFORCED is specified, this relationship is not checked.
The two columns or sets of columns must have the same characteristics (data type,
length, scale, precision). Without the FOREIGN KEY clause, the foreign key in table
is the column being defined; with the FOREIGN KEY clause, the foreign key is the
column or set of columns specified in the FOREIGN KEY clause. For information about

ref-spec, see REFERENCES ref-spec NOT ENFORCED.
DROP CONSTRAINT constraint-name [RESTRICT]
drops a constraint from the table.
If you drop a constraint, Trafodion SQL drops its dependent index if Trafodion SQL originally
created the same index. If the constraint uses an existing index, the index is not dropped.
CONSTRAINT constraint-name

specifies a name for the column or table constraint. constraint-name must have the
same schema as table and must be unique among constraint names in its schema. If you
omit the schema portions of the name you specify in constraint-name, Trafodion SQL

expands the constraint name by using the schema for table. See “Database Object Names”
(page 198).

If you do not specify a constraint name, Trafodion SQL constructs an SQL identifier as the
name for the constraint in the schema for table. The identifier consists of the fully qualified
table name concatenated with a system-generated unique identifier. For example, a
constraint on table A.B.C might be assigned a name such as A.B.C_123..._01... .

RENAME TO new-name [CASCADE]
changes the logical name of the object within the same schema.
new-name
specifies the new name of the object after the RENAME TO operation occurs.
CASCADE
specifies that indexes and constraints on the renamed object will be renamed.
ADD IF NOT EXISTS column-definition

adds a column to table if it does not already exist in the table.

ALTER TABLE Statement 39

The clauses for the column-definition are the same as described in ADD [COLUMN]
column-definition.

DROP COLUMN [IF EXISTS] column-name

drops the specified column from table, including the column’s data. You cannot drop a
primary key column.

Considerations for ALTER TABLE

Effect of Adding a Column on View Definitions

The addition of a column to a table has no effect on existing view definitions. Implicit column
references specified by SELECT * in view definitions are replaced by explicit column references
when the definition clauses are originally evaluated.

Authorization and Availability Requirements
ALTER TABLE works only on user-created tables.

Required Privileges

To issue an ALTER TABLE statement, one of the following must be true:

e You are DB_ ROQT.

e You are the owner of the table.

e You have the ALTER or ALTER_TABLE component privilege for the SQL_OPERATIONS
component.

Privileges Needed to Create a Referential Integrity Constraint

To create a referential integrity constraint (that is, a constraint on the table that refers to a column
in another table), one of the following must be true:

e Youare DB_ ROQT.
e You are the owner of the referencing and referenced tables.

e You have these privileges on the referencing and referenced table:

o For the referencing table, you have the ALTER or ALTER_TABLE component privilege for
the SQL_OPERATIONS component.

o For the referenced table, you have the REFERENCES (or ALL) privilege on the referenced
table through your username or through a granted role.

If the constraint refers to the other table in a query expression, you must also have SELECT privileges
on the other table.

Example of ALTER TABLE

This example adds a column:

ALTER TABLE persnl.project
ADD COLUMN projlead
NUMERIC (4) UNSIGNED

40 SQL Statements

ALTER USER Statement

e “Syntax Description of ALTER USER”
e “Considerations for ALTER USER”
e “Examples of ALTER USER”

The ALTER USER statement changes attributes associated with a user who is registered in the
database.

ALTER USER is a Trafodion SQL extension.

ALTER USER database-username alter-action[, alter-action]

alter-action is:
SET EXTERNAL NAME directory-service-username
| SET { ONLINE | OFFLINE }

Syntax Description of ALTER USER

database-username
is the name of a currently registered database user.

SET EXTERNAL NAME

changes the name that identifies the user in the directory service. This is also the name the user
specifies when connecting to the database.

directory-service-username

specifies the new name of the user in the directory service.
directory-service-username is a regular or delimited case-insensitive identifier.
See “Case-Insensitive Delimited Identifiers” (page 221).

SET { ONLINE | OFFLINE }
changes the attribute that controls whether the user is allowed to connect to the database.
ONLINE
specifies that the user is allowed to connect to the database.
OFFLINE
specifies that the user is not allowed to connect to the database.

Considerations for ALTER USER

Only a user with user administrative privileges (that is, a user who has been granted the
MANAGE_USERS component privilege) can do the following:

o Set the EXTERNAL NAME for any user
o Set the ONLINE | OFFLINE attribute for any user
Initially, DB__ROQT is the only database user who has been granted the MANAGE_USERS

component privilege.

Examples of ALTER USER

e To change a user's external name:
ALTER USER ajones SET EXTERNAL NAME "Americas\ArturoJones";

o To change a user's attribute to allow the user to connect to the database:
ALTER USER ajones SET ONLINE;

ALTER USER Statement 41

BEGIN WORK Statement

e “Considerations for BEGIN WORK”
e “Example of BEGIN WORK"

The BEGIN WORK statement enables you to start a transaction explicitly —where the transaction
consists of the set of operations defined by the sequence of SQL statements that begins immediately
after BEGIN WORK and ends with the next COMMIT or ROLLBACK statement. See “Transaction
Management” (page 25). BEGIN WORK will raise an error if a transaction is currently active.

BEGIN WORK is a Trafodion SQL extension.

BEGIN WORK

Considerations for BEGIN WORK

BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a transaction.

Example of BEGIN WORK

42

Group three separate statements—two INSERT statements and an UPDATE statement—that update
the database within a single transaction:

--- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

INSERT INTO sales.orders VALUES (125, DATE '2008-03-23',
DATE '2008-03-30', 75, 7654);
--- 1 row(s) inserted.

INSERT INTO sales.odetail VALUES (125, 4102, 25000, 2);
--- 1 row(s) inserted.

UPDATE invent.partloc SET gty on hand = gty on hand - 2
WHERE partnum = 4102 AND loc_code = 'G45';
--- 1 row(s) updated.

--- This statement ends a transaction.

COMMIT WORK;
--- SQL operation complete.

SQL Statements

CALL Statement
e “Syntax Description of CALL"
e “Considerations for CALL”
e “Examples of CALL"
The CALL statement invokes a stored procedure in Java (SPJ) in a Trafodion SQL database.

CALL procedure-ref ([argument-1ist])

procedure-ref is:
[[catalog-name.] schema-name.] procedure-name

argument-1list is:
SQL-expression[, SQL-expression]...

Syntax Description of CALL

procedure-ref

specifies an ANSI logical name of the form:
[[catalog-name.] schema-name.] procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters. For
more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).

If you do not fully qualify the procedure name, Trafodion SQL qualifies it according to the
schema of the current session.

argument-list

accepts arguments for IN, INOUT, or OUT parameters. The arguments consist of SQL
expressions, including dynamic parameters, separated by commas:

SQL-expression[{, SQL-expression}...]

Each expression must evaluate to a value of one of these data types:
e Character value

e Date-time value

e Numeric value

Interval value expressions are disallowed in SPJs. For more information, see “Input Parameter
Arguments” (page 44) and “Output Parameter Arguments” (page 44).

Do not specify result sets in the argument list.

Considerations for CALL

Usage Restrictions

You can use a CALL statement as a stand-alone SQL statement in applications or command:-line
interfaces, such as TrafCl. You cannot use a CALL statement inside a compound statement or with
rowsets.

Required

Privileges

To issue a CALL statement, one of the following must be true:

You are DB__ ROOT.
You are the owner of the stored procedure.

You have the EXECUTE (or ALL) privileges, either directly through your username or through
a granted role. For more information, see the “GRANT Statement” (page 111).

CALL Statement 43

When the stored procedure executes, it executes as the Trafodion ID.

Input Parameter Arguments

You pass data to an SPJ by using IN or INOUT parameters. For an IN parameter argument, use
one of these SQL expressions:

o Lliteral
e SQL function (including CASE and CAST expressions)
e Arithmetic or concatenation operation
e Scalar subquery
e Dynamic parameter (for example, ?) in an application
e Named (for example, ?param) or unnamed (for example, ?) parameter in TrafCl
For an INOUT parameter argument, you can use only a dynamic, named, or unnamed parameter.
For more information, see “Expressions” (page 211).
Output Parameter Arguments

An SPJ returns values in OUT and INOUT parameters. Output parameter arguments must be
dynamic parameters in an application (for example, ?) or named or unnamed parameters in HPDCI
(for example, ?param or ?). Each calling application defines the semantics of the OUT and INOUT
parameters in its environment.

Data Conversion of Parameter Arguments

Trafodion SQL performs an implicit data conversion when the data type of a parameter argument
is compatible with but does not match the formal data type of the stored procedure. For stored
procedure input values, the conversion is from the actual argument value to the formal parameter
type. For stored procedure output values, the conversion is from the actual output value, which has
the data type of the formal parameter, to the declared type of the dynamic parameter.

Null Input and Output

You can pass a null value as input to or output from an SPJ, provided that the corresponding Java
data type of the parameter supports nulls. If a null is input or output for a parameter that does not
support nulls, Trafodion SQL returns an error.

Transaction Semantics

The CALL statement automatically initiates a transaction if no active transaction exists. However,
the failure of a CALL statement does not always automatically abort the transaction.

Examples of CALL

e InTrafCl, execute an SP) named MONTHLYORDERS, which has one IN parameter represented
by a literal and one OUT parameter represented by an unnamed parameter, ?:

CALL sales.monthlyorders(3,7?);

o This CALL statement executes a stored procedure, which accepts one IN parameter (a date
literal), returns one OUT parameter (a row from the column, NUM_ORDERS), and returns two
result sets:

CALL sales.ordersummary ('01/01/2001', ?);
NUM_ORDERS

ORDERNUM NUM_PARTS AMOUNT ORDER_DATE LAST NAME

44 SQL Statements

00
00
00
00
00
00

100210 4
100250 4
101220 4
200300 3
200320 4
200490 2

--- 13 row(sg) selected.

ORDERNUM PARTNUM UNIT PRICE
100210 2001 1100.
100210 2403 620.
100210 244 3500.
100210 5100 150.
100250 6500 95.
100250 6301 245 .

--- 70 row(s) selected.

--- SQL operation complete.

19020.
22625.
45525,
52000.
9195.
1065.

QTY ORDERED PARTDESC

00
00
00
00
00
00

2006-04-10
2006-01-23
2006-07-21
2006-02-06
2006-02-17
2006-03-19

HUGHES
HUGHES
SCHNABL
SCHAEFFER
KARAJAN
WEIGL

3 GRAPHIC PRINTER,M1
6 DAISY PRINTER,T2

30 MB

MONITOR BW, TYPE 1

3 PC GOLD,
DISK CONTROLLER

GRAPHIC CARD, HR

CALL Statement

45

COMMIT WORK Statement

e “Considerations for COMMIT WORK”
e “Example of COMMIT WORK"

The COMMIT WORK statement commits any changes to objects made during the current transaction
and ends the transaction. See “Transaction Management” (page 25).

COMMIT [WORK]

WORK is an optional keyword that has no effect.
COMMIT WORK issued outside of an active transaction generates error 8605.

Considerations for COMMIT WORK
BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a transaction.

Example of COMMIT WORK

Suppose that your application adds information to the inventory. You have received 24 terminals
from a new supplier and want to add the supplier and update the quantity on hand. The part
number for the terminals is 5100, and the supplier is assigned supplier number 17. The cost of
each terminal is $800.

The transaction must add the order for terminals to PARTSUPP, add the supplier to the SUPPLIER
table, and update QTY_ON_HAND in PARTLOC. After the INSERT and UPDATE statements execute
successfully, you commit the transaction, as shown:

-- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

-- This statement inserts a new entry into PARTSUPP.
INSERT INTO invent.partsupp

VALUES (5100, 17, 800.00, 24);

--- 1 row(s) inserted.

-- This statement inserts a new entry into SUPPLIER.

INSERT INTO invent.supplier

VALUES (17, 'Super Peripherals', '751 Sanborn Way',
'Santa Rosa', 'California', '95405');

--- 1 row(s) inserted.

-- This statement updates the quantity in PARTLOC.
UPDATE invent.partloc

SET gty _on _hand = gty on_hand + 24

WHERE partnum = 5100 AND loc code = 'G43';

--- 1 row(s) updated.

-- This statement ends a transaction.

COMMIT WORK;
--- SQL operation complete.

46 SQL Statements

CONTROL QUERY CANCEL Statement

The CONTROL QUERY CANCEL statement cancels an executing query that you identify with a
query ID. You can execute the CONTROL QUERY CANCEL statement in a client-based tool like
TrafCl or through any ODBC or JDBC application.

CONTROL QUERY CANCEL is a Trafodion SQL extension.

CONTROL QUERY CANCEL QID query-id [COMMENT 'comment-text']

Syntax Description of CONTROL QUERY CANCEL

query-id
specifies the query ID of an executing query, which is a unique identifier generated by the SQL
compiler.

'comment -text'
specifies an optional comment to be displayed in the canceled query’s error message.

Considerations for CONTROL QUERY CANCEL

Benefits of CONTROL QUERY CANCEL

For many queries, the CONTROL QUERY CANCEL statement allows the termination of the query
without stopping the master executor process (MXOSRVR). This type of cancellation has these
benefits over standard ODBC/JDBC cancel methods:

e An ANSl-defined error message is returned to the client session, and SQLSTATE is set to
HY008.

e Important cached objects persist after the query is canceled, including the master executor
process and its compiler, the compiled statements cached in the master, and the compiler’s
query cache and its cached metadata and histograms.

o The client does not need to reestablish its connection, and its prepared statements are preserved.

e When clients share connections using a middle-tier application server, the effects of canceling
one client’s executing query no longer affect other clients sharing the same connection.

Restrictions on CONTROL QUERY CANCEL

Some executing queries may not respond to a CONTROL QUERY CANCEL statement within a
60-second interval. For those queries, Trafodion SQL stops their ESP processes if there are any. If
this action allows the query to be canceled, you will see all the benefits listed above.

If the executing query does not terminate within 120 seconds after the CONTROL QUERY CANCEL
statement is issued, Trafodion SQL stops the master executor process, terminating the query and
generating a lost connection error. In this case, you will not see any of the benefits listed above.
Instead, you will lose your connection and will need to reconnect and re-prepare the query. This
situation offen occurs with the CALL, DDL, and utility statements and rarely with other statements.

The CONTROL QUERY CANCEL statement does not work with these statements:
e Unique queries, which operate on a single row and a single partition
e Queries that are not executing, such as a query that is being compiled

e CONTROL QUERY DEFAULT, BEGIN WORK, COMMIT WORK, ROLLBACK WORK, and
EXPLAIN statements

e Statically compiled metadata queries

e Queries executed in anomalous conditions, such as queries without runtime statistics or without
a query ID

CONTROL QUERY CANCEL Statement 47

Required Privileges
To issue a CONTROL QUERY CANCEL statement, one of the following must be true:
e Youare DB_ ROQOT.
e You own (that is, issued) the query.

e You have the QUERY_CANCEL component privilege for the SQL_OPERATIONS component.

Example of CONTROL QUERY CANCEL
This CONTROL QUERY CANCEL statement cancels a specified query and provides a comment

concerning the cancel operation:

control query cancel gid MXID11000010941212288634364991407000000003806U3333300_156016_S1 comment 'Query is
consuming too many resources.';

In a separate session, the client that issued the query will see this error message indicating that
the query has been canceled:

>>execute sl;

%% ERROR[8007] The operation has been canceled. Query is consuming too many resources.

48 SQL Statements

CONTROL QUERY DEFAULT Statement

The CONTROL QUERY DEFAULT statement changes the default settings for the current process.
You can execute the CONTROL QUERY DEFAULT statement in a client-based tool like TrafCl or
through any ODBC or JDBC application.

CONTROL QUERY DEFAULT is a Trafodion SQL extension.

{ CONTROL QUERY DEFAULT | CQD } control-default-option
control-default-option is:

attribute {'attr-value' | RESET}

Syntax Description of CONTROL QUERY DEFAULT

attribute

is a character string that represents an attribute name. For descriptions of these attributes, see
“Control Query Default (CQD) Attributes” (page 466).

attr-value

is a character string that specifies an attribute value. You must specify attr-value as a
quoted string—even if the value is a number.

RESET

specifies that the attribute that you set by using a CONTROL QUERY DEFAULT statement in the
current session is to be reset to the value or values in effect at the start of the current session.

Considerations for CONTROL QUERY DEFAULT

Scope of CONTROL QUERY DEFAULT

The result of the execution of a CONTROL QUERY DEFAULT statement stays in effect until the current
process terminates or until the execution of another statement for the same attribute overrides it.
CQDs are applied at compile time, so CQDs do not affect any statements that are already prepared.
For example:

PREPARE x FROM SELECT * FROM t;

CONTROL QUERY DEFAULT SCHEMA 'myschema';

EXECUTE Xx; -- uses the default schema SEABASE
SELECT * FROM t2; -- uses MYSCHEMA;

PREPARE y FROM SELECT * FROM t3;

CONTROL QUERY DEFAULT SCHEMA 'seabase';

EXECUTE vy; -- uses MYSCHEMA;

Examples of CONTROL QUERY DEFAULT
e Change the maximum supported length of the column names to 200 for the current process:

CONTROL QUERY DEFAULT HBASE MAX COLUMN NAME LENGTH '200';

o Reset the HBASE_MAX_COLUMN_NAME_LENGTH attribute to its initial value in the current
process:

CONTROL QUERY DEFAULT HBASE MAX COLUMN NAME LENGTH RESET;

CONTROL QUERY DEFAULT Statement 49

CREATE FUNCTION Statement

e “Syntax Description of CREATE FUNCTION"
e “Considerations for CREATE FUNCTION”
e “Examples of CREATE FUNCTION"

The CREATE FUNCTION statement registers a user-defined function (UDF) written in C as a function
within a Trafodion database. Currently, Trafodion supports the creation of scalar UDFs, which

return a single value or row when invoked. Scalar UDFs are invoked as SQL expressions in the
SELECT list or WHERE clause of a SELECT statement.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for

the session.

CREATE FUNCTION function-ref ([parameter-declarationl[, parameter-declaration]...])
{RETURN | RETURNS} (return-parameter-declarationl, return-parameter-declaration]...)
EXTERNAL NAME 'character-string-literal'

LIBRARY [[catalog-name.]schema-name.]library-name
[LANGUAGE C]

[PARAMETER STYLE SQL]

[NO SQL]

[NOT DETERMINISTIC | DETERMINISTIC]

[FINAL CALL | NO FINAL CALL]

[NO STATE AREA | STATE AREA size]

[NO PARALLELISM | ALLOW ANY PARALLELISM]

function-ref is:
[[catalog-name.] schema-name.] function-name

parameter-declaration is:
[IN] [sgl-parameter-name] sgl-datatype

return-parameter-declaration is:
[OUT] [sgl-parameter-name] sqgl-datatype

Syntax Description of CREATE FUNCTION

function-ref ([parameter-declaration|, parameter-declaration]...])

specifies the name of the function and any SQL parameters that correspond to the signature
of the external function.

function-ref
specifies an ANSI logical name of the form:
[[catalog-name.] schema-name.] function-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).

Specify a name that is unique and does not exist for any procedure or function in the same
schema.

If you do not fully quality the function name, Trafodion SQL qualifies it according to the
schema of the current session.

parameter-declaration
specifies an SQL parameter that corresponds to the signature of the external function:
[IN] [sgl-parameter-name] sqgl-datatype
IN
specifies that the parameter passes data to the function.
sql-parameter-name

specifies an SQL identifier for the parameter. For more information, see “Identifiers”
(page 221).

50 SQL Statements

sql-datatype
specifies an SQL data type that corresponds to the data type of the parameter in the
signature of the external function. sq1-datatype is one of the supported SQL data
types in Trafodion. See “Data Types” (page 199).

{RETURN | RETURNS} (return-parameter-declaration],
return-parameter-declaration]...)
specifies the type of output of the function.

return-parameter-declaration
specifies an SQL parameter for an output value:
[OUT] [sqgl-parameter-name]l sqgl-datatype

ouT
specifies that the parameter accepts data from the function.

sql-parameter-name
specifies an SQL identifier for the return parameter. For more information, see
“Identifiers” (page 221).

sgl-datatype
specifies an SQL data type for the return parameter. sq1-datatype is one of the
supported SQL data types in Trafodion. See “Data Types” (page 199).

EXTERNAL NAME 'method-name'

specifies the case-sensitive name of the external function’s method.

LIBRARY [[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of a library containing the external function. If you do not fully
qualify the library name, Trafodion SQL qualifies it according to the schema of the current
session.

LANGUAGE C
specifies that the external function is written in the C language. This clause is optional.
PARAMETER STYLE SQL

specifies that the run-time conventions for arguments passed to the external function are those
of the SQL language. This clause is optional.

NO SQL
specifies that the function does not perform SQL operations. This clause is optional.
DETERMINISTIC | NOT DETERMINISTIC

specifies whether the function always returns the same values for OUT parameters for a given
set of argument values (DETERMINISTIC, the default behavior) or does not return the same
values (NOT DETERMINISTIC). If the function is deterministic, Trafodion SQL is not required to
execute the function each time to produce results; instead, Trafodion SQL caches the results
and reuses them during subsequent executions, thus optimizing the execution.

FINAL CALL | NO FINAL CALL

specifies whether or not a final call is made to the function. A final call enables the function to
free up system resources. The default is FINAL CALL.

NO STATE AREA | STATE AREA size

specifies whether or not a state area is allocated to the function. size is an integer denoting
memory in bytes. Acceptable values range from 0 to 16000. The default is NO STATE AREA.

NO PARALLELISM | ALLOW ANY PARALLELISM

specifies whether or not parallelism is applied when the function is invoked. The default is
ALLOW ANY PARALLELISM.

CREATE FUNCTION Statement 51

Considerations for CREATE FUNCTION

Required Privileges
To issue a CREATE FUNCTION statement, one of the following must be true:

You are DB__ROOT.

You are creating the function in a shared schema, and you have the USAGE (or ALL) privilege
on the library that will be used in the creation of the function. The USAGE privilege provides
you with read access to the library’s underlying library file.

You are the private schema owner and have the USAGE (or ALL) privilege on the library that
will be used in the creation of the function. The USAGE privilege provides you with read
access to the library’s underlying library file.

You have the CREATE or CREATE_ROUTINE component level privilege for the
SQL_OPERATIONS component and have the USAGE (or ALL) privilege on the library that will
be used in the creation of the function. The USAGE privilege provides you with read access
to the library’s underlying library file.

NOTE: In this case, if you create a function in a private schema, it will be owned by the
schema owner.

Examples of CREATE FUNCTION

52

This CREATE FUNCTION statement creates a function that adds two integers:

create function add2 (int, int)
returns (total value int)
external name 'add2'
library myudflib;

This CREATE FUNCTION statement creates a function that returns the minimum, maximum,
and average values of five input integers:
create function mma5 (int, int, int, int, int)

returns (min_value int, max value int, avg value int)

external name 'mma5'
library myudflib;

This CREATE FUNCTION statement creates a function that reverses an input string of at most
32 characters:

create function reverse (varchar(32))
returns (reversed string varchar(32))
external name 'reverse'
library myudflib;

SQL Statements

CREATE INDEX Statement

Syntax

e “Syntax Description of CREATE INDEX"
e “Considerations for CREATE INDEX"
e “Examples of CREATE INDEX"

The CREATE INDEX statement creates an SQL index based on one or more columns of a table or
table-like object. The CREATE VOLATILE INDEX statement creates an SQL index with a lifespan
that is limited to the SQL session that the index is created. Volatile indexes are dropped automatically
when the session ends. See “Indexes” (page 222).

CREATE INDEX is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for

the session.

CREATE [VOLATILE] INDEX index ON table
(column-name [ASC[ENDING] | DESC [ENDING]]
[, column-name [ASC[ENDING] | DESC[ENDING]]]...)
[HBASE OPTIONS (hbase-options-1ist)]
[SALT LIKE TABLE]

hbase-options-1list is:
hbase-option = 'value'[, hbase-option = 'value'l...

Description of CREATE INDEX

index
is an SQL identifier that specifies the simple name for the new index. You cannot qualify index
with its schema name. Indexes have their own namespace within a schema, so an index name
might be the same as a table or constraint name. However, no two indexes in a schema can
have the same name.

table
is the name of the table for which to create the index. See “Database Object Names” (page 198).

column-name [ASC[ENDING] | DESC[ENDING]] [,column-name [ASC[ENDING] |
DESC[ENDING]]]...
specifies the columns in table fo include in the index. The order of the columns in the index
need not correspond to the order of the columns in the table.

ASCENDING or DESCENDING specifies the storage and retrieval order for rows in the index.
The default is ASCENDING.

Rows are ordered by values in the first column specified for the index. If multiple index rows
share the same value for the first column, the values in the second column are used to order
the rows, and so forth. If duplicate index rows occur in a nonunique index, their order is based
on the sequence specified for the columns of the key of the underlying table. For ordering (but
not for other purposes), nulls are greater than other values.

HBASE_OPTIONS (hbase-option = 'value'[, hbase-option = 'value'l...)
a list of HBase options to set for the index. These options are applied independently of any
HBase options set for the index’s table.

CREATE INDEX Statement 53

hbase-option = 'value'
is one of the these HBase options and its assigned value:

HBase Option Accepted Values'

BLOCKCACHE 'true' | 'false’

BLOCKSIZE '65536' | 'positive-integer’
BLOOMEFILTER 'NONE' | 'ROW' | 'ROWCOL'

CACHE_BLOOMS_ON_WRITE

'true' | 'false’

CACHE_DATA_ON_WRITE

'true' | 'false’

CACHE_INDEXES_ON_WRITE

'true' | 'false’

COMPACT

'true' | 'false’

COMPACT_COMPRESSION

'‘GZ' | 'lZ4' | 'LZO" | 'NONE' | 'SNAPPY'

COMPRESSION

'GZ' | 'lZ4' | 'LZO' | 'NONE' | 'SNAPPY'

DATA_BLOCK_ENCODING

'‘DIFF' | 'FAST_DIFF' | 'NONE' | 'PREFIX'

DURABILITY

'USE_DEFAULT" | 'SKIP_WAL' | 'ASYNC_WAL' | 'SYNC_WAL' |
'FSYNC_WAL'

EVICT_BLOCKS_ON_CIOSE

'true' | 'false’

IN_MEMORY

'true' | 'false’

KEEP_DELETED_CELLS

'true' | 'false’

MAX_FILESIZE

'positive-integer'

MAX_VERSIONS

'1'| 'positive-integer'

MEMSTORE_FLUSH_SIZE

'positive-integer'

MIN_VERSIONS

'0' | 'positive-integer'

PREFIX_LENGTH_KEY

'positive-integer', which should be less than maximum length
of the key for the table. It applies only if the SPLIT_POLICY is
KeyPrefixRegionSplitPolicy.

REPLICATION_SCOPE

|0| | |'||

SPLIT_POLICY 'org.apache.hadoop.hbase.regionserver.ConstantSizeRegionSplitPolicy'
|
'org.apache hadoop.hbase.regionserver. InareasingToUpperBoundRegionSplitPolicy’
| 'org.apache.hadoop.hbase.regionserver.KeyPrefixRegionSplitPolicy'
TTL '-1' (forever) | 'positive-integer'

" Values in boldface are default values.

SALT LIKE TABLE

causes the index to use the same salting scheme (that is, SALT USING num PARTITIONS
[ON (column[, column]...)])as its base table.

Considerations for CREATE INDEX

Indexes are created under a single transaction. When an index is created, the following steps

occur:

o Transaction begins (either a user-started transaction or a system-started transaction).

e Rows are written to the metadata.

o Physical labels are created to hold the index (as non audited).

54 SQL Statements

The base table is locked for read shared access which prevents inserts, updates, and deletes
on the base table from occurring.

The index is loaded by reading the base table for read uncommitted access using side tree
inserts.

NOTE:
A side tree insert is a fast way of loading data that can perform specialized optimizations
because the partitions are not audited and empty.

After load is complete, the index audit attribute is turned on and it is attached to the base
table (to bring the index online).

The transaction is committed, either by the system or later by the requestor.

If the operation fails after basic semantic checks are performed, the index no longer exists and the
entire transaction is rolled back even if it is a user-started transaction.

Authorization and Availability Requirements

An index always has the same security as the table it indexes.

CREATE INDEX locks out INSERT, DELETE, and UPDATE operations on the table being indexed. If
other processes have rows in the table locked when the operation begins, CREATE INDEX waits
until its lock request is granted or timeout occurs.

You cannot access an index directly.

Required Privileges

To issue a CREATE INDEX statement, one of the following must be true:

You are DB__ROQIT.
You are creating the table in a shared schema.
You are the private schema owner.

You are the owner of the table.

You have the ALTER, ALTER_TABLE, CREATE, or CREATE_INDEX component privilege for the
SQL_OPERATIONS component.

NOTE: In this case, if you create an index in a private schema, it will be owned by the
schema owner.

Limits on Indexes

For nonunique indexes, the sum of the lengths of the columns in the index plus the sum of the length
of the clustering key of the underlying table cannot exceed 2048 bytes.

No restriction exists on the number of indexes per table.

Examples of CREATE INDEX

This example creates an index on two columns of a table:

CREATE INDEX xempname
ON persnl.employee (last name, first name) ;

CREATE INDEX Statement 55

CREATE LIBRARY Statement

e “Syntax Description of CREATE LIBRARY”
e “Considerations for CREATE LIBRARY”
e “Examples of CREATE LIBRARY”

The CREATE LIBRARY statement registers a library object in a Trafodion database. A library object
can be an SPJ's JAR file or a UDF's library file.

CREATE LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE LIBRARY [[catalog-name.]schema-name.]library-name
FILE 'library-filename'
[HOST NAME 'host-name']
[LOCAL FILE 'host-filename']

Syntax Description of CREATE LIBRARY

[[catalog-name.]schema-name.|library-name
specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify a name that is unique and does not
exist for libraries in the same schema. If you do not fully qualify the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“Identifiers” (page 221) and “Database Object Names” (page 198).

FILE '1ibrary-filename'

specifies the full path of a deployed library file, which either an SPJ's JAR file or a UDF's library
file.

NOTE: Make sure to upload the library file to the Trafodion cluster and then copy the library
file to the same directory on all the nodes in the cluster before running the CREATE LIBRARY
statement. Otherwise, you will see an error message indicating that the JAR or DLL file was not
found.

HOST NAME 'host -name'
specifies the name of the client host machine where the deployed file resides.

LOCAL FILE 'host-filename'
specifies the path on the client host machine where the deployed file is stored.

Considerations for CREATE LIBRARY

56

o A library object cannot refer to a library file referenced by another library object. If the
library-filename is in use by another library object, the CREATE LIBRARY command will
fail.

o The library-filename must specify an existing file. Otherwise, the CREATE LIBRARY
command will fail.

o The CREATE LIBRARY command does not verify that the specified 1ibrary-filename is a
valid executable file.

e HOST NAME and LOCAL FILE are position dependent.

SQL Statements

Required Privileges
To issue a CREATE LIBRARY statement, one of the following must be true:

You are DB__ROQIT.
You are creating the library in a shared schema and have the MANAGE_LIBRARY privilege.
You are the private schema owner and have the MANAGE_LIBRARY privilege.

You have the CREATE or CREATE_LIBRARY component privilege for the SQL_OPERATIONS
component and have the MANAGE_LIBRARY privilege.

NOTE: In this case, if you create a library in a private schema, it will be owned by the
schema owner.

Examples of CREATE LIBRARY

This CREATE LIBRARY statement registers a library named SALESLIB in the SALES schema for
a JAR file (SPJs):

CREATE LIBRARY sales.saleslib FILE '/opt/home/trafodion/spjjars/Sales.jar';

This CREATE LIBRARY statement registers a library named MYUDFS in the default schema for
a library file (UDFs):
CREATE LIBRARY myudfs FILE SUDFLIB;

CREATE LIBRARY Statement 57

CREATE PROCEDURE Statement

e “Syntax Description of CREATE PROCEDURE”
e “Considerations for CREATE PROCEDURE”
e “Examples of CREATE PROCEDURE”

The CREATE PROCEDURE statement registers a Java method as a stored procedure in Java (SPJ)
within a Trafodion database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for

the session.

CREATE PROCEDURE procedure-ref ([sql-parameter-1ist])
EXTERNAL NAME 'java-method-name [java-signature]'
LIBRARY [[catalog-name.]schema-name.]library-name
[EXTERNAL SECURITY external-security-typel
LANGUAGE JAVA

PARAMETER STYLE JAVA

[NO SQL | CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA]
[DYNAMIC RESULT SETS integer]

[TRANSACTION REQUIRED | NO TRANSACTION REQUIRED]
[DETERMINISTIC | NOT DETERMINISTIC]
[NO ISOLATE | ISOLATE]

procedure-ref is:
[[catalog-name.] schema-name.] procedure-name

sqgl-parameter-1list is:
sqgl-parameter[, sqgl-parameter]...

sgl-parameter is:
[parameter-mode]l [sgl-identifier] sgl-datatype

parameter-mode is:
IN

| outT

| INOUT

java-method-name is:
[package-name.] class-name.method-name

java-signature is:
([java-parameter-1ist])

java-parameter-list is:
java-datatypel, java-datatypel...

external-security-type is:
DEFINER
| INVOKER

NOTE: Delimited variables in this syntax diagram are case-sensitive. Case-sensitive variables
include java-method-name, java-signature, and class-file-path, and any delimited
part of the procedure-ref. The remaining syntax is not case-sensitive.

Syntax Description of CREATE PROCEDURE

58

procedure-ref([sql-parameter|, sql-parameter]...])

specifies the name of the stored procedure in Java (SPJ) and any SQL parameters that correspond
to the signature of the SPJ method.

SQL Statements

procedure-ref
specifies an ANSI logical name of the form:
[[catalog-name.] schema-name.] procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128 characters.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).

Specify a name that is unique and does not exist for any procedure or function in the same
schema. Trafodion SQL does not support the overloading of procedure names. That is, you
cannot register the same procedure name more than once with different underlying SP)
methods.

If you do not fully quality the procedure name, Trafodion SQL qualifies it according to the
schema of the current session.
sql-parameter

specifies an SQL parameter that corresponds to the signature of the SPJ method:
[parameter-mode] [sgl-identifier] sqgl-datatype
parameter-mode

specifies the mode IN, OUT, or INOUT of a parameter. The default is IN.

IN

specifies a parameter that passes data to an SPJ.
out

specifies a parameter that accepts data from an SPJ. The parameter must be an
array.

INOUT

specifies a parameter that passes data to and accepts data from an SPJ. The
parameter must be an array.

sqgl-identifier
specifies an SQL identifier for the parameter. For more information, see “Identifiers”
(page 221).

sgl-datatype

specifies an SQL data type that corresponds to the Java parameter of the SPJ method.
sqgl-datatype can be:

SQL Data Type Maps to Java Data Type...

CHARJACTER] java.lang.String
CHARJACTER] VARYING

VARCHAR

PIC[TURE] X'

NCHAR

NCHAR VARYING

NATIONAL CHAR[ACTER]
NATIONAL CHAR[ACTER] VARYING

DATE java.sqgl.Date

TIME java.sql.Time

TIMESTAMP java.sqgl.Timestamp

NUMERIC (including NUMERIC with a precision | java.math.BigDecimal
greater than eighteen)?
DEC[IMAL)?

PIC[TURE] $9°

CREATE PROCEDURE Statement 59

SQL Data Type Maps to Java Data Type...
SMALLINT? short

|NT[EGER]2 int or java.lang.Integer’
LARGEINT? long or java.lang.Long”
FLOAT double or java.lang.Double”
REAL float or java.lamg.Float4
DOUBLE PRECISION double or java.lang.Double®

! The Trafodion database stores PIC X as a CHAR data type.
2 Numeric data types of SQL parameters must be SIGNED, which is the default in the Trafodion database.
3 The Trafodion database stores PIC $9 as a DECIMAL or NUMERIC data type.

* By default, the SQL data type maps to a Java primitive type. The SQL data type maps to a Java wrapper
class only if you specify the wrapper class in the Java signature of the EXTERNAL NAME clause.

For more information, see “Data Types” (page 199).
EXTERNAL NAME 'java-method-name [java-signature]'
java-method-name
specifies the case-sensitive name of the SPJ method of the form:
[package-name.] class-name.method-name
The Java method must exist in a Java class file, class-name.class, within a library

registered in the database. The Java method must be defined as public and static
and have a return type of void.

If the class file that contains the SPJ method is part of a package, you must also specify the
package name. If you do not specify the package name, the CREATE PROCEDURE statement
fails to register the SPJ.

java-signature
specifies the signature of the SPJ method and consists of:
([java-datatypel, java-datatype]...l)
The Java signature is necessary only if you want to specify a Java wrapper class (for
example, java.lang.Integer) instead of a Java primitive data type (for example, int).
An SQL data type maps to a Java primitive data type by default.
The Java signature is case-sensitive and must be placed within parentheses, such as
(java.lang.Integer, java.lang.Integer). The signature must specify each of
the parameter data types in the order they appear in the Java method definition within the

class file. Each Java data type that corresponds to an OUT or INOUT parameter must be
followed by empty square brackets ([1), such as java.lang.Integer|[].

java-datatype

specifies a mappable Java data type. For the mapping of the Java data types to SQL
data types, see sgl-datatype.

LIBRARY [[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of a library containing the SPJ method. If you do not fully

qualify the library name, Trafodion SQL qualifies it according to the schema of the current
session.

60 SQL Statements

EXTERNAL SECURITY external-security-type

determines the privileges, or rights, that users have when executing (or calling) the SPJ. An SP)
can have one of these types of external security:

e INVOKER determines that users can execute, or invoke, the stored procedure using the
privileges of the user who invokes the stored procedure. This behavior is referred to as
invoker rights and is the default behavior it EXTERNAL SECURITY is not specified. Invoker
rights allow a user who has the execute privilege on the SPJ to call the SPJ using his or
her existing privileges. In this case, the user must be granted privileges to access the
underlying database objects on which the SP) operates.

NOTE: Granting a user privileges to the underlying database objects gives the user
direct access to those database objects, which could pose a risk to more sensitive or critical
data to which users should not have access. For example, an SPJ might operate on a
subset of the data in an underlying database object, but that database object might contain
other more sensitive or critical data to which users should not have access.

e DEFINER determines that users can execute, or invoke, the stored procedure using the
privileges of the user who created the stored procedure. This behavior is referred to as
definer rights. The advantage of definer rights is that users are allowed to manipulate data
by invoking the stored procedure without having to be granted privileges to the underlying
database objects. That way, users are restricted from directly accessing or manipulating
more sensitive or critical data in the database. However, be careful about the users to
whom you grant execute privilege on an SPJ with definer external security because those
users will be able to execute the SPJ without requiring privileges to the underlying database
objects.

LANGUAGE JAVA
specifies that the external user-defined routine is written in the Java language.

PARAMETER STYLE JAVA

specifies that the run-time conventions for arguments passed to the external user-defined routine
are those of the Java language.

NO SQL
specifies that the SPJ cannot perform SQL operations.

CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA

specifies that the SPJ can perform SQL operations. All these options behave the same as
CONTAINS SQL, meaning that the SPJ can read and modify SQL data. Use one of these
options to register a method that contains SQL statements. If you do not specify an SQL access
mode, the default is CONTAINS SQL.

DYNAMIC RESULT SETS integer

specifies the maximum number of result sets that the SPJ can return. This option is applicable
only if the method signature contains a java.sgl.ResultSet [] object. If the method
contains a result set object, the valid range is 1 to 255 inclusive. The actual number of result
sets returned by the SPJ method can be less than or equal to this number. If you do not specify
this option, the default value is O (zero), meaning that the SPJ does not return result sets.

TRANSACTION REQUIRED | NO TRANSACTION REQUIRED

determines whether the SPJ must run in a transaction inherited from the calling application

(TRANSACTION REQUIRED, the default option) or whether the SPJ runs without inheriting the
calling application’s transaction (NO TRANSACTION REQUIRED). Typically, you will want the
stored procedure to inherit the transaction from the calling application. However, if the SP)

method does not access the database or if you want the stored procedure to manage its own
transactions, you should set the stored procedure’s transaction attribute to NO TRANSACTION
REQUIRED. For more information, see “Effects of the Transaction Attribute on SPJs” (page 62).

CREATE PROCEDURE Statement 6]

DETERMINISTIC | NOT DETERMINISTIC

specifies whether the SPJ always returns the same values for OUT and INOUT parameters for
a given set of argument values (DETERMINISTIC) or does not return the same values (NOT
DETERMINISTIC, the default option). If you specify DETERMINISTIC, Trafodion SQL is not
required to call the SPJ each time to produce results; instead, Trafodion SQL caches the results
and reuses them during subsequent calls, thus optimizing the CALL statement.

NO ISOLATE | ISOLATE

specifies that the SPJ executes either in the environment of the database server (NO ISOLATE)
or in an isolated environment (ISOLATE, the default option). Trafodion SQL allows both options
but always executes the SPJ in the UDR server process (ISOLATE).

Considerations for CREATE PROCEDURE

Required Privileges

To issue a CREATE PROCEDURE statement, one of the following must be true:
e Youare DB_ ROQOT.

* You are creating the procedure in a shared schema, and you have the USAGE (or ALL) privilege
on the library that will be used in the creation of the stored procedure. The USAGE privilege
provides you with read access to the library’s underlying JAR file, which contains the SPJ Java
method.

e You are the private schema owner and have the USAGE (or ALL) privilege on the library that
will be used in the creation of the stored procedure. The USAGE privilege provides you with
read access to the library’s underlying JAR file, which contains the SPJ Java method.

e You have the CREATE or CREATE_ROUTINE component level privilege for the
SQL_OPERATIONS component and have the USAGE (or ALL) privilege on the library that will
be used in the creation of the stored procedure. The USAGE privilege provides you with read
access to the library’s underlying JAR file, which contains the SPJ Java method.

NOTE: In this case, if you create a stored procedure in a private schema, it will be owned
by the schema owner.

Effects of the Transaction Attribute on SPJs

62

Transaction Required

Using Transaction Control Statements or Methods

If you specify TRANSACTION REQUIRED (the default option), a CALL statement automatically
initiates a transaction if there is no active transaction. In this case, you should not use transaction
control statements (or equivalent JDBC transaction methods) in the SPJ method. Transaction control
statements include COMMIT WORK and ROLLBACK WORK, and the equivalent JDBC transaction
methods are Connection.commit () and Connection.rollback (). If you try to use transaction
control statements or methods in an SPJ method when the stored procedure’s transaction attribute
is set to TRANSACTION REQUIRED, the transaction control statements or methods in the SPJ method
are ignored, and the Java virtual machine (JVM) does not report any errors or warnings. When
the stored procedure’s transaction attribute is set to TRANSACTION REQUIRED, you should rely
on the transaction control statements or methods in the application that calls the stored procedure
and allow the calling application to manage the transactions.

Committing or Rolling Back a Transaction

If you do not use transaction control statements in the calling application, the transaction initiated
by the CALL statement might not automatically commit or roll back changes to the database. When
AUTOCOMMIT is ON (the default setting), the database engine automatically commits or rolls

SQL Statements

back any changes made to the database at the end of the CALL statement execution. However,
when AUTOCOMMIT is OFF, the current transaction remains active until the end of the client
session or until you explicitly commit or roll back the transaction. To ensure an atomic unit of work
when calling an SPJ, use the COMMIT WORK statement in the calling application to commit the
transaction when the CALL statement succeeds, and use the ROLLBACK WORK statement to roll
back the transaction when the CALL statement fails.

No Transaction Required

In some cases, you might not want the SPJ method to inherit the transaction from the calling
application. Instead, you might want the stored procedure to manage its own transactions or to
run without a transaction. Not inheriting the calling application’s transaction is useful in these
cases:

o The stored procedure performs several long-running operations, such as multiple DDL or table
maintenance operations, on the database. In this case, you might want to commit those
operations periodically from within the SPJ method to avoid locking tables for a long time.

o The stored procedure performs certain SQL operations that must run without an active
transaction. For example, INSERT, UPDATE, and DELETE statements with the WITH NO
ROLLBACK option are rejected when a transaction is already active, as is the case when a
stored procedure inherits a transaction from the calling application. The PURGEDATA utility
is also rejected when a transaction is already active.

o The stored procedure does not access the database. In this case, the stored procedure does
not need to inherit the transaction from the calling application. By setting the stored procedure’s
transaction attribute to NO TRANSACTION REQUIRED, you can avoid the overhead of the

calling application’s transaction being propagated to the stored procedure.

In these cases, you should set the stored procedure’s transaction attribute to NO TRANSACTION
REQUIRED when creating the stored procedure.

If you specify NO TRANSACTION REQUIRED and if the SPJ method creates a JDBC default
connection, that connection will have autocommit enabled by default. You can either use the
autocommit transactions or disable autocommit (conn . setAutoCommit (false) ;) and use the
JDBC transaction methods, Connection.commit () and Connection.rollback (), to commit
or roll back work where needed.

Examples of CREATE PROCEDURE

e This CREATE PROCEDURE statement registers an SP) named LOWERPRICE, which does not
accept any arguments:

SET SCHEMA SALES;

CREATE PROCEDURE lowerprice ()

EXTERNAL NAME 'Sales.lowerPrice'

LIBRARY saleslib

LANGUAGE JAVA

PARAMETER STYLE JAVA

MODIFIES SQL DATA;
Because the procedure name is not qualified by a catalog and schema, Trafodion SQL qualifies
it according fo the current session settings, where the catalog is TRAFODION (by default) and
the schema is set to SALES. Since the procedure needs to be able to read and modify SQL
data, MODIFIES SQL DATA is specified in the CREATE PROCEDURE statement.

To call this SPJ, use this CALL statement:
CALL lowerprice() ;

CREATE PROCEDURE Statement 63

The LOWERPRICE procedure lowers the price of items with 50 or fewer orders by 10 percent
in the database.

This CREATE PROCEDURE statement registers an SP) named TOTALPRICE, which accepts three
input parameters and returns a numeric value, the total price to an INOUT parameter:
CREATE PROCEDURE trafodion.sales.totalprice(IN gty NUMERIC (18),
IN rate VARCHAR (10),
INOUT price NUMERIC (18,2))
EXTERNAL NAME 'Sales.totalPrice'
LIBRARY sales.saleslib
LANGUAGE JAVA
PARAMETER STYLE JAVA
NO SQL;

To call this SPJ in TrafCl, use these statements:
SET PARAM ?p 10.00;

CALL sales.totalprice (23, 'standard', °?p);

--- SQL operation complete.

Since the procedure does not read and modify any SQL data, NO SQL is specified in the
CREATE PROCEDURE statement.

This CREATE PROCEDURE statement registers an SPJ named MONTHLYORDERS, which accepts
an integer value for the month and returns the number of orders:
CREATE PROCEDURE sales.monthlyorders (IN INT, OUT number INT)
EXTERNAL NAME 'Sales.numMonthlyOrders (int, java.lang.Integer|[])'
LIBRARY sales.saleslib
LANGUAGE JAVA
PARAMETER STYLE JAVA
READS SQL DATA;

Because the OUT parameter is supposed to map to the Java wrapper class,
java.lang.Integer, you must specify the Java signature in the EXTERNAL NAME clause.

To invoke this SPJ, use this CALL statement:
CALL sales.monthlyorders (3, ?);

ORDERNUM

--- SQL operation complete.

This CREATE PROCEDURE statement registers an SP) named ORDERSUMMARY, which accepts
a date (formatted as a string) and returns information about the orders on or after that date.

CREATE PROCEDURE sales.ordersummary (IN on or after date VARCHAR (20),
OUT num_orders LARGEINT)
EXTERNAL NAME 'Sales.orderSummary (int, longl[])'
LIBRARY sales.saleslib
EXTERNAL SECURITY invoker
LANGUAGE JAVA
PARAMETER STYLE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 2;

To invoke this SPJ, use this CALL statement:
CALL neo.sales.ordersummary('01-01-2014"', ?);

SQL Statements

The ORDERSUMMARY procedure returns this information about the orders on or after the
specified date, 01-01-2014:

NUM_ORDERS
13
ORDERNUM NUM_PARTS AMOUNT ORDER_DATE LAST_ NAME
100210 4 19020.00 2014-04-10 HUGHES
100250 4 22625.00 2014-01-23 HUGHES
101220 4 45525.00 2014-07-21 SCHNABL

--- 13 row(s) selected.

ORDERNUM PARTNUM UNIT_PRICE QTY ORDERED PARTDESC

100210 244 3500.00 3 PC GOLD, 30 MB
100210 2001 1100.00 3 GRAPHIC PRINTER, M1
100210 2403 620.00 6 DAISY PRINTER, T2

--- 70 row(s) selected.

--- SQL operation complete.

CREATE PROCEDURE Statement

65

CREATE ROLE Statement

e “Syntax Description of CREATE ROLE”

e “Considerations for CREATE ROLE”

e “Examples of CREATE ROLE”

The CREATE ROLE statement creates an SQL role. See “Roles” (page 248).

CREATE ROLE role-name [WITH ADMIN grantor]

grantor is:
database-username

Syntax Description of CREATE ROLE

role-name

is an SQL identifier that specifies the new role. role-name is a regular or delimited
case-insensitive identifier. See “Case-Insensitive Delimited Identifiers” (page 221). role-name

cannot be an existing role name, and it cannot be a registered database username. However,
role-name can be a configured directory-service username.

WITH ADMIN grantor

specifies a role owner other than the current user. This is an optional clause.
grantor

specifies a registered database username to whom you assign the role owner.

Considerations for CREATE ROLE

o To create a role, you must either be DB__ROOT or have been granted the MANAGE_ROLES
component privilege for SQL_OPERATIONS.

e PUBLIC, _SYSTEM, NONE, and database usernames beginning with DB__ are reserved. You
cannot specify a role-name with any such name.

Role Ownership

You can give role ownership to a user by specifying the user in the WITH ADMIN grantor clause
with the grantor as the user.

The role owner can perform these operations:
e Grant and revoke the role fo users.
e Drop the role.

Role ownership is permanent. After you create the role, the ownership of the role cannot be changed
or assigned to another user.

Examples of CREATE ROLE

e To create a role and assign the current user as the role owner:
CREATE ROLE clerks;

e To create a role and assign another user as the role owner:
CREATE ROLE sales WITH ADMIN cmiller;

66 SQL Statements

CREATE SCHEMA Statement

e “Syntax Description of CREATE SCHEMA”

e “Considerations for CREATE SCHEMA"

e “Examples of CREATE SCHEMA”

The CREATE SCHEMA statement creates a schema in the database. See “Schemas” (page 249).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when

AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)
for the session.

CREATE [schema-class] SCHEMA schema-clause

schema-class is:
[PRIVATE | SHARED]

schema-clause is:
{ schema-name [AUTHORIZATION authid] | AUTHORIZATION authid }

Syntax Description of CREATE SCHEMA

schema-class
indicates whether access to the schema is restricted to the authorization ID by default (PRIVATE)
or whether any database user may add objects to the schema (SHARED). The default class is
PRIVATE.

NOTE: Schemas created in Trafodion Release 0.9 or earlier are SHARED schemas.

schema-name

is a name for the new schema and is an SQL identifier that specifies a unique name that is not
currently a schema name. This parameter is optional. However, if you do not specify a schema
name, you must specify the authorization clause. If a schema name is not provided, the
authorization ID is used for the schema name. If the authorization ID name matches an existing
schema, the CREATE SCHEMA command fails.

authid

is the name of the database user or role will own and administer the schema. If this clause is
not present, the current user becomes the schema owner.

Considerations for CREATE SCHEMA

Reserved Schema Names

Schema names that begin with a leading underscore (_) are reserved for future use.

AUTHORIZATION Clause

The AUTHORIZATION clause is optional. If you omit this clause, the current user becomes the
schema owner.

NOTE: An authorization ID is assigned to a schema name even if authorization is not enabled
for the Trafodion database. However, no enforcement occurs unless authorization is enabled.

CREATE SCHEMA Statement 67

The schema owner can perform operations on the schema and on objects within the schema. For
example:

e Alter DDL of objects

e Drop the schema

e Drop objects

e Manage objects with utility commands such as UPDATE STATISTICS and PURGEDATA

Who Can Create a Schema

The privilege to create a schema is controlled by the component privilege CREATE_SCHEMA for
the SQL_OPERATIONS component. By default, this privilege is granted to PUBLIC, but it can be
revoked by DB__ROOT.

When authorization is initialized, these authorization IDs are granted the CREATE_SCHEMA
privilege:

e PUBLC

e DB__ROOT

e« DB__ROOTROLE

DB__ROQIT or anyone granted the DB_ROOTROLE role can grant the CREATE_SCHEMA privilege.

Examples of CREATE SCHEMA

68

e This example creates a private schema schema named MYSCHEMA, which will be owned
by the current user:

CREATE SCHEMA myschema;

o This example creates a shared schema and designates C11££G as the schema owner:
CREATE SHARED SCHEMA hockey league AUTHORIZATION "CliffG";

o This example creates a private schema and designates the role DBA as the schema owner:
CREATE PRIVATE SCHEMA contracts AUTHORIZATION DBA;

Users with the role DBA granted to them can grant access to objects in the CONTRACTS
schema to other users and roles.

e This example creates a schema named JSMITH:

CREATE PRIVATE SCHEMA AUTHORIZATION JSmith;

SQL Statements

CREATE TABLE Statement

e “Syntax Description of CREATE TABLE”
e “Considerations for CREATE TABLE”
e “Examples of CREATE TABLE”

The CREATE TABLE statement creates a Trafodion SQL table, which is a mapping of a relational
SQL table to an HBase table. The CREATE VOLATILE TABLE statement creates a temporary Trafodion
SQL table that exists only during an SQL session. The CREATE TABLE AS statement creates a table
based on the data attributes of a SELECT query and populates the table using the data returned
by the SELECT query. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE [VOLATILE] TABLE IF NOT EXISTS table
{ table-spec | like-spec }
[SALT USING num PARTITIONS [ON (column[, column]...)]l]
[STORE BY {PRIMARY KEY | (key-column-list)}]
[HBASE OPTIONS (hbase-options-1list)]
[LOAD IF EXISTS | NO LOAD]
[AS select-query]

table-spec is:
(table-element |[,table-element]...)

table-element is:
column-definition
| [CONSTRAINT constraint-name] table-constraint

column-definition is:
column data-type
[DEFAULT default | NO DEFAULT]
[[CONSTRAINT constraint-name]l column-constraint]...

data-type is:

CHAR [ACTER] [(length [CHARACTERS])]
[CHARACTER SET char-set-name]
[UPSHIFT] [[NOT]CASESPECIFIC]

| CHAR [ACTER] VARYING (length [CHARACTERS])
[CHARACTER SET char-set-name]

[UPSHIFT] [[NOT]CASESPECIFIC]
| VARCHAR (length) [CHARACTER SET char-set-name]
[UPSHIFT] [[NOT]CASESPECIFIC]
NCHAR (length) [CHARACTERS] [UPSHIFT] [[NOT]CASESPECIFIC]
NCHAR VARYING (length [CHARACTERS]) [UPSHIFT] [[NOT] CASESPECIFIC]

NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
SMALLINT [SIGNED |UNSIGNED]
INT [EGER] [SIGNED|UNSIGNED]

LARGEINT

DEC[IMAL] [(precision [,scale]l)] [SIGNED|UNSIGNED]
FLOAT [(precision)]

REAL

DOUBLE PRECISION

DATE

TIME [(time-precision)]

TIMESTAMP [(timestamp-precision)]
INTERVAL { start-field TO end-field | single-field }

CREATE TABLE Statement 69

default is:

literal

NULL

CURRENT_DATE
CURRENT_TIME
CURRENT TIMESTAMP

column-constraint is:

NOT NULL

UNIQUE

PRIMARY KEY [ASC[ENDING] | DESC [ENDING]]
CHECK (condition)

REFERENCES ref-spec

table-constraint is:

UNIQUE (column-1list)

PRIMARY KEY (key-column-1ist)

CHECK (condition)

FOREIGN KEY (column-list) REFERENCES ref-spec

ref-spec is:
referenced-table [(column-list)]

column-list is:
column-name [,column-name]. ..

key-column-list is:
column-name [ASC[ENDING] | DESC[ENDING]]
[, column-name [ASC[ENDING] | DESC[ENDING]]] ...

like-spec is:
LIKE source-table [include-option]

hbase-options-list is:
hbase-option = 'value'[, hbase-option = 'value'l...

Syntax Description of CREATE TABLE

VOLATILE

specifies a volatile table, which is a table limited to the session that creates the table. After the
session ends, the table is automatically dropped. See “Considerations for CREATE VOLATILE
TABLE” (page 75).

IF NOT EXISTS

creates an HBase table if it does not already exist when the table is created. This option does
not apply to volatile tables.

table
specifies the ANSI logical name of the table. See “Database Object Names” (page 198). This
name must be unique among names of tables and views within its schema.

SALT USING num PARTITIONS [ON (column|, column]...)]
pre-splits the table into multiple regions when the table is created. Salting adds a hash value
of the row key as a key prefix, thus avoiding hot spots for sequential keys. The number of
partitions that you specify can be a function of the number of region servers present in the
HBase cluster. You can specify a number from 2 to 1024. If you do not specify columns, the
default is to use all primary key columns.

STORE BY { PRIMARY KEY | (key-column-1ist)}

specifies a set of columns on which to base the clustering key. The clustering key determines
the order of rows within the physical file that holds the table. The storage order has an effect
on how you can partition the object.

PRIMARY KEY
bases the clustering key on the primary key columns.

70 SQL Statements

key-column-1ist
bases the clustering key on the columns in the key-column-1ist. The key columns in
key-column-1ist must be specified as NOT NULL and must be the same as the primary
key columns that are defined on the table. If STORE BY is not specified, then the clustering
key is the PRIMARY KEY.

HBASE_OPTIONS (hbase-option = 'value'[, hbase-option = 'value'l...)

a list of HBase options to set for the table.

hbase-option = 'value'
is one of the these HBase options and its assigned value:

HBase Option Accepted Values'

BLOCKCACHE 'true' | 'false’

BLOCKSIZE '65536' | 'positive-integer'
BLOOMFILTER 'NONE' | '/ROW' | 'ROWCOL'

CACHE_BLOOMS_ON_WRITE

'true' | 'false’

CACHE_DATA_ON_WRITE

'true' | 'false’

CACHE_INDEXES_ON_WRITE

'true' | 'false’

COMPACT

'true' | 'false’

COMPACT_COMPRESSION

'GZ' | 'LZ4' | 'LZO' | 'NONE' | 'SNAPPY'

COMPRESSION

'GZ' | 'lZ4' | 'LZO' | 'NONE' | 'SNAPPY'

DATA_BLOCK_ENCODING

'DIFF' | 'FAST_DIFF' | 'NONE' | 'PREFIX'

DURABILITY

'USE_DEFAULT' | 'SKIP_WAL' | 'ASYNC_WAL' | 'SYNC_WAL' |
'FSYNC_WAL'

EVICT_BLOCKS_ON_CIOSE

'true' | 'false’

IN_MEMORY

'true' | 'false’

KEEP_DELETED_CELLS

'true' | 'false’

MAX_FILESIZE

I . . . I
positive-integer

MAX_VERSIONS

"' | 'positive-integer'

MEMSTORE_FLUSH_SIZE

I . . . I
positive-integer

MIN_VERSIONS

'0' | 'positive-integer

PREFIX_LENGTH_KEY

'positive-integer', which should be less than maximum length
of the key for the table. It applies only if the SPLIT_POLICY is
KeyPrefixRegionSplitPolicy.

REPLICATION_SCOPE

|o| I |'||

SPLIT_POLICY 'org.apache.hadoop.hbase.regionserver.ConstantSizeRegionSplitPolicy'
|
'org.apache.hadoop.hbase.regionserver.Inareasing ToUpperBoundRegionSplitPolicy'
| 'org.apache.hadoop.hbase.regionserver.KeyPrefixRegionSplitPolicy'
TTL '-1' (forever) | 'positive-integer'

! Values in boldface are default values.

LOAD IF EXISTS

loads data into an existing table. Must be used with AS select-query. See “Considerations
for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS” (page 78).

CREATE TABLE Statement 71

72

NO LOAD
creates a table with the CREATE TABLE AS statement, but does not load data into the table.
See “Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS”
(page 78).

AS select-query
specifies a select query which is used to populate the created table. A select query can be any
SQL select statement.

column data-type

specifies the name and data type for a column in the table. At least one column definition is
required in a CREATE TABLE statement.

column is an SQL identifier. column must be unique among column names in the table. If the
name is a Trafodion SQL reserved word, you must delimit it by enclosing it in double quotes.
Such delimited parts are case-sensitive. For example: "join™.

data-type is the data type of the values that can be stored in column. A default value must
be of the same type as the column, including the character set for a character column. See
“Data Types” (page 199). Data type also includes case specific information, such as UPSHIFT.

[NOT] CASESPECIFIC
specifies that the column contains strings that are not case specific. The default is
CASESPECIFIC. Comparison between two values is done in a case insensitive way only if

both are case insensitive. This applies to comparison in a binary predicate, LIKE predicate,
and POSITION/REPLACE string function searches. See “Examples of CREATE TABLE” (page 79).

DEFAULT default | NO DEFAULT

specifies a default value for the column or specifies that the column does not have a default
value. “DEFAULT Clause” (page 257).

CONSTRAINT constraint-name

specifies a name for the column or table constraint. constraint-name must have the same
schema as table and must be unique among constraint names in its schema. If you omit the
schema portions of the name you specify in constraint-name, Trafodion SQL expands the
constraint name by using the schema for table. See “Constraint Names” (page 195) and
“Database Object Names” (page 198).

NOT NULL
is a column constraint that specifies that the column cannot contain nulls. If you omit NOT NULL,
nulls are allowed in the column. If you specify both NOT NULL and NO DEFAULT, each row
inserted in the table must include a value for the column. See “Null” (page 231).

UNIQUE, or, UNIQUE (column-1ist)

is a column or table constraint, respectively, that specifies that the column or set of columns
cannot contain more than one occurrence of the same value or set of values. If you omit

UNIQUE, duplicate values are allowed unless the column is part of the PRIMARY KEY.

column-1ist cannot include more than one occurrence of the same column. In addition, the
set of columns that you specity on a UNIQUE constraint cannot match the set of columns on
any other UNIQUE constraint for the table or on the PRIMARY KEY constraint for the table. All
columns defined as unique must be specified as NOT NULL.

A UNIQUE constraint is enforced with a unique index. If there is already a unique index on
column-1ist, Trafodion SQL uses that index. If a unique index does not exist, the system
creates a unique index.

PRIMARY KEY [ASC[ENDING] | DESC[ENDING]], or, PRIMARY KEY (key-column-1ist)
is a column or table constraint, respectively, that specifies a column or set of columns as the
primary key for the table. key-column-1ist cannot include more than one occurrence of
the same column.

SQL Statements

ASCENDING and DESCENDING specify the direction for entries in one column within the
key. The default is ASCENDING.

The PRIMARY KEY value in each row of the table must be unique within the table. A PRIMARY
KEY defined for a set of columns implies that the column values are unique and not null. You
can specify PRIMARY KEY only once on any CREATE TABLE statement.

Trafodion SQL uses the primary key as the clustering key of the table to avoid creating a
separate, unique index to implement the primary key constraint.

A PRIMARY KEY constraint is required in Trafodion SQL.

CHECK (condition)
is a constraint that specifies a condition that must be satistied for each row in the table. See
“Search Condition” (page 250).

You cannot refer to the CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP function
in a CHECK constraint, and you cannot use subqueries in a CHECK constraint.
REFERENCES ref-spec

specifies a REFERENCES column constraint. The maximum combined length of the columns for

a REFERENCES constraint is 2048 bytes.

ref-spec is:
referenced-table [([column-1ist)]
referenced-table is the table referenced by the foreign key in a referential constraint.
referenced-table cannot be a view. referenced-table cannot be the same as
table. referenced-table corresponds to the foreign key in the table.
column-1ist specifies the column or set of columns in the referenced-table that

corresponds to the foreign key in table. The columns in the column list associated with
REFERENCES must be in the same order as the columns in the column list associated with

FOREIGN KEY. If column-1ist is omitted, the referenced table's PRIMARY KEY columns

are the referenced columns.

A table can have an unlimited number of referential constraints, and you can specity the
same foreign key in more than one referential constraint, but you must define each referential
constraint separately. You cannot create self-referencing foreign key constraints.

FOREIGN KEY (column-1ist) REFERENCES ref-spec

is a table constraint that specifies a referential constraint for the table, declaring that a column
or set of columns (called a foreign key) in table can contain only values that match those in
a column or set of columns in the table specified in the REFERENCES clause.

The two columns or sets of columns must have the same characteristics (data type, length, scale,
precision). Without the FOREIGN KEY clause, the foreign key in table is the column being
defined; with the FOREIGN KEY clause, the foreign key is the column or set of columns specified
in the FOREIGN KEY clause. For information about ref-spec, see REFERENCES ref-spec.
LIKE source-table [include-option]...
directs Trafodion SQL to create a table like the existing table, source-table, omitting
constraints (with the exception of the NOT NULL and PRIMARY KEY constraints) and partitions
unless the include-option clauses are specified.
source-table
is the ANSI logical name for the existing table and must be unique among names of tables
and views within its schema.
include-option
WITH CONSTRAINTS

directs Trafodion SQL to use constraints from source-table. Constraint names for
table are randomly generated unique names.

CREATE TABLE Statement 73

When you perform a CREATE TABLE LIKE, whether or not you include the WITH
CONSTRAINTS clause, the target table will have all the NOT NULL column constraints
that exist for the source table with different constraint names.

WITH PARTITIONS

directs Trafodion SQL to use partition definitions from source-table. Each new table
partition resides on the same volume as its original source-table counterpart. The
new fable partitions do not inherit partition names from the original table. Instead,
Trafodion SQL generates new names based on the physical file location.

If you specity the LIKE clause and the SALT USING num PARITIONS clause, you cannot
specify WITH PARTITIONS.

Considerations for CREATE TABLE

The following subsections provide considerations for various CREATE TABLE options:

“Authorization and Availability Requirements” (page 74)

“Considerations for CREATE VOLATILE TABLE” (page 75)

“Considerations for CREATE TABLE ... LIKE” (page 77)

“Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS” (page 78)
“Considerations for CREATE TABLE AS” (page 78)

Authorization and Availability Requirements

Required Privileges

To issue a CREATE TABLE statement, one of the following must be true:

You are DB__ROOT.
You are creating the table in a shared schema.

You are the private schema owner.
You have the CREATE or CREATE_TABLE component privilege for the SQL_OPERATIONS

component.

NOTE: In this case, if you create a table in a private schema, it will be owned by the schema
owner.

Privileges Needed to Create a Referential Integrity Constraint

74

To create a referential integrity constraint (that is, a constraint on the table that refers to a column
in another table), one of the following must be true:

You are DB__ROOT.
You are the owner of the referencing and referenced tables.

You have these privileges on the referencing and referenced table:

o For the referencing table, you have the CREATE or CREATE_TABLE component privilege
for the SQL_OPERATIONS component.

o For the referenced table, you have the REFERENCES (or ALL) privilege on the referenced
table through your username or through a granted role.

If the constraint refers to the other table in a query expression, you must also have SELECT privileges
on the other table.

SQL Statements

Considerations for CREATE VOLATILE TABLE

Volatile temporary tables are closely linked to the session. Their namespace is unique across
multiple concurrent sessions, and therefore allow multiple sessions to use the same volatile
temporary table names simultaneously without any conflicts.

Volatile tables support creation of indexes.

Volatile tables are partitioned by the system. The number of partitions is limited to four partitions
by default. The partitions will be distributed across the cluster. The default value is four partitions
regardless of the system configuration.

Statistics are not automatically updated for volatile tables. If you need statistics, you must
explicitly run UPDATE STATISTICS.

Volatile tables can be created and accessed using one-part, two-part, or three-part names.
However, you must use the same name (one part, two part, or three part) for any further DDL
or DML statements on the created volatile table. See “Examples of CREATE TABLE” (page 79).

Trafodion SQL allows users to explicitly specify primary key and STORE BY clauses on columns
that contain null values.

Trafodion SQL does not require that the first column in a volatile table contain not null values
and be the primary key. Instead, Trafodion SQL attempts to partition the table, if possible,
using an appropriate suitable key column as the primary and partitioning key. For more
information, see “How Trafodion SQL Selects Suitable Keys for Volatile Tables” (page 75).

Restrictions for CREATE VOLATILE TABLE

These items are not supported for volatile tables:

ALTER statement
User constraints
Creating views

Creating non-volatile indexes on a volatile table or a volatile index on a non-volatile table
CREATE TABLE LIKE operations

How Trafodion SQL Supports Nullable Keys for Volatile Tables

Allows nullable keys in primary key, STORE BY, and unique constraints.
A null value is treated as the highest value for that column.

A null value as equal to other null values and only one value is allowed for that column.

How Trafodion SQL Selects Suitable Keys for Volatile Tables

Trafodion SQL searches for the first suitable column in the list of columns of the table being created.
Once the column is located, the table is partitioned on it. The searched columns in the table might
be explicitly specified (as in a CREATE TABLE statement) or implicitly created (as in a CREATE
TABLE AS SELECT statement).

The suitable key column is selected only if no primary key or STORE BY clause has been specified
in the statement. If any of these clauses have been specified, they are used to select the key columns.

Trafodion SQL follows these guidelines to search for and select suitable keys:

A suitable column can be a nullable column.

Certain data types in Trafodion SQL cannot be used as a partitioning key. Currently, this
includes any floating point columns (REAL, DOUBLE PRECISION, and FLOAT).

CREATE TABLE Statement 75

e Trafodion SQL searches for a suitable column according to this predefined order:

° Numeric columns are chosen first, followed by fixed CHAR, DATETIME, INTERVAL, and
VARCHAR data types.

o Within numeric data types, the order is binary NUMERIC (LARGEINT, INTEGER,
SMALLINT), and DECIMAL.

° An unsigned column is given preference over a signed column.
° A non-nullable column is given preference over a nullable column.
o If all data types are the same, the first column is selected.
o If a suitable column is not located, the volatile table becomes a non-partitioned table with a

system-defined SYSKEY as its primary key.

o If a suitable column is located, it becomes the partitioning key where the primary key is
suitable column, SYSKEY. This causes the table to be partitioned while preventing the
duplicate key and nullto-non-null errors.

Table 1 shows the order of precedence, from low to high, of data types when Trafodion SQL
searches for a suitable key. A data type appearing later has precedence over previously-appearing
data types. Data types that do not appear in Table 1 cannot be chosen as a key column.

Table 1 Precedence of Data Types During Suitable Key Searches

Precedence of Data Types (From Low to High)
VARCHAR

INTERVAL

DATETIME

CHAR(ACTER)

DECIMAL (signed, unsigned)

SMALLINT (signed, unsigned)

INTEGER (signed, unsigned)

LARGEINT (signed only)

Creating Nullable Constraints in a Volatile Table

These examples show the creation of nullable constraints (primary key, STORE BY, and unique) in
a volatile table:
create volatile table t (a int, primary key(a));

create volatile table t (a int, store by primary key);
create volatile table t (a int unique);

Creating a Volatile Table With a Nullable Primary Key

76

This example creates a volatile table with a nullable primary key:

>>create volatile table t (a int, primary key(a));

--- SQL operation complete.
Only one unique null value is allowed:

>>insert into t values (null);

--- 1 row(s) inserted.
>>insert into t wvalues (null);

SQL Statements

*** ERROR[8102] The operation is prevented by a unique constraint.

--- 0 row(s) inserted.

Examples for Selecting Suitable Keys for Volatile Tables

These examples show the order by which Trafodion SQL selects a suitable key based on the
precedence rules described in “How Trafodion SQL Selects Suitable Keys for Volatile Tables”
(page 75):

e Selects column a as the primary and partitioning key:

create volatile table t (a int);

e Selects column b because int has a higher precedence than char:
create volatile table t (a char(10), b int);

o Selects column b because not null has precedence over nullable columns:

create volatile table t (a int, b int not null) ;

e Selects column b because int has precedence over decimal:

create volatile table t (a decimal(10), b int);

o Selects the first column, a, because both columns have the same data type:

create volatile table t (a int not null, b int not null) ;

o Selects column b because char has precedence over date:
create volatile table t (a date, b char(10)) ;

o Selects column b because the real data type is not part of the columns to be examined:

create volatile table t (a real, b date);

e Does not select any column as the primary/partitioning key. SYSKEY is used automatically.

create volatile table t (a real, b double precision not null);

Similar examples would be used for CREATE TABLE AS SELECT queries.
Considerations for CREATE TABLE ... LIKE

The CREATE TABLE LIKE statement does not create views, owner information, or privileges for the
new table based on the source table. Privileges associated with a new table created by using the
LIKE specification are defined as if the new table is created explicitly by the current user.

CREATE TABLE ... LIKE and File Attributes

CREATE TABLE ... LIKE creates a table like another table, with the exception of file attributes. File
attributes include COMPRESSION, and so on. If you do not include the attribute value as part of
the CREATE TABLE ... LIKE command, SQL creates the table with the default value for the attributes
and not the value from the source object. For example, to create a table like another table that
specifies compression, you must specify the compression attribute value as part of the CREATE
TABLE... LIKE statement. In the following example, the original CREATE TABLE statement creates a
table without compression. However, in the CREATE TABLE ... LIKE statement, compression is
specified.

-- Original Table
create table NPTEST
(FIRST_NAME CHAR (12) CHARACTER SET IS088591 COLLATE DEFAULT NO DEFAULT
NOT NULL
, LAST NAME CHAR (24) CHARACTER SET IS088591 COLLATE
DEFAULT NO DEFAULT NOT NULL
, ADDRESS CHAR (128) CHARACTER SET IS088591 COLLATE
DEFAULT DEFAULT NULL

CREATE TABLE Statement 77

, ZIP INT DEFAULT O

PHONE CHAR(10) CHARACTER SET IS088591 COLLATE

DEFAULT DEFAULT NULL , SSN LARGEINT NO DEFAULT NOT NULL

INFOl CHAR(128) CHARACTER SET IS088591 COLLATE

DEFAULT DEFAULT NULL , INFO2 CHAR(128) CHARACTER SET IS088591 COLLATE
DEFAULT DEFAULT NULL , primary key (SSN, first name,last name)

)

max table size 512

-- CREATE TABLE LIKE

create table LSCE002 like NPTEST ATTRIBUTE compression type hardware;

Considerations for CREATE TABLE AS
These considerations apply to CREATE TABLE AS:

Access to the table built by CREATE TABLE AS will be a full table scan because a primary and
clustering key cannot be easily defined.

Compile time estimates and runtime information is not generated for CREATE TABLE AS tables.
You cannot manage CREATE TABLE AS tables using WMS compile time or runtime rules.

You cannot specify a primary key for a CREATE TABLE AS table without explicitly defining all
the columns in the CREATE TABLE statement.

You cannot generate an explain plan for a CREATE TABLE AS ...INSERT/SELECT statement.
You can, however, use the EXPLAIN plan for a CREATE TABLE AS ... INSERT/SELECT statement
if you use the NO LOAD option.

You cannot use the ORDER BY clause in a CREATE TABLE AS statement. The compiler
transparently orders the selected rows to improve the efficiency of the insert.

Considerations for LOAD IF EXISTS and NO LOAD options of CREATE TABLE AS

The LOAD IF EXISTS option in a CREATE TABLE AS statement causes data to be loaded into an
existing table. If you do not specify the LOAD IF EXISTS option and try to load data into an existing
table, the CREATE TABLE AS statement fails to execute. Use the LOAD IF EXISTS option with the
AS clause in these scenarios:

78

Running CREATE TABLE AS without re-creating the table. The table must be empty. Otherwise,
the CREATE TABLE AS statement returns an error. Delete the data in the table by using a
DELETE statement before issuing the CREATE TABLE AS statement.

Using CREATE TABLE AS to incrementally add data to an existing table. You must start a
user-defined transaction before issuing the CREATE TABLE AS statement. If you try to execute
the CREATE TABLE AS statement without starting a user-defined transaction, an error is returned,
stating that data already exists in the table. With a user-defined transaction, newly added
rows are rolled back if an error occurs.

The NO LOAD option in a CREATE TABLE AS statement creates a table with the CREATE TABLE
AS statement, but does not load data into the table. The option is useful if you must create a table
to review its structure and to analyze the SELECT part of the CREATE TABLE AS statement with the
EXPLAIN statement. You can also use EXPLAIN to analyze the implicated INSERT/SELECT part of
the CREATE TABLE AS ... NO LOAD statement. For example:

CREATE TABLE ttgt NO LOAD AS (SELECT ...);

Trafodion SQL Extensions to CREATE TABLE

This statement is supported for compliance with ANSI SQL:1999 Entry Level. Trafodion SQL
extensions to the CREATE TABLE statement are ASCENDING, DESCENDING, and PARTITION
clauses. CREATE TABLE LIKE is also an extension.

SQL Statements

Examples of CREATE TABLE

This example creates a table. The clustering key is the primary key.
CREATE TABLE SALES.ODETAIL

(ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
unit price NUMERIC (8,2) NO DEFAULT NOT NULL,

gty ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
PRIMARY KEY (ordernum, partnum)) ;
This example creates a table like the JOB table with the same constraints:
CREATE TABLE PERSNL.JOB CORPORATE
LIKE PERSNL.JOB WITH CONSTRAINTS;
This is an example of NOT CASESPECIFIC usage:
CREATE TABLE T (a char(10) NOT CASESPECIFIC, b char(10));
INSERT INTO T values ('a', 'A');

A row is not returned in this example. Constant ‘A’ is case sensitive, whereas column ‘a’ is
insensitive.

SELECT * FROM T WHERE a = 'A';

The row is returned in this example. Both sides are case sensitive.
SELECT * FROM T WHERE a = 'A' (not casespecific);

The row is returned in this example. A case sensitive comparison is done because column ‘b’
is case sensitive.

SELECT * FROM T WHERE b = 'A';

The row is returned in this example. A case sensitive comparison is done because column ‘b’
is case sensitive.

SELECT * FROM T WHERE b = 'A' (not casespecific);

Examples of CREATE TABLE AS

This section shows the column attribute rules used to generate and specify the column names and
data types of the table being created.

It column-attributes are not specified, the select list items of the select-query are used
to generate the column names and data attributes of the created table. If the select list item is
a column, then it is used as the name of the created column. For example:

create table t as select a,b from tl

Table t has 2 columns named (a,b) and the same data attributes as columns from table t1.

If the select list item is an expression, it must be renamed with an AS clause. An error is returned
if expressions are not named. For example:

create table t as select a+l as ¢ from tl

Table t has 1 column named (c) and data attribute of (a+1)

create table t as select a+l from tl

An error is returned, expression must be renamed.

If column-attributes are specified and contains datatype-info, then they override
the attributes of the select items in the select query. These data attributes must be compatible
with the corresponding data attributes of the select list items in the select-query.

create table t(a int) as select b from tl
Table t has one column named “a” with data type “int".

create table t(a char(10)) as select a+l b from tl;

CREATE TABLE Statement 79

80

u_n

An error is returned because the data attribute of column “a”, a char, does not match the data
attribute of the select list item “b” a numeric.

If column-attributes are specified and they only contain column-name, then the specified
column-name override any name that was derived from the select query.

create table t(c,d) as select a,b from tl

Table t has 2 columns, ¢ and d, which has the data attributes of columns a and b from table
t1.

If column-attributes are specified, then they must contain attributes corresponding to all
select list items in the select-query. An error is returned, if a mismatch exists.

create table t(a int) as select b,c from tl

An error is returned. Two items need to be specified as part of the table-attributes.

The column-attributes must specify either the column-name datatype-info pair or
just the column-name for all columns. You cannot specify some columns with just the name
and others with name and data type.

create table t(a int, b) as select c¢,d from tl

An error is returned.

In the following example, table t1 is created. Table t2 is created using the CREATE TABLE AS
syntax without table attributes:

CREATE TABLE tl (cl int not null primary key,
c2 char(50)) ;

CREATE TABLE t2 (cl int, c2 char (50) UPSHIFT NOT NULL)
AS SELECT * FROM t1;

SQL Statements

CREATE VIEW Statement

e “Syntax Description of CREATE VIEW”

e “Considerations for CREATE VIEW”

e “Examples of CREATE VIEW”

The CREATE VIEW statement creates a Trafodion SQL view. See “Views” (page 255).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

CREATE [OR REPLACE] VIEW view
[(column-name] [,column-name ...)]
AS query-expr [order-by-clausel
[WITH CHECK OPTION]

Syntax Description of CREATE VIEW
OR REPLACE

creates a view if one does not exist or replaces a view if a view of the same name exists. The
view being replaced might have the same view definition or a different view definition.

view
specifies the ANSI logical name of the view. See “Database Object Names” (page 198). This
name must be unique among names of tables and views within its schema.

(column-name [,column-name]...)

specifies names for the columns of the view. Column names in the list must match one-for-one
with columns in the table specified by query-expr.

If you omit this clause, columns in the view have the same names as the corresponding columns
in query-expr. You must specify this clause if any two columns in the table specified by
query-expr have the same name or if any column of that table does not have a name. For
example, this query expression SELECT MAX (salary), AVG(salary) AS

average salary FROM employee the first column does not have a name.

No two columns of the view can have the same name; if a view refers to more than one table
and the select list refers to columns from different tables with the same name, you must specify
new names for columns that would otherwise have duplicate names.

AS query-expr
specifies the columns for the view and sets the selection criteria that determines the rows that
make up the view. For information about character string literals, see “Character String Literals”
(page 224). For the syntax and syntax description of query-expr, see “SELECT Statement”
(page 138). The CREATE VIEW statement provides this restriction with regard to the query-expr
syntax: [ANY N], [FIRST N] select list items are not allowed in a view.
order-by-clause
specifies the order in which to sort the rows of the final result table. For the syntax and syntax
description of the order-by-clause, see “SELECT Statement” (page 138). The CREATE VIEW
statement restricts the order-by-clause with regard to the access-clause and
mode -clause. The access-mode and mode -clause cannot follow the order-by-clause.

WITH CHECK OPTION

specifies that no row can be inserted or updated in the database through the view unless the
row satisfies the view definition—that is, the search condition in the WHERE clause of the query

CREATE VIEW Statement 81

expression must evaluate to true for any row that is inserted or updated. This option is only
allowed for updatable views.

It you omit this option, a newly inserted row or an updated row need not satisfy the view
definition, which means that such a row can be inserted or updated in the table but does not
appear in the view. This check is performed each time a row is inserted or updated.

WITH CHECK OPTION does not affect the query expression; rows must always satisfy the view
definition.

Considerations for CREATE VIEW

e If you specify CREATE OR REPLACE VIEW:

° A new view is created if a view of the same name does not exist.

° If a view of same name exists, the old view definition is dropped, and a view with a new
definition is created. No check will be done to see if the new view is identical to the view
it is replacing. The CREATE OR REPLACE VIEW command will unilaterally drop the old

view definition and replace it with the new view definition.

o The privileges granted on the old view will be re-granted on the new view. If the re-grant
of privileges fails, the CREATE OR REPLACE VIEW operation fails.

o When CREATE OR REPLACE VIEW replaces an existing view, any dependent views will
be dropped.

e You can specify GROUP BY using ordinals to refer to the relative position within the SELECT
list. For example, GROUP BY 3, 2, 1.

e Dynamic parameters are not allowed.

Effect of Adding a Column on View Definitions

The addition of a column to a table has no effect on any existing view definitions or conditions
included in constraint definitions. Any implicit column references specified by SELECT * in view or
constraint definitions are replaced by explicit column references when the definition clauses are
originally evaluated.

Authorization and Availability Requirements

82

To issue a CREATE VIEW statement, you must have SELECT privileges on the objects underlying
the view or be the owner of the objects underlying the view, and one of the following must be true:

e Youare DB_ ROQOT.
* You are creating the view in a shared schema.

e You are the private schema owner.

e You have the CREATE or CREATE_VIEW component privilege for the SQL_OPERATIONS
component.

NOTE: In this case, if you create a view in a private schema, it will be owned by the schema
owner.

When you create a view on a single table, the owner of the view is automatically given all privileges
WITH GRANT OPTION on the view. However, when you create a view that spans multiple tables,
the owner of the view is given only SELECT privileges WITH GRANT OPTION. If you try to grant
privileges to another user on the view other than SELECT, you will receive a warning that you lack
the grant option for that privilege.

SQL Statements

Updatable and Non-Updatable Views
Single table views can be updatable. Multi-table views cannot be updatable.
To define an updatable view, a query expression must also meet these requirements:
e |t cannot contain a JOIN, UNION, or EXCEPT clause.
e It cannot contain a GROUP BY or HAVING clause.
e It cannot directly contain the keyword DISTINCT.
o The FROM clause must refer to exactly one table or one updatable view.
e It cannot contain a WHERE clause that contains a subquery.

o The select list cannot include expressions or functions or duplicate column names.

ORDER BY Clause Guidelines

The ORDER BY clause can be specified in the SELECT portion of a CREATE VIEW definition. Any
SELECT syntax that is valid when the SELECT portion is specified on its own is also valid during
the view definition. An ORDER BY clause can contain either the column name from the SELECT list
or from select-1ist-index.

When a DML statement is issued against the view, the rules documented in the following sections

are used to apply the ORDER BY clause.
When to Use ORDER BY

An ORDER BY clause is used in a view definition only when the clause is under the root of the
Select query that uses that view. If the ORDER BY clause appears in other intermediate locations
or in a subquery, it is ignored.

Consider this CREATE VIEW statement:

create view v as select a from t order by a;
select * from v x, v y;

Or this INSERT statement:
insert into tl select * from v;

In these two examples, the ORDER BY clause is ignored during DML processing because the first
appears as part of a derived table and the second as a subquery selects, both created after the
view expansion.

If the same query is issued using explicit derived tables instead of a view, a syntax error is returned:
select * from (select a from t order by a) x, (select a from t order by a) vy;
This example returns a syntax error because an ORDER BY clause is not supported in a subquery.

The ORDER BY clause is ignored if it is part of a view and used in places where it is not supported.
This is different than returning an error when the same query was written with explicit ORDER BY
clause, as is shown in the preceding examples.

ORDER BY in a View Definition With No Override

If the SELECT query reads from the view with no explicit ORDER BY override, the ORDER BY
semantics of the view definition are used.

In this example, the ordering column is the one specified in the CREATE VIEW statement:

create view v as select * from t order by a
Select * from v

The SELECT query becomes equivalent to:

select * from t order by a;

CREATE VIEW Statement 83

ORDER BY in a View Definition With User Override
It a SELECT query contains an explicit ORDER BY clause, it overrides the ORDER BY clause specified

in the view definition.
For example:

create view v as select a,b from t order by a;
select * from v order by b;

In this example, order by b overrides the order by a specified in the view definition.

The SELECT query becomes equivalent to:
select a,b from t order by b;

Nested View Definitions

In case of nested view definitions, the ORDER BY clause in the topmost view definition overrides
the ORDER BY clause of any nested view definitions.

For example:

create view vl as select a,b from tl order by a;
create view v2 as select a,b from vl order by b;
select * from v2;

In this example, the ORDER BY specified in the definition of view v2 overrides the ORDER BY
specified in the definition of view v1.

The SELECT query becomes equivalent to:

select a,b from (select a, b from t) x order by b;

Examples of CREATE VIEW

o This example creates a view on a single table without a view column list:

CREATE VIEW SALES.MYVIEW1l AS
SELECT ordernum, gty ordered FROM SALES.ODETAIL;

o This example replaces the view, MYVIEW 1, with a different view definition:

CREATE OR REPLACE VIEW SALES.MYVIEW1l AS
SELECT ordernum, gty ordered FROM SALES.ODETAIL
WHERE unit price > 100;

e This example creates a view with a column list:

CREATE VIEW SALES.MYVIEW2
(v_ordernum, t partnum) AS
SELECT v.ordernum, t.partnum
FROM SALES.MYVIEW1l v, SALES.ODETAIL t;

o This example creates a view from two tables by using an INNER JOIN:

CREATE VIEW MYVIEW4
(v_ordernum, v_partnum) AS
SELECT od.ordernum, p.partnum
FROM SALES.ODETAIL OD INNER JOIN SALES.PARTS P
ON od.partnum = p.partnum;

Vertical Partition Example

84

This example creates three logical vertical partitions for a table, vpo, vp1, and vp2 and then
creates a view vp to access them.

A view can be used to obtain a composite representation of a set of closely related tables. In the
following example tables vpo, vp1 and vp2 all have a key column a. This key column is known
to contain identical rows for all three tables. The three tables vpo0, vp1 and vp2 also contain
columns b, c and d respectively. We can create a view vp that combines these three tables and
provides the interface of columns a, b, ¢ and d belonging to a single object.

SQL Statements

Trafodion SQL has the ability to eliminate redundant joins in a query. Redundant joins occur when:
e Output of join contains expressions from only one of its two children
e Every row from this child will match one and only one row from the other child

Suppose tables A and B denote generic tables. To check if the rule “every row from this child will
match one and only one row from the other child” is true, Trafodion SQL uses the fact that the join
of Table A with table or subquery B preserves all the rows of A if the join predicate contains an
equi-join predicate that references a key of B, and one of the following is true: The join is a left
outer join where B is the inner table. In this example, for the join between vpo and vp1, vpo fills
the role of table A and vp1 fills the role of table B. For the join between vp1 and vp2, vp1 fills
the role of table A and vp2 fills the role of table B.

The view vp shown in this example uses left outer joins to combine the three underlying tables.
Therefore, if the select list in a query that accesses vp does not contain column d from vp2 then
the join to table vp2 in the view vp will not be performed.

create table vpO(a integer not null, b integer, primary key(a));
create table vpl(a integer not null, c¢ integer, primary key(a));
create table vp2(a integer not null, d integer, primary key(a));

create view vp(a,b,c,d) as

select vp0.a, b, ¢, d

from vp0 left outer join vpl on vpO.a=vpl.a
left outer join vp2 on vp0.a=vp2.a;

select a, b from vp; -- reads only vpO
select a, c¢ from vp; -- reads vpO and vpl
select d from vp; -- reads vpO0 and vp2

CREATE VIEW Statement 85

DELETE Statement

e “Syntax Description of DELETE”
e “Considerations for DELETE”

e “Examples of DELETE”

The DELETE statement is a DML statement that deletes a row or rows from a table or an updatable
view. Deleting rows from a view deletes the rows from the table on which the view is based. DELETE
does not remove a table or view, even if you delete the last row in the table or view.

Trafodion SQL provides searched DELETE—deletes rows whose selection depends on a search
condition.

For the searched DELETE form, if no WHERE clause exists, all rows are deleted from the table or
view.

Searched DELETE is:

DELETE FROM table

[WHERE search-condition]
[[FOR] access-option ACCESS]

access-option is:
READ COMMITTED

Syntax Description of DELETE

table
names the user table or view from which to delete rows. table must be a base table or an
updatable view. To refer to a table or view, use the ANSI logical name.

See “Database Object Names” (page 198).

WHERE search-condition
specifies a search condition that selects rows to delete. Within the search condition, any columns
being compared are columns in the table or view being deleted from. See “Search Condition”
(page 250).
It you do not specify a search condition, all rows in the table or view are deleted.

[FOR] access-option ACCESS

specifies the access option required for data used to evaluate the search condition. See “Data
Consistency and Access Options” (page 25).

READ COMMITTED
specifies that any data used to evaluate the search condition must come from committed
rows.

The default access option is the isolation level of the containing transaction.

Considerations for DELETE

Authorization Requirements

DELETE requires authority to read and write to the table or view being deleted from and authority
to read tables or views specified in subqueries used in the search condition.

Transaction Initiation and Termination

The DELETE statement automatically initiates a transaction if no transaction is active. Otherwise,
you can explicitly initiate a transaction with the BEGIN WORK statement. When a transaction is

86 SQL Statements

started, the SQIL statements execute within that transaction until a COMMIT or ROLLBACK is
encountered or an error occurs.

Isolation Levels of Transactions and Access Options of Statements

The isolation level of an SQL transaction defines the degree to which the operations on data within
that transaction are affected by operations of concurrent transactions. When you specify access
options for the DML statements within a transaction, you override the isolation level of the containing
transaction. Each statement then executes with its individual access option.

Examples of DELETE

Remove all rows from the JOB table:
DELETE FROM persnl.job;

--- 10 row(s) deleted.

Remove from the table ORDERS any orders placed with sales representative 220 by any
customer except customer number 1234:

DELETE FROM sales.orders
WHERE salesrep = 220 AND custnum <> 1234;

--- 2 row(s) deleted.

Remove all suppliers not in Texas from the table PARTSUPP:

DELETE FROM invent.partsupp

WHERE suppnum IN
(SELECT suppnum FROM samdbcat.invent.supplier
WHERE state <> 'TEXAS');

--- 41 row(s) deleted.

This statement achieves the same result:

DELETE FROM invent.partsupp

WHERE suppnum NOT IN
(SELECT suppnum FROM samdbcat.invent.supplier
WHERE state = 'TEXAS');

--- 41 row(s) deleted.

This is an example of a self-referencing DELETE statement, where the table from which rows
are deleted is scanned in a subquery:

delete from tablel where a in
(select a from tablel where b > 200)

DELETE Statement 87

DROP FUNCTION Statement

e “Syntax Description of DROP FUNCTION"

e “Considerations for DROP FUNCTION"

e “Examples of DROP FUNCTION"

The DROP FUNCTION statement removes a user-defined function (UDF) from the Trafodion database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP FUNCTION [[catalog-name.]schema-name.] function-name

Syntax Description of DROP FUNCTION

[[catalog-name.]schema-name.]function-name

specifies the ANSI logical name of the function, where each part of the name is a valid SQL
identifier with a maximum of 128 characters. Specify the name of a function that has already
been registered in the schema. If you do not fully qualify the function name, Trafodion SQL
qualifies it according to the schema of the current session. For more information, see “Identifiers”
(page 221) and “Database Object Names” (page 198).

Considerations for DROP FUNCTION

Required Privileges
To issue a DROP FUNCTION statement, one of the following must be true:
e Youare DB_ ROQT.
e You are the owner of the function.
e You have the DROP or DROP_ROUTINE component privilege for SQL_OPERATIONS

component.

Examples of DROP FUNCTION

e This DROP FUNCTION statement removes the function named ADD?2 from the default schema:
DROP FUNCTION add2;

e This DROP FUNCTION statement removes the function named MMAJ5 from the default schema:
DROP PROCEDURE mma5 ;

e This DROP FUNCTION statement removes the function named REVERSE from the default
schema:

DROP PROCEDURE reverse;

88 SQIL Statements

DROP INDEX Statement

e “Syntax Description of DROP INDEX"

e “Considerations for DROP INDEX”

e “Examples of DROP INDEX”

The DROP INDEX statement drops a Trafodion SQL index. See “Indexes” (page 222).
DROP INDEX is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP [VOLATILE] INDEX index

Syntax Description of DROP INDEX

index
is the index to drop.

For information, see “Database Object Names” (page 198).
Considerations for DROP INDEX

Required Privileges
To issue a DROP INDEX statement, one of the following must be true:
e Youare DB_ ROQT.
* You are the owner of the index or the table associated with the index.
e You have the DROP or DROP_INDEX component privilege for the SQL_OPERATIONS

component.

Examples of DROP INDEX

o This example drops an index:
DROP INDEX myindex;

o This example drops a volatile index:
DROP VOLATILE INDEX vindex;

DROP INDEX Statement 89

DROP LIBRARY Statement

“Syntax Description of DROP LIBRARY”
“Considerations for DROP LIBRARY”
“Examples of DROP LIBRARY”

The DROP LIBRARY statement removes a library object from the Trafodion database and also
removes the library file referenced by the library object.

DROP LIBRARY is a Trafodion SQL extension.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for

the session.

DROP LIBRARY [[catalog-name.]schema-name.]library-name [RESTRICT | CASCADE]

Syntax Description of DROP LIBRARY

[[catalog-name.]schema-name.]library-name

specifies the ANSI logical name of the library object, where each part of the name is a valid
SQL identifier with a maximum of 128 characters. Specify the name of a library object that
has already been registered in the schema. If you do not fully qualify the library name, Trafodion
SQL qualifies it according to the schema of the current session. For more information, see
“|dentifiers” (page 221) and “Database Object Names” (page 198).

[RESTRICT | CASCADE]

It you specify RESTRICT, the DROP LIBRARY operation fails if any stored procedures in Java
(SPJs) or user-defined functions (UDFs) were created based on the specified library.

If you specity CASCADE, any such dependent procedures or functions are removed as part of
the DROP LIBRARY operation.

The default value is RESTRICT.

Considerations for DROP LIBRARY

RESTRICT requires that all procedures and functions that refer to the library object be dropped
before you drop the library object. CASCADE automatically drops any procedures or functions
that are using the library.

If the library filename referenced by the library object does not exist, Trafodion SQL issues a
warning.

Required Privileges

To issue a DROP LIBRARY statement, one of the following must be true:

You are DB__ROQIT.
You are the owner of the library.

You have the DROP or DROP_LIBRARY component privilege for the SQL_OPERATIONS
component.

Examples of DROP LIBRARY

This DROP LIBRARY statement removes the library named SALESLIB from the SALES schema,
removes the Sales2.jar file referenced by the library, and drops any stored procedures in
Java (SPJs) that were created based on this library:

90 SQL Statements

DROP LIBRARY sales.saleslib CASCADE;
This DROP LIBRARY statement removes the library named MYUDFS from the default schema

and removes the $TMUDFS library file referenced by the library:
DROP LIBRARY myudfs RESTRICT;

RESTRICT prevents the DROP LIBRARY operation from dropping any user-defined functions

(UDFs) that were created based on this library. If any UDFs were created based on this library,
the DROP LIBRARY operation fails.

DROP LIBRARY Statement 91

DROP PROCEDURE Statement

e “Syntax Description of DROP PROCEDURE”
e “Considerations for DROP PROCEDURE”
e “Examples of DROP PROCEDURE”

The DROP PROCEDURE statement removes a stored procedure in Java (SPJ) from the Trafodion
database.

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP PROCEDURE [[catalog-name.] schema-name.]procedure-name

Syntax Description of DROP PROCEDURE

[[catalog-name.]schema-name.|procedure-name

specifies the ANSI logical name of the stored procedure in Java (SPJ), where each part of the
name is a valid SQL identifier with a maximum of 128 characters. Specify the name of a
procedure that has already been registered in the schema. If you do not fully quality the
procedure name, Trafodion SQL qualifies it according to the schema of the current session.
For more information, see “Identifiers” (page 221) and “Database Object Names” (page 198).

Considerations for DROP PROCEDURE

Required Privileges
To issue a DROP PROCEDURE statement, one of the following must be true:
e Youare DB_ ROQOT.
* You are the owner of the procedure.
e You have the DROP or DROP_ROUTINE component privilege for SQL_OPERATIONS

component.

Examples of DROP PROCEDURE

o This DROP PROCEDURE statement removes the procedure named LOWERPRICE from the
SALES schema:

DROP PROCEDURE sales.lowerprice;
o This DROP PROCEDURE statement removes the procedure TOTALPRICE from the default schema
for the session, which is the SALES schema:

SET SCHEMA sales;
DROP PROCEDURE totalprice;

92 SQL Statements

DROP ROLE Statement

e “Syntax Description of DROP ROLE”

e “Considerations for DROP ROLE”

e “Examples of DROP ROLE”

The DROP ROLE statement deletes an SQL role. See “Roles” (page 248).

DROP ROLE role-name

Syntax Description of DROP ROLE

role-name
is an existing role name. The role cannot be dropped if any of the following are true:

e Any privileges are granted to the role.
e The role is granted to any users.

e The role owns any schemas.

Considerations for DROP ROLE

e To drop a role, you must own the role or have user administrative privileges for the role. You
have user administrative privileges for the role if you have been granted the MANAGE_ROLES
component privilege. Initially, DB__ROOT is the only database user who has been granted
the MANAGE_ROLES component privilege.

e Role names beginning with DB__ are reserved and can only be dropped by DB__ROOT.

* You can determine all users to whom a role has been granted by using the SHOWDDL ROLE
statement. See the “SHOWDDL Statement” (page 160).

Before You Drop a Role
Before dropping a role, follow these guidelines:
e You must revoke all privileges granted to the role.
e You must revoke the role from all users to whom it was granted.
e You must drop all schemas the role is a manager (or owner) of.

You can determine all users to whom a role has been granted with the SHOWDDL statement. See
the “SHOWDDL Statement” (page 160).

Active Sessions for the User

In Trafodion Release 0.9, when you revoke a role from a user, the effects on any active sessions
for the user are undefined. We recommend that you disconnect such sessions. The user then
reconnects to establish new sessions with the updated set of privileges.

Starting in Trafodion Release 1.0, when you revoke a role from a user, the change in privileges
is automatically propagated to and detected by active sessions. There is no need for users to
disconnect from and reconnect to a session to see the updated set of privileges.

Examples of DROP ROLE

e Todrop a role:
DROP ROLE clerks;

e To drop a role with dependent privileges:

DROP ROLE Statement 93

-- User administrator creates a role:
CREATE ROLE clerks;
-- User administrator grants privileges on a table to the role:
GRANT ALL PRIVILEGES ON TABLE invent.partloc TO clerks;
-- User administrator grants the role to a user:
GRANT ROLE clerks TO JSmith;
-- JSmith creates a view based upon the granted privilege:
CREATE VIEW invent.partlocView (partnum, loc_code)
AS SELECT partnum, loc code FROM invent.partloc;
-- If the user administrator attempts to drop the role, this
-- would fail because of the view created based on
-- the granted privilege.
-- To successfully drop the role, the dependent view
-- and grant must be removed first. For this example:
-- 1. JSmith drops the view:
DROP VIEW invent.partlocView;
-- 2. User administrator revokes the role from the user:
REVOKE ROLE clerks FROM JSmith;
-- 3. User administrator revokes all privileges the role has been granted
REVOKE ALL ON invent.partloc FROM clerks;
-- 4. User administrator drops the role:
DROP ROLE clerks;
-- The DROP ROLE operation succeeds.

94 SQL Statements

DROP SCHEMA Statement

e “Syntax Description of DROP SCHEMA”

e “Considerations for DROP SCHEMA"

e “Example of DROP SCHEMA"

The DROP SCHEMA statement drops a schema from the database. See”Schemas” (page 249).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run DDL statements inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when

AUTOCOMMIT is OFF. To run these statements, AUTOCOMMIT must be turned ON (the default)
for the session.

DROP SCHEMA schema-name [RESTRICT|CASCADE]

Syntax Description of DROP SCHEMA

schema-name
is the name of the schema to delete.

RESTRICT

If you specify RESTRICT, an error is reported if the specified schema is not empty. The default
is RESTRICT.

CASCADE

If you specity CASCADE, objects in the specified schema and the schema itself are dropped.
Any obijects in other schemas that were dependent on objects in this schema are dropped as
well.

Considerations for DROP SCHEMA

Authorization Requirements
To drop a schema, one of the following must be true:
e You are the owner of the schema.

e You have been granted the role that owns the schema.
* You have been granted the DROP_SCHEMA privilege.

Example of DROP SCHEMA

This example drops an empty schema:
DROP SCHEMA sales;

DROP SCHEMA Statement 95

DROP TABLE Statement

e “Syntax Description of DROP TABLE”
e “Considerations for DROP TABLE”
e “Examples of DROP TABLE”

The DROP TABLE statement deletes a Trafodion SQL table and its dependent objects such as indexes
and constraints. See “Tables” (page 254).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when

AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP [VOLATILE] TABLE [IF EXISTS] table [RESTRICT|CASCADE]

Syntax Description of DROP TABLE

VOLATILE
specifies that the table to be dropped is a volatile table.

IF EXISTS
drops the HBase table if it exists. This option does not apply to volatile tables.

table
is the name of the table to delete.

RESTRICT

If you specify RESTRICT and the table is referenced by another object, the specified table cannot
be dropped. The default is RESTRICT.

CASCADE
If you specity CASCADE, the table and all objects referencing the table (such as a view) are
dropped.

Considerations for DROP TABLE

Authorization Requirements
To issue a DROP TABLE statement, one of the following must be true:
e Youare DB_ ROQOT.
e You are the owner of the table.
e You have the DROP or DROP_TABLE component privilege for the SQL_OPERATIONS

component.

Examples of DROP TABLE

o This example drops a table:
DROP TABLE mysch.mytable;

o This example drops a volatile table:
DROP VOLATILE TABLE vtable;

96 SQL Statements

DROP VIEW Statement

e “Syntax Description of DROP VIEW”

e “Considerations for DROP VIEW”

e “Example of DROP VIEW”

The DROP VIEW statement deletes a Trafodion SQL view. See “Views” (page 255).

NOTE: DDL statements are not currently supported in transactions. That means that you cannot
run this statement inside a user-defined transaction (BEGIN WORK...COMMIT WORK) or when
AUTOCOMMIT is OFF. To run this statement, AUTOCOMMIT must be turned ON (the default) for
the session.

DROP VIEW view [RESTRICT|CASCADE]

Syntax Description of DROP VIEW
view
is the name of the view to delete.

RESTRICT

If you specify RESTRICT, you cannot drop the specified view if it is referenced in the query
expression of any other view or in the search condition of another object's constraint. The
default is RESTRICT.

CASCADE
It you specity CASCADE, any dependent objects are dropped.

Considerations for DROP VIEW

Authorization Requirements
To issue a DROP VIEW statement, one of the following must be true:
e Youare DB_ ROQOT.
e You are the owner of the view.
e You have the DROP or DROP_VIEW component privilege for the SQL_OPERATIONS

component.

Example of DROP VIEW

This example drops a view:
DROP VIEW mysch.myview;

DROP VIEW Statement 97

EXECUTE Statement

e “Syntax Description of EXECUTE”
e “Considerations for EXECUTE”
e “Examples of EXECUTE”

The EXECUTE statement executes an SQL statement previously compiled by a PREPARE statement
in a Trafodion Command Interface (TrafCl) session.

EXECUTE statement-name
[USING param [,param]...]]

param is:
?param-name | literal-value

Syntax Description of EXECUTE

statement-name

is the name of a prepared SQL statement—that is, the statement name used in the PREPARE
statement. statement -name is an SQL identifier. See “Identifiers” (page 221).

USING param [, param]... paramis: ?param-name | literal-value
specifies values for unnamed parameters (represented by ?) in the prepared statement in the
form of either a parameter name (? param-name) or a literal value (1iteral-value). The
data type of a parameter value must be compatible with the data type of the associated
parameter in the prepared statement.

Parameter values (param) are substituted for unnamed parameters in the prepared statement

by position—the i-th value in the USING clause is the value for the ith parameter in the statement.
If fewer parameter values exist in the USING clause than unnamed parameters in the PREPARE
statement, Trafodion SQL returns an error. If more parameter values exist in the USING clause
than the unnamed parameters in the PREPARE statement, Trafodion SQL issues warning 15019.

The USING clause does not set parameter values for named parameters (represented by
?param-name) in a prepared statement. To set parameter values for named parameters, use
the SET PARAM command. For more information, see the Trafodion Command Interface Guide.
?param-name

The value for a ? param-name must be previously specified with the SET PARAM command.

The param-name is case-sensitive. For information about the SET PARAM command, see
the Trafodion Command Interface Guide.

literal-value
is a numeric or character literal that specifies the value for the unnamed parameter.
If 1iteral-value is a character literal and the target column type is character, you do
not have to enclose it in single quotation marks. Its data type is determined from the data
type of the column to which the literal is assigned. If the 1iteral-value contains leading

or trailing spaces, commas, or if it matches any parameter names that are already set,
enclose the 1iteral-value in single quotes.

See the “PREPARE Statement” (page 126). For information about the SET PARAM command, see
the Trafodion Command Interface Guide.

98 SQL Statements

Considerations for EXECUTE

Scope of EXECUTE

A statement must be compiled by PREPARE before you EXECUTE it, but after it is compiled, you
can execute the statement multiple times without recompiling it. The statement must have been
compiled during the same TrafCl session as its execution.

Examples of EXECUTE

e Use PREPARE to compile a statement once, and then execute the statement multiple times with
different parameter values. This example uses the SET PARAM command to set parameter
values for named parameters (represented by ? param-name) in the prepared statement.

SQL>prepare findemp from

+>select * from persnl.employee

+>where salary > ?sal and jobcode = ?job;
--- SQL command prepared.

SQL>set param ?sal 40000.00;

SQL>set param ?job 450;

SQL>execute findemp;

EMPNUM FIRST NAME LAST NAME DEPTNUM JOBCODE SALARY

232 THOMAS SPINNER 4000 450 45000.00

--- 1 row(s) selected.
SQL>set param ?sal 20000.00;

SQL>set param ?job 300;

SQL>execute findemp;

EMPNUM FIRST NAME LAST NAME DEPTNUM JOBCODE SALARY
75 TIM WALKER 3000 300 32000.00
89 PETER SMITH 3300 300 37000.40

--- 13 row(s) selected.

o Specify literal values in the USING clause of the EXECUTE statement for unnamed parameters
in the prepared statement:

SQL>prepare findemp from
+>select * from persnl.employee
+>where salary > ? and jobcode = ?;

--- SQL command prepared.

SQL>execute findemp using 40000.00,450;

EMPNUM FIRST NAME LAST NAME DEPTNUM JOBCODE SALARY

232 THOMAS SPINNER 4000 450 45000.00

--- 1 row(s) selected.

EXECUTE Statement 99

SQLs>execute findemp using 20000.00, 300;

EMPNUM FIRST NAME LAST NAME DEPTNUM JOBCODE SALARY
75 TIM WALKER 3000 300 32000.00
89 PETER SMITH 3300 300 37000.40

--- 13 row(s) selected.
o Use SET PARAM to assign a value to a parameter name and specity both the parameter name
and a literal value in the EXECUTE USING clause:

SQL>prepare findemp from

+>select * from persnl.employee
+>where salary > ? and jobcode = ?;
--- SQL command prepared.

SQL>set param ?Salary 40000.00;

SQLs>execute findemp using ?Salary, 450;

EMPNUM FIRST NAME LAST NAME DEPTNUM JOBCODE SALARY

232 THOMAS SPINNER 4000 450 45000.00

100 SQL Statements

EXPLAIN Statement

The EXPLAIN statement helps you to review query execution plans. You can use the EXPLAIN
statement anywhere you can execute other SQL statements (for example, SELECT). For more

information on the EXPLAIN function, see “EXPLAIN Function” (page 342).
EXPLAIN is a Trafodion SQL extension.

EXPLAIN [OPTIONS {'f'}] {FOR QID query-text | prepared-stmt-name}

Table 2 EXPLAIN Statement Options

Syntax Option Type Purpose

OPTIONS 'f' Formatted Provides the simple, basic information contained in the query
execution plan. This information is formatted for readability
and limited to 79 characters (one line) per operator.

Plans displayed by the EXPLAIN statement are ordered from top (root operator) to bottom (leaf
operators).

Syntax Description of EXPLAIN

f
formatted. See “Formatted [OPTIONS 'f'] Considerations” (page 102).

query-text
a DML statement such as SELECT * FROM T3.

prepared-stmt-name

an SQL identifier containing the name of a statement already prepared in this session. An SQL
identifier is case-insensitive (will be in uppercase) unless it is double-quoted. It must be
double-quoted if it contains blanks, lowercase letters, or special characters. It must start with

a letter. When you refer to the prepared query in a SELECT statement, you must use uppercase.

Considerations for EXPLAIN
e “Required Privileges” (page 101)
e “Obtaining EXPLAIN Plans While Queries Are Running” (page 101)
e “Case Considerations” (page 102)

e “Number Considerations” (page 102)
e “Formatted [OPTIONS 'f'] Considerations” (page 102)

Required Privileges
To issue an EXPLAIN statement, one of the following must be true:
e You are DB_ ROQT.
e You own (that is, issued) the query specified in the EXPLAIN statement.
e You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.
Obtaining EXPLAIN Plans While Queries Are Running

Trafodion SQL provides the ability to capture an EXPLAIN plan for a query at any time while the
query is running with the FOR QID option. By default, this behavior is disabled for a Trafodion
database session.

EXPLAIN Statement 101

NOTE: Enable this feature before you start preparing and executing queries.

After the feature is enabled, use the FOR QID option in an EXPLAIN statement to get the query
execution plan of a running query.

The EXPLAIN function or statement returns the plan that was generated when the query was
prepared. EXPLAIN with the FOR QID option retrieves all the information from the original plan of
the executing query. The plan is available until the query finishes executing and is removed or
deallocated.

Case Considerations

In most cases, words in the commands can be in uppercase or lowercase. The options letter must
be single quoted and in lowercase.

Number Considerations
Costs are given in a generic unit of effort. They show relative costs of an operation.

When trailing decimal digits are zero, they are dropped. For example, 6.4200 would display as
6.42 and 5.0 would display as 5, without a decimal point.

Formatted [OPTIONS 'f'] Considerations

The formatted option is the simplest option. It provides essential, brief information about the plan
and shows the operators and their order within the query execution plan.

OPTIONS 'f' formats the EXPLAIN output into these fields:

IC Left child sequence number

RC Right child sequence number

OoP The sequence number of the operator in the query plan
OPERATOR The operator type

OPT Query optimizations that were applied

DESCRIPTION Additional information about the operator

CARD Estimated number of rows returned by the plan. CARDINALITY and

ROWS_OUT are the same.

This example uses OPTIONS 'f ":

>>explain options 'f' select * from region;

LC RC oP OPERATOR OPT DESCRIPTION CARD
1 . 2 root 1.00E+002
1 trafodion scan REGION 1.00E+002

--- SQL operation complete.

To use the EXPLAIN statement with a prepared statement, first prepare the query. Then use the
EXPLAIN statement:

PREPARE g FROM SELECT * FROM REGION;

EXPLAIN options 'f' qgj

102 SQL Statements

GET Statement
e “Syntax Description of GET”

e “Considerations for GET”
e “Examples of GET”

The GET statement displays the names of database objects, components, component privileges,
roles, or users that exist in the Trafodion instance.

GET is a Trafodion SQL extension.

GET option

option is:

COMPONENT PRIVILEGES ON component-name [FOR auth-namel
COMPONENTS

FUNCTIONS FOR LIBRARY [[catalog-name.]schema-name.]library-name
FUNCTIONS [IN SCHEMA [catalog-name.]schema-name]

LIBRARIES [IN SCHEMA [catalog-name.] schema-namel

PROCEDURES FOR LIBRARY [[catalog-name.]schema-name.]library-name
PROCEDURES [IN SCHEMA [catalog-name.]schema-namel

ROLES [FOR USER database-username]

SCHEMAS [IN CATALOG catalog-namel

SCHEMAS FOR [USER | ROLE] authorization-id

TABLES [IN SCHEMA [catalog-name.]schema-name]

USERS [FOR ROLE role-name]

VIEWS [IN SCHEMA [catalog-name.] schema-namel

VIEWS ON TABLE [[catalog-name.]schema-name.] table-name

Syntax Description of GET

COMPONENT PRIVILEGES ON component -name
displays the names of the component privileges available for the specified component.
COMPONENT PRIVILEGES ON component -name FOR auth-name

displays the component privileges that have been granted to the specified authorization name
for the specified component. The auth-name is either a registered database username or an
existing role name and can be a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

COMPONENTS
displays a list of all the existing components.

FUNCTIONS

displays the names of all the user-defined functions (UDFs) in the catalog and schema of the
current session. By default, the catalog is TRAFODION, and the schema is SEABASE.

FUNCTIONS FOR LIBRARY [[catalog-name.]schema-name.]library-name
displays the UDFs that reference the specified library.

FUNCTIONS IN SCHEMA [catalog-name.]schema-name
displays the names of all the UDFs in the specified schema.

LIBRARIES

displays the names of all the libraries in the catalog and schema of the current session. By
default, the catalog is TRAFODION, and the schema is SEABASE.

LIBRARIES IN SCHEMA [catalog-name.]schema-name
displays the libraries in the specified schema.

PROCEDURES

displays the names of all the procedures in the catalog and schema of the current session. By
default, the catalog is TRAFODION, and the schema is SEABASE.

GET Statement 103

PROCEDURES FOR LIBRARY [[catalog-name.]schema-name.]library-name
displays the procedures that reference the specified library.

PROCEDURES IN SCHEMA [catalog-name.]schema-name
displays the names of all the procedures in the specified schema.

ROLES
displays a list of all the existing roles.

ROLES FOR USER database-username
displays all the roles that have been granted to the specified database user. The
database-username can be a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

SCHEMAS
displays the names of all the schemas in the catalog of the current session. By default, the
catalog is TRAFODION.

SCHEMAS IN CATALOG catalog-name
displays the names of all the schemas in the specified catalog. For the catalog-name, you
can specify only TRAFODION.

SCHEMAS FOR [USER | ROLE] authorization-id
displays all the schemas managed (or owned) by a specified user or role. authorization-id
is the name of a user or role. You may specify either USER or ROLE for users or roles.

TABLES
displays the names of all the tables in the catalog and schema of the current session. By default,
the catalog is TRAFODION, and the schema is SEABASE.

TABLES IN SCHEMA [catalog-name.]schema-name
displays the names of all the tables in the specified schema.

USERS

displays a list of all the registered database users.
USERS FOR ROLE role-name

displays all the database users who have been granted the specified role. The role-name
can be a regular or delimited case-insensitive identifier. See “Case-Insensitive Delimited
Identifiers” (page 221).

VIEWS
displays the names of all the views in the catalog and schema of the current session. By default,
the catalog is TRAFODION, and the schema is SEABASE.

VIEWS IN SCHEMA [catalog-name.]schema-name
displays the names of all the views in the specified schema. For the catalog-name, you can
specify only TRAFODION.

VIEWS ON TABLE [[catalog-name.]schema-name.]table-name

displays the names of all the views that were created for the specified table. If you do not
qualify the table name with catalog and schema names, GET uses the catalog and schema of
the current session. For the catalog-name, you can specify only TRAFODION.

Considerations for GET

®

IMPORTANT: The GET COMPONENT PRIVILEGES, GET COMPONENTS, GET ROLES FOR USER,
and GET USERS FOR ROLE statements work only when authentication and authorization are
enabled in Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

The GET statement displays delimited object names in their internal format. For example, the GET
statement returns the delimited name "my ""table""" asmy "table".

104 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

Required Privileges

To issue a GET statement, one of the following must be true:

You are DB__ROQIT.

You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

Examples of GET

This GET statement displays the names of all the schemas in the catalog of the current session,
which happens to be the TRAFODION catalog:

GET SCHEMAS;

This GET statement displays the names of all the schemas in the specified catalog, TRAFODION:
GET SCHEMAS IN CATALOG TRAFODION;

This GET statement displays the names of schemas owned by DB__ROQOT:
GET SCHEMAS FOR USER DB ROOT;

This GET statement displays the names of all the tables in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:

GET TABLES;

This GET statement displays the names of all the tables in the specified schema, SEABASE2,
in the TRAFODION catalog:

GET TABLES IN SCHEMA SEABASE2;

This GET statement displays the names of all the views in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:

GET VIEWS;

This GET statement displays the names of all the views in the specified schema, SEABASE2,
the TRAFODION catalog:

GET VIEWS IN SCHEMA SEABASE2;

This GET statement displays the names of all the views that were created for the specified
table, T, in the TRAFODION.SEABASE schema:

GET VIEWS ON TABLE T;

This GET statement displays the names of the libraries in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:

GET LIBRARIES;

This GET statement displays the names of the libraries in the TRAFODION._MD_ schema:
GET LIBRARIES IN SCHEMA " _MD ";

This GET statement displays the names of procedures registered in the library,
TRAFODION._MD_.UDR_LIBRARY:

GET PROCEDURES FOR LIBRARY " MD ".UDR_LIBRARY;

This GET statement displays the names of procedures in the TRAFODION._MD_ schema:
GET PROCEDURES IN SCHEMA " MD ";

This GET statement displays the names of procedures in the catalog and schema of the current
session, which happens to be TRAFODION.SEABASE:

GET PROCEDURES;

GET Statement 105

o This GET statement displays the names of user-defined functions (UDFs) in the catalog and
schema of the current session, which happens to be TRAFODION.SEABASE:

GET FUNCTIONS;

o This GET statement displays the names of UDFs in MYSCHEMA:
GET FUNCTIONS IN SCHEMA MYSCHEMA;

o This GET statement displays the names of UDFs created in the library,
TRAFODION.MYSCHEMA.MYUDFS:

GET FUNCTIONS FOR LIBRARY MYSCHEMA.MYUDFS;

o This GET statement displays a list of all the existing components:

get components;

o This GET statement displays the names of the component privileges available for the

SQL_OPERATIONS component:

get component privileges on sgl operations;

e This GET statement displays the component privileges that have been granted to the DB__ROOT
user for the SQL_OPERATIONS component:

get component privileges on sgl operations for db_ root;

o This GET statement displays a list of all the existing roles:

get roles;

o This GET statement displays all the roles that have been granted to the DB__ROOT user:

get roles for user db__ root;

o This GET statement displays a list of all the registered database users:

get users;

o This GET statement displays all the database users who have been granted the DB__ROOTROLE

role:

get users for role db_ rootrole;

106 SQL Statements

GET HBASE OBJECTS Statement

“Syntax Description of GET HBASE OBJECTS” (page 107)
“Examples of GET HBASE OBJECTS”

The GET HBASE OBJECTS statement displays a list of HBase objects directly from HBase, not from
the Trafodion metadata, and it can be run in any SQL interface, such as the Trafodion Command
Interface (TrafCl). This command is equivalent to running a 1ist command from an HBase shell,
but without having to start and connect to an HBase shell.

GET HBASE OBJECTS is a Trafodion SQL extension.

GET [USER | SYSTEM | EXTERNAL | ALL } HBASE OBJECTS

Syntax Description of GET HBASE OBJECTS

USER
displays a list of the Trafodion user objects.

SYSTEM

displays a list of the Trafodion system objects, such as metadata, repository, privileges, and
Distributed Transaction Manager (DTM) tables.

EXTERNAL

displays a list of non-Trafodion objects.

ALL

displays a list of all objects, including user, system, and external obijects.

Examples of GET HBASE OBJECTS
This GET HBASE OBJECTS statement displays the Trafodion user objects in HBase:

Trafodion Conversational Interface 1.1.0
(c) Copyright 2014 Hewlett-Packard Development Company, LP.
>>get user hbase objects;

TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.
TRAFODION.

SCH

.SB_HISTOGRAMS
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.
SCH.

SB_HISTOGRAM INTERVALS
TOO06T1
TO06T2
TOO06T3
T006T4
TO06T5
T006T6
TOO6T7
TOO6T8
X1

X2

X3

--- SQL operation complete.

This GET HBASE OBJECTS statement displays the Trafodion system objects in HBase:

>>get system hbase objects;

TRAFODION.

TRAFODION
TRAFODION
TRAFODION
TRAFODION

TRAFODION.

DTM.TLOGO_CONTROL_POINT

. DTM_.TLOG1 LOG_f
. MD_
. MD_
. MD_

.AUTHS

. COLUMNS
.DEFAULTS
. INDEXES

GET HBASE OBJECTS Statement 107

TRAFODION. MD .KEYS
TRAFODION. MD .LIBRARIES

TRAFODION. MD .LIBRARIES USAGE
TRAFODION. MD .OBJECTS
TRAFODION. MD .OBJECTS UNIQ IDX
TRAFODION. MD .REF CONSTRAINTS
TRAFODION. MD .ROUTINES
TRAFODION. MD .SEQ GEN

TRAFODION. MD_.TABLES

TRAFODION. MD .TABLE CONSTRAINTS
TRAFODION. MD_.TEXT
TRAFODION. MD .UNIQUE REF CONSTR USAGE
TRAFODION. MD .VERSIONS

TRAFODION. MD .VIEWS
TRAFODION. MD .VIEWS USAGE

TRAFODION. REPOS .METRIC_QUERY AGGR TABLE
TRAFODION. REPOS_ .METRIC_QUERY TABLE
TRAFODION. REPOS .METRIC SESSION TABLE

TRAFODION. REPOS .METRIC TEXT TABLE

--- SQL operation complete.

o This GET HBASE OBJECTS statement displays the external, non-Trafodion objects in HBase:

>>get external hbase objects;

objl
obj2

--- SQL operation complete.
>>

108 SQL Statements

GET VERSION OF METADATA Statement

“Considerations for GET VERSION OF METADATA”
”Exomp|es of GET VERSION OF METADATA”

The GET VERSION OF METADATA statement displays the version of the metadata in the Trafodion
instance and indicates if the metadata is current.

GET VERSION OF METADATA is a Trafodion SQL extension.

GET VERSION OF METADATA

Considerations for GET VERSION OF METADATA

If the metadata is compatible with the installed Trafodion software version, the GET VERSION
OF METADATA statement indicates that the metadata is current:

Current Version 3.0. Expected Version 3.0.
Metadata is current.

If the metadata is incompatible with the installed Trafodion software version, the GET VERSION
OF METADATA statement indicates that you need to upgrade or reinitialize the metadata:

Current Version 2.3. Expected Version 3.0.
Metadata need to be upgraded or reinitialized.

Examples of GET VERSION OF METADATA

This GET VERSION OF METADATA statement displays the metadata version in a Trafodion
Release 1.0.0 instance:

get version of metadata;

Current Version 3.0. Expected Version 3.0.
Metadata is current.

--- SQL operation complete.

This GET VERSION OF METADATA statement displays the metadata version in a Trafodion

Release 0.9.0 instance:

get version of metadata;

Current Version 2.3. Expected Version 2.3.
Metadata is current.

--- SQL operation complete.

If the metadata is incompatible with the installed Trafodion software version, you will see this
output indicating that you need to upgrade or reinitialize the metadata:

get version of metadata;

Current Version 2.3. Expected Version 3.0.
Metadata need to be upgraded or reinitialized.

--- SQL operation complete.

GET VERSION OF METADATA Statement 109

GET VERSION OF SOFTWARE Statement

“Considerations for GET VERSION OF SOFTWARE”
”Exomp|es of GET VERSION OF SOFTWARE”

The GET VERSION OF SOFTWARE statement displays the version of the Trafodion software that
is installed on the system and indicates if it is current.

GET VERSION OF SOFTWARE is a Trafodion SQL extension.

GET VERSION OF SOFTWARE

Considerations for GET VERSION OF SOFTWARE

If the software on the system is current, the GET VERSION OF SOFTWARE statement displays
this output:

System Version 1.0.0. Expected Version 1.0.0.
Software is current.

In rare circumstances where something went wrong with the Trafodion software installation
and mismatched objects were installed, the GET VERSION OF SOFTWARE statement displays
this output:

System Version 0.9.1. Expected Version 1.0.0.
Version of software being used is not compatible with version of software on the system.

Examples of GET VERSION OF SOFTWARE

This GET VERSION OF SOFTWARE statement displays the software version for Trafodion
Release 1.0.0:

get version of software;

System Version 1.0.0. Expected Version 1.0.0.
Software is current.

--- SQL operation complete.

This GET VERSION OF SOFTWARE statement displays the software version for Trafodion
Release 0.9.0:
get version of software;

System Version 0.9.0. Expected Version 0.9.0.
Software is current.

--- SQL operation complete.

If something went wrong with the Trafodion software installation and if mismatched objects
were installed, you will see this output indicating that the software being used is incompatible
with the software on the system:

get version of software;

System Version 0.9.1. Expected Version 1.0.0.
Version of software being used is not compatible with version of software on the system.

- SQL operation complete.

110 SQL Statements

GRANT Statement
e “Syntax Description of GRANT”
e “Considerations for GRANT”
e “Examples of GRANT”

The GRANT statement grants access privileges on an SQL object to specified users or roles.

® IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT {privilege [,privilege]... |ALL [PRIVILEGES]}
ON [object-typel [schema.]object
TO {grantee [,grantee]...}
[WITH GRANT OPTION]
[[GRANTED] BY grantor]

privilege is:
SELECT
DELETE
INSERT
REFERENCES
UPDATE
EXECUTE
USAGE

object-type is:
TABLE
PROCEDURE
LIBRARY
FUNCTION

grantee is:
auth-name

grantor is:
role-name

Syntax Description of GRANT
privilege [,privilege] ... | ALL [PRIVILEGES]
specifies the privileges to grant. You can specify these privileges for an object.

SELECT Can use the SELECT statement.

DELETE Can use the DELETE statement.

INSERT Can use the INSERT statement.

REFERENCES Can create constraints that reference the object.

UPDATE Can use the UPDATE statement on table objects.

EXECUTE Can execute a stored procedure using a CALL statement or can execute a user-defined function
(UDF).

USAGE Can access a library using the CREATE PROCEDURE or CREATE FUNCTION statement. This
privilege provides you with read access to the library’s underlying library file.

AlL All the applicable privileges. When you specify ALL for a table or view, this includes the SELECT,
DELETE, INSERT, REFERENCES, and UPDATE privileges. When the object is a stored procedure
or user-defined function (UDF), only the EXECUTE privilege is applied. When the object is a
library, only the UPDATE and USAGE privileges are applied.

GRANT Statement 111

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

ON [object-type] [schema.]object

specifies an object on which to grant privileges. object -type can be:

e [TABLE] [schema.]object, where object is a table or view. See “Database Object
Names” (page 198).

e [PROCEDURE] [schema.]procedure-name, where procedure-name is the name of
a stored procedure in Java (SPJ) registered in the database.

e [LIBRARY] [schema.]library-name, where 1ibrary-name is the name of a library
object in the database.

e [FUNCTION] [schema.]function-name, where function-name is the name of a
user-defined function (UDF) in the database.

TO {grantee [, grantee] ... }

specifies one or more auth-names to which you grant privileges.

auth-name

specifies the name of an authorization ID to which you grant privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, an existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221). If you grant a privilege to PUBLIC, the privilege
remains available to all users, unless it is later revoked from PUBLIC.

WITH GRANT OPTION

specifies that the auth-name to which a privilege is granted may in turn grant the same
privilege to other users or roles.

[GRANTED] BY grantor

allows you to grant privileges on behalf of a role. If not specified, the privileges will be granted
on your behalf as the current user/grantor.

role-name

specifies a role on whose behalf the GRANT operation is performed. To grant the privileges
on behalf of a role, you must be a member of the role, and the role must have the authority to
grant the privileges; that is, the role must have been granted the privileges WITH GRANT
OPTION.

Considerations for GRANT

Authorization and Availability Requirements

To grant a privilege on an object, you must have both that privilege and the right to grant that

privilege. Privileges can be granted directly to you or to one of the roles you have been granted.
You can grant a privilege on an object if you are the owner of the object (by which you are
implicitly granted all privileges on the object) or the owner of the schema containing the object,
or if you have been granted both the privilege and the WITH GRANT OPTION for the privilege.

It granting privileges on behalf of a role, you must specity the role in the [GRANTED] BY clause.
To grant the privileges on behalf of a role, you must be a member of the role, and the role must
have the authority to grant the privileges; that is, the role must have been granted the privileges
WITH GRANT OPTION.

It you lack authority to grant one or more of the specified privileges, SQL returns a warning (yet
does grant the specified privileges for which you do have authority to grant). If you lack authority
to grant any of the specified privileges, SQL returns an error.

Examples of GRANT

o To grant SELECT and DELETE privileges on a table to two specified users:

12 SQL Statements

GRANT SELECT, DELETE ON TABLE invent.partloc
TO ajones, "MO.Neill@company.com";

To grant SELECT privileges on a table to a user:
GRANT SELECT ON TABLE invent.partloc TO ajones;

GRANT Statement 113

GRANT COMPONENT PRIVILEGE Statement

e “Syntax Description of GRANT COMPONENT PRIVILEGE”
e “Considerations for GRANT COMPONENT PRIVILEGE”
e “Example of GRANT COMPONENT PRIVILEGE”

The GRANT COMPONENT PRIVILEGE statement grants one or more component privileges to a
user or role. See “Privileges” (page 247) and “Roles” (page 248).

GRANT COMPONENT PRIVILEGE is a Trafodion SQL extension.

® IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT COMPONENT PRIVILEGE {privilege-name [, privilege-name]...}
ON component-name

TO grantee

[WITH GRANT OPTION] [[GRANTED] BY grantor]

grantee is:
auth-name

grantor is:
role-name

Syntax Description of GRANT COMPONENT PRIVILEGE

privilege-name
specifies one or more component privileges to grant. The comma-separated list can include
only privileges within the same component.

Component Component Privilege Description
SQL_OPERATIONS ALTER Privilege to alter database objects
ALTER_LIBRARY Privilege to alter libraries
ALTER_TABLE Privilege to alter tables
ALTER_VIEW Privilege fo alter views
CREATE Privilege fo create database objects
CREATE_CATALOG Privilege fo create catalogs in the
database
CREATE_INDEX Privilege fo create indexes
CREATE_LIBRARY Privilege fo create libraries in the
database
CREATE_ROUTINE Privilege fo create stored procedures

in Java (SPJs), user-defined functions
(UDFs), table-mapping functions, and
other routines in the database

CREATE_SCHEMA Privilege to create schemas in the
database

CREATE_TABLE Privilege to create tables in the
database

CREATE_VIEW Privilege fo create views in the
database

DROP Privilege fo drop database obijects

114 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

Component

Component Privilege

Description

DROP_CATALOG

Privilege to drop catalogs

DROP_INDEX

Privilege to drop indexes

DROP_LIBRARY

Privilege to drop libraries

DROP_ROUTINE

Privilege to drop stored procedures in
Java (SPJs), user-defined functions
(UDFs), table-mapping functions, and
other routines from the database

DROP_SCHEMA

Privilege to drop schemas

DROP_TABLE

Privilege to drop tables

DROP_VIEW

Privilege fo drop views

MANAGE_LIBRARY

Privilege to perform library-related
commands, such as creating and
dropping libraries

MANAGE_LOAD

Privilege to perform LOAD and
UNLOAD commands

MANAGE_ROLES

Privilege to create, alter, drop, grant,
and revoke roles

MANAGE_STATISTICS

Privilege to update and display
statistics

MANAGE_USERS

Privilege to register or unregister
users, alter users, and grant or revoke
component privileges.

QUERY_CANCEL

Privilege fo cancel an executing
query.

SHOW

Privilege to run EXPLAIN, GET,
INVOKE, and SHOW commands. The

SHOW privilege has been granted to
PUBLIC by default.

ON component -name

specifies a component name on which to grant component privileges. Currently, the only valid
component name is SQL_OPERATIONS.

TO grantee

specifies an auth-name o which you grant component privileges.

auth-name

specifies the name of an authorization ID to which you grant privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited |dentifiers” (page 221). If you grant a privilege to PUBLIC, the privilege
remains available to all users, unless it is later revoked from PUBLIC.

WITH GRANT OPTION

specifies that the auth-name to which a component privilege is granted may in turn grant the
same component privilege fo other users or roles.

[GRANTED] BY grantor

allows you to grant component privileges on behalf of a role. If not specified, the privileges

will be granted on your behalf as the current user/grantor.

GRANT COMPONENT PRIVILEGE Statement 115

role-name

specifies a role on whose behalf the GRANT COMPONENT PRIVILEGE operation is performed.
To grant the privileges on behalf of a role, you must be a member of the role, and the role

must have the authority to grant the privileges; that is, the role must have been granted the
privileges WITH GRANT OPTION.

Considerations for GRANT COMPONENT PRIVILEGE

A user or role granted a component privilege WITH GRANT OPTION can grant the same
component privilege to other users or roles.

If all of the component privileges have already been granted, SQL returns an error.

If one or more component privileges has already been granted, SQL silently ignores the granted
privileges and proceeds with the grant operation.

Authorization and Availability Requirements

To grant a component privilege, you must have one of these privileges:

User administrative privileges (that is, a user who has been granted the MANAGE_USERS

component privilege). Initially, DB__ROOT is the only database user who has been granted
the MANAGE_USERS component privilege.

A user other than a user administrator who has the WITH GRANT OPTION for the component
privilege.

A user who was granted a role that has the WITH GRANT OPTION privilege for the component
privilege.

Example of GRANT COMPONENT PRIVILEGE
Grant a component privilege, CREATE_TABLE, on a component, SQL_OPERATIONS, to SQLUSERT:

GRANT COMPONENT PRIVILEGE CREATE TABLE ON SQL OPERATIONS TO sgluserl;

116 SQL Statements

GRANT ROLE Statement

“Syntax Description of GRANT ROLE”
“Considerations for GRANT ROLE”
“Example of GRANT ROLE”

The GRANT ROLE statement grants one or more roles to a user. See “Roles” (page 248).

® IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

GRANT ROLE {role-name [,role-name]...}
TO grantee

grantee is:

database-username

Syntax Description of GRANT ROLE

role-name [,role-name] ...

specifies the existing roles to grant.

TO grantee

specifies the registered database username to whom to grant the roles.

Considerations for GRANT ROLE

To grant roles to other grantees, you must own the roles or have user administrative privileges
for the roles. You have user administrative privileges for roles if you have been granted the
MANAGE_ROLES component privilege. Initially, DB__ROQOT is the only database user who
has been granted the MANAGE_ROLES component privilege.

In Trafodion Release 0.9, when you grant a role to a grantee, the effects on any active sessions
for the grantee are undefined, and users will need to disconnect such sessions and reconnect
to establish a new session with the updated set of privileges. Starting in Trafodion Release
1.0, when you grant a role to a user, the additional privileges are automatically propagated
to and detected by active sessions. There is no need for users to disconnect from and reconnect
to a session to see the updated set of privileges.

If any errors occur in processing a GRANT ROLE statement that names multiple roles, then no
grants are done.

If you attempt to grant a role but a grant with the same role and grantee already exists, SQL
ignores the request and returns a successful operation.

Example of GRANT ROLE

To grant multiple roles to a grantee:
GRANT ROLE clerks, sales TO jsmith;

GRANT ROLE Statement 117

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

INSERT Statement

e “Syntax Description of INSERT”
e “Considerations for INSERT”

e “Examples of INSERT”
The INSERT statement is a DML statement that inserts rows in a table or view.

INSERT INTO table [(target-col-1list)] insert-source

target-col-list is:
colname [,colname]...

insert-source is:
query-expr [order-by-clause] [access-clause] | DEFAULT VALUES

Syntax Description of INSERT

table
names the user table or view in which to insert rows. table must be a base table or an
updatable view.

(target-col-1list)
names the columns in the table or view in which to insert values. The data type of each target
column must be compatible with the data type of its corresponding source value. Within the
list, each target column must have the same position as its associated source value, whose
position is defermined by the columns in the table derived from the evaluation of the query
expression (query-expr).
If you do not specify all of the columns in table inthe target-col-1ist, column default
values are inserted into the columns that do not appear in the list. See “Column Default Settings”
(page 194).
If you do not specify target-col-1ist, row values from the source table are inserted info
all columns in table. The order of the column values in the source table must be the same
order as that of the columns specified in the CREATE TABLE for table. (This order is the same
as that of the columns listed in the result table of SHOWDDL table.)

insert-source

specifies the rows of values to be inserted into all columns of tab1le or, optionally, into specified

columns of table.

query-expr
For the description of query-expr, order-by-clause, and access-clause, see the
“SELECT Statement” (page 138).

DEFAULT VALUES
is equivalent to a query-expr of the form VALUES (DEFAULT, ...). The value of each
DEFAULT is the default value defined in the column descriptor of colname, which is
contained in the table descriptor of table. Each default value is inserted into its column
to form a new row. If you specity DEFAULT VALUES, you cannot specify a column list. You
can use DEFAULT VALUES only when all columns in table have default values.

Considerations for INSERT

Authorization Requirements

INSERT requires authority to read and write to the table or view receiving the data and authority
to read tables or views specified in the query expression (or any of its subqueries) in the INSERT
statement.

118 SQL Statements

Transaction Initiation and Termination

The INSERT statement automatically initiates a transaction if no transaction is active. Alternatively,
you can explicitly initiate a transaction with the BEGIN WORK statement. After a transaction is
started, the SQL statements execute within that transaction until a COMMIT or ROLLBACK is
encountered or an error occurs. If AUTOCOMMIT is ON, the transaction terminates at the end of
the INSERT statement.

Self-Referencing INSERT and BEGIN WORK or AUTOCOMMIT OFF

A self-referencing INSERT statement is one that references, in the statement's insert-source,
the same table or view into which rows will be inserted (see “Examples of Self-Referencing Inserts”
(page 121)). A self-referencing INSERT statement will not execute correctly and an error is raised if
either BEGIN WORK or AUTOCOMMIT OFF is used unless the compiler's plan sorts the rows
before they are inserted. If you want fo use a self-referencing INSERT statement, you should avoid
the use of BEGIN WORK or AUTOCOMMIT OFF. For information about AUTOCOMMIT, see the
“SET TRANSACTION Statement” (page 157).

Isolation Levels of Transactions and Access Options of Statements

The isolation level of an SQL transaction defines the degree to which the operations on data within
that transaction are affected by operations of concurrent transactions. When you specify access
options for the DML statements within a transaction, you override the isolation level of the containing
transaction. Each statement then executes with its individual access option.

Use of a VALUES Clause for the Source Query Expression

If the query expression consists of the VALUES keyword followed by rows of values, each row
consists of a list of value expressions or a row subquery (a subquery that returns a single row of
column values). A value in a row can also be a scalar subquery (a subquery that returns a single
row consisting of a single column value).

Within a VALUES clause, the operands of a value expression can be numeric, string, datetime, or
interval values; however, an operand cannot reference a column (except in the case of a scalar
or row subquery returning a value or values in its result table).

Requirements for Inserted Rows

Each row to be inserted must satisfy the constraints of the table or underlying base table of the
view. A table constraint is satisfied if the check condition is not false—it is either true or has an
unknown value.

Using Compatible Data Types

To insert a row, you must provide a value for each column in the table that has no default value.
The data types of the values in each row to be inserted must be compatible with the data types of
the corresponding target columns.

Inserting Character Values

Any character string data type is compatible with all other character string data types that have
the same character set. For fixed length, an inserted value shorter than the column length is padded
on the right with blank characters of the appropriate character set (for example, ISO88591 blanks
(HEX20). If the value is longer than the column length, string truncation of nonblank trailing
characters returns an error, and the truncated string is not inserted.

For variable length, a shorter inserted value is not padded. As is the case for fixed length, if the
value is longer than the column length, string truncation of nonblank trailing characters returns an
error, and the truncated string is not inserted.

Inserting Numeric Values

INSERT Statement 119

Any numeric data type is compatible with all other numeric data types. If you insert a value into
a numeric column that is not large enough, an overflow error occurs. If a value has more digits to
the right of the decimal point than specified by the scale for the column definition, the value is
truncated.

Inserting Interval Values

A value of interval data type is compatible with another value of interval data type only if the two
data types are both year-month or both day-time intervals.

Inserting Date and Time Values

Date, time, and timestamp are the three Trafodion SQL datetime data types. A value with a datetime
data type is compatible with another value with a datetime data type only if the values have the
same datetime fields.

Inserting Nulls

and inserting values with specific data types, you might want to insert nulls. To insert null, use the
keyword NULL. NULL only works with the VALUES clause. Use cast (null as type) for
select-ist.

Examples of INSERT

e Insert a row into the CUSTOMER table without using a target-col-I1ist:

INSERT INTO sales.customer
VALUES (4777, 'ZYROTECHNIKS', '11211 40TH ST.',
'BURLINGTON', 'MASS.', '01803', 'A2');

--- 1 row(s) inserted.

The column name list is not specified for this INSERT statement. This operation works because
the number of values listed in the VALUES clause is equal to the number of columns in the
CUSTOMER table, and the listed values appear in the same order as the columns specified
in the CREATE TABLE statement for the CUSTOMER table.

By issuing this SELECT statement, this specific order is displayed:

SELECT * FROM sales.customer
WHERE custnum = 4777;

CUSTNUM CUSTNAME STREET ... POSTCODE CREDIT

4777 ZYROTECHNIKS 11211 40TH ST. ... 01803 A2

--- 1 row(s) selected.

e Insert a row into the CUSTOMER table using a target-col-1ist:

INSERT INTO sales.customer
(custnum, custname, street, city, state, postcode)
VALUES (1120, 'EXPERT MAILERS', '5769 N. 25TH PL',
'PHOENIX', 'ARIZONA', '85016');

--- 1 row(s) inserted.

Unlike the previous example, the insert source of this statement does not contain a value for
the CREDIT column, which has a default value. As a result, this INSERT must include the column
name list.

This SELECT statement shows the default value 'C1' for CREDIT:
SELECT * FROM sales.customer
WHERE custnum = 1120;

CUSTNUM CUSTNAME STREET POSTCODE CREDIT

1120 EXPERT MAILERS 5769 N. 25TH PL 85016 Cl

120 SQL Statements

--- 1 row(s) selected.

Insert multiple rows into the JOB table by using only one INSERT statement:

INSERT INTO persnl.job

VALUES (100, '"MANAGER'),
(200, '"PRODUCTION SUPV'),
(250, 'ASSEMBLER') ,
(300, 'SALESREP') ,
(400, 'SYSTEM ANALYST'),
(420, '"ENGINEER'),
(450, '"PROGRAMMER') ,
(500, "ACCOUNTANT') ,
(600, '"ADMINISTRATOR') ,
(900, 'SECRETARY') ;

--- 10 row(s) inserted.

The PROJECT table consists of five columns using the data types numeric, varchar, date,
timestamp, and interval. Insert values by using these types:
INSERT INTO persnl.project

VALUES (1000, 'SALT LAKE CITY', DATE '2007-10-02',
TIMESTAMP '2007-12-21 08:15:00.00', INTERVAL '30' DAY);

--- 1 row(s) inserted.

Suppose that CUSTLIST is a view of all columns of the CUSTOMER table except the credit
rating. Insert information from the SUPPLIER table into the CUSTOMER table through the
CUSTLIST view, and then update the credit rating:

INSERT INTO sales.custlist

(SELECT * FROM invent.supplier
WHERE suppnum = 10) ;

UPDATE sales.customer

SET credit = 'A4'

WHERE custnum = 10;
You could use this sequence in the following situation. Suppose that one of your suppliers has
become a customer. If you use the same number for both the customer and supplier numbers,
you can select the information from the SUPPLIER table for the new customer and insert it into
the CUSTOMER table through the CUSTLIST view (as shown in the example).
This operation works because the columns of the SUPPLIER table contain values that correspond
to the columns of the CUSTLIST view. Further, the credit rating column in the CUSTOMER table

is specified with a default value. If you want a credit rating that is different from the default,
you must update this column in the row of new customer data.

Examples of Self-Referencing Inserts

This is an example of a self-referencing insert:

insert into tablel select pk+?, b, ¢ from tablel

This is an example of a self-referencing insert where the target of the insert, table1, is also
used in a subquery of the insert-source:

insert into tablel
select a+l16, b, c¢ from table2 where table2.b not in
(select b from tablel where a > 16)

The source table is not affected by the insert.

INSERT Statement 121

INVOKE Statement

e “Syntax Description of INVOKE ”
e “Considerations for INVOKE”
e “Example of INVOKE”

The INVOKE statement generates a record description that corresponds to a row in the specified
table, view, or index. The record description includes a data item for each column in the table,
view, or index, including the primary key but excluding the SYSKEY column. It includes the SYSKEY
column of a view only if the view explicitly listed the column in its definition.

INVOKE is a Trafodion SQL extension.

INVOKE table-name

Syntax Description of INVOKE

table-name

specifies the name of a table, view, or index for which to generate a record description. See
“Database Object Names” (page 198).

Considerations for INVOKE

Required Privileges
To issue an INVOKE statement, one of the following must be true:
e Youare DB_ ROQOT.
e You are the owner of the table.

e You have the SHOW component privilege for the SQL_OPERATIONS component. The SHOW
component privilege is granted to PUBLIC by default.

e You have the SELECT privilege on the target table.
Example of INVOKE

This command generates a record description of the table T:

SQL>invoke trafodion.seabase.t;

-- Definition of Trafodion table TRAFODION.SEABASE.T
-- Definition current Wed Mar 5 10:36:06 2014

(

A INT NO DEFAULT NOT NULL NOT DROPPABLE
)
PRIMARY KEY (A ASC)

--- SQL operation complete.

122 SQL Statements

MERGE Statement

e “Syntax Description of MERGE ”
e “Considerations for MERGE ”

e “Example of MERGE ”

The MERGE statement:

o Updates a table if the row exists or inserts into a table if the row does not exist. This is upsert
functionality.

e Updates (merges) matching rows from one table to another.

MERGE INTO table [using-clause]
on-clause
{ [when-matched-clause] | [when-not-matched-clausel} ...

using-clause is:
USING (select-query) AS derived-table-name [derived-column-names]

on-clause is:
ON predicate

when-matched-clause is:
WHEN MATCHED THEN UPDATE SET set-clause [WHERE predicatel]
WHEN MATCHED THEN DELETE

when-not-matched-clause is:
WHEN NOT MATCHED THEN INSERT insert-values-1ist

insert-values-1list is:
[(columnl, ..., columnN)] VALUES (valuel, ..., valueNl)

Syntax Description of MERGE
table
is the ANSI logical name for the table.
ON predicate

used to determine if a row is or is not present in the table. The ON predicate must be a predicate
on the clustering key of the table if the MERGE has a when-not -matched-clause. The
clustering key can be a single or multi-column key.

The ON predicate must select a unique row if the MERGE has a when-not -matched-clause.
Considerations for MERGE
Upsert Using Single Row

A MERGE statement allows you to specify a set of column values that should be updated if the row
is found, and another row to be inserted if the row is not found. The ON predicate must select
exactly one row that is to be updated if the MERGE statement has an INSERT clause.

In a MERGE statement, at least one of the clauses when-matched or when-not -matched must
be specified. Note the following:

o If a when-matched clause is present and the WHERE predicate in the UPDATE is satisfied,
the columns in the SET clause are updated.

e Ifa when-matched clause is present and the WHERE predicate in the UPDATE is not satisfied,
the columns in the SET clause are not updated.

MERGE Statement 123

e Ifa when-matched clause is present and the UPDATE has no WHERE predicate, the columns
in the SET clause are updated.

o If a when-not-matched clause is present and columns are explicitly specified in the INSERT
clause, the specified values for those columns are inserted. Missing columns are updated using
the default values for those columns.

This example updates column b to 20 if the row with key column a with value 10 is found. A new
row (10, 30) is inserted if the row is not found in table t.
MERGE INTO t ON a = 10

WHEN MATCHED THEN UPDATE SET b = 20

WHEN NOT MATCHED THEN INSERT VALUES (10, 30)
This example updates column b to 20 if column a with value 10 is found. If column a with value
10 is not found, nothing is done.
MERGE INTO t ON a = 10

WHEN MATCHED THEN UPDATE SET b = 20
This example inserts values (10, 30) if column a with value 10 is not found. If column a with value
10 is found, nothing is done.

MERGE INTO t ON a = 10
WHEN NOT MATCHED THEN INSERT VALUES (10, 30)

Conditional Upsert Using Single Row

In this example, the MERGE statement uses a single-row conditional upsert that inserts one row
(keycol, col, segnum)value if a row with that keycol (parameterspecified) value is not yet
in table d. Otherwise, the MERGE statement updates that row's col and seqnum columns if that
row's segnum is higher than the current (parameter-specified) sequence number. If the matching
row's segnum column value is not higher than the current sequence number, then that matched
row is not updated.
MERGE INTO d ON keycol = ?

WHEN MATCHED THEN UPDATE SET (col, segnum) = (?, ?) WHERE segnum < ?

WHEN NOT MATCHED THEN INSERT (keycol, col, segnum) VALUES (?, ?, ?)
The optional WHERE predicate in the when-matched-then-update clause is useful when the
update is wanted only if the given condition is satisfied. Consider this use case. Suppose object
X is represented as a row in table T. Also, suppose a stream of updates exists for object X. The
updates are marked by a sequence number at their source. However, the updates flow through a
network which does not guarantee first-in, first-out delivery. In fact, the updates may arrive
out-of-order to the database. In this case, the last update (the one with the current highest sequence
number) should always win in the database. The MERGE statement shown above can be used to
satisty this use case:

o A stream of updates for table d exists that are sequenced by a sequence number segnum at
their source

o The updates race through the network and may arrive in the database in any order, and
e You want to guarantee that the last update (the one with the highest seqnum) always wins in
the database.

Restrictions
o The MERGE statement does not use ESP parallelism.
* A merged table cannot be a view.
e Merge is not allowed if the table has constraints.

o The on-clause cannot contain a subquery. This statement is not allowed:
MERGE INTO t ON a = (SELECT a FROM t1) WHEN ...

124 SQL Statements

o The optional WHERE predicate in the when-matched clause cannot contain a subquery or an
aggregate function. These statements are not allowed:
MERGE INTO t ON a = 10

WHEN MATCHED THEN UPDATE SET b=4 WHERE b= (SELECT b FROM t1)
WHEN NOT MATCHED THEN INSERT VALUES (10,30);

MERGE INTO t ON a=10
WHEN MATCHED THEN UPDATE SET b=4 WHERE b=MAX (b)
WHEN NOT MATCHED THEN INSERT VALUES (10,30);

o The UPDATE SET clause in a MERGE statement cannot contain a subquery. This statement is
not allowed:

MERGE INTO t ON a = 1 WHEN MATCHED THEN UPDATE SET b = (SELECT a FROM t1)

o The insert-values-1list clause in a MERGE statement cannot contain a subquery. This
statement is not allowed:

MERGE INTO t ON a = 1 WHEN NOT MATCHED THEN INSERT VALUES ((SELECT a FROM t1))

e Use of a non-unique on-clause for a MERGE update is allowed only if no INSERT clause
exists.

MERGE INTO t USING (SELECT a,b FROM tl) x ON t.a=x.a
WHEN MATCHED THEN UPDATE SET b=x.b;

In this example, t.a=x.a is not a fully qualified unique primary key predicate.

e Use of a non-unique on-clause for a MERGE delete is allowed only if no INSERT clause
exists.

MERGE INTO t USING (SELECT a,b FROM tl) x ON t.a=x.a
WHEN MATCHED THEN DELETE;

MERGE From One Table Into Another

The MERGE statement can be used to upsert all matching rows from the source table into the target
table. Each row from the source table is treated as the source of a single upsert statement. The
using-clause contfains the select-query whose output is used as the source to the MERGE
statement.

The source select-gquery must be renamed using the AS clause.

MERGE INTO t ON

USING (select-query) AS Z(X) ON col = Z.X

WHEN MATCHED THEN
For each row selected out of the select-query, the MERGE statement is evaluated. Values selected
are used in the on-clause to join with the column of the merged table. If the value is found, it is
updated. If it is not found, the insert is done. The restrictions are the same as those for “Upsert
Using Single Row” (page 123).

Example of MERGE

This query extracts derived columns a and b from the USING query as derived table z and use
each row to join to the merged table t based on the on-clause. For each matched row, column
b in table t is updated using column b in derived table z. For rows that are not matched, values
z.a and z.b are inserted.
MERGE INTO t USING

(SELECT * FROM tl) z(a,b) on a = z.a

WHEN MATCHED THEN UPDATE SET b = z.b

WHEN NOT MATCHED THEN INSERT VALUES (z.a, z.Db);

MERGE Statement 125

PREPARE Statement

e “Syntax Description of PREPARE”
e “Considerations for PREPARE”
e “Examples of PREPARE”

The PREPARE statement compiles an SQL statement for later use with the EXECUTE statement in the
same Trafodion Command Interface (TrafCl) session.

You can also use PREPARE to check the syntax of a statement without executing the statement in
the same TrafCl session.

PREPARE statement-name FROM statement

Syntax Description of PREPARE

statement-name
is an SQL identifier that specifies a name to be used for the prepared statement. See “Identifiers”
(page 221). The statement name should be a character string and not a numeric value. If you
specify the name of an existing prepared statement, the new statement overwrites the previous
one.

statement
specifies the SQL statement to prepare.

Considerations for PREPARE

Availability of a Prepared Statement
It a PREPARE statement fails, any subsequent attempt to run EXECUTE on the named statement fails.

Only the TrafCl session that executes the PREPARE can run EXECUTE on the prepared statement.
The prepared statement is available for running EXECUTE until you terminate the TrafCl session.

A statement must be compiled by PREPARE before you can run EXECUTE on it. However, after the

statement is compiled, you can run EXECUTE on the statement multiple times without recompiling
the statement.

Examples of PREPARE

e Prepare a SELECT statement, checking for syntax errors:

SQL>prepare empsal from
+>select salary from employee
+>where jobcode = 100;

% ERROR[4082] Table, view or stored procedure NEO.INVENT.EMPLOYEE does not exist or is inaccessible.
% ERROR[8822] The statement was not prepared.

SQL>

e Prepare a SELECT statement with an unnamed parameter (?) and later run EXECUTE on it:

SQL>prepare findsal from
+>select salary from persnl.employee
+>where jobcode = ?;

--- SQL command prepared.

SQL>execute findsal using 450;
SALARY

32000.00
33000.50
40000.00

126 SQL Statements

32000.00
45000.00

--- 5 row(sg) selected.

SQL>

Prepare a SELECT statement with a named parameter (? param-name) and later run EXECUTE
on it:

SQL>prepare findsal from

+>select salary from persnl.employee

+>where jobcode = ?job;

--- SQL command prepared.

SQL>set param ?job 450

SQL>execute findsal;
SALARY

--- 5 row(s) selected.

SQL>
For more information, see the “EXECUTE Statement” (page 98).

PREPARE Statement 127

REGISTER USER Statement

e “Syntax Description of REGISTER USER”
e “Considerations for REGISTER USER”
e “Examples of REGISTER USER”

The REGISTER USER statement registers a user in the SQL database, associating the user's login
name with a database username.

REGISTER USER is a Trafodion SQL extension.

NOTE: The user's login name is also the name by which the user is defined in the directory
service, so the syntax description below refers to it as the directory-service username.

REGISTER USER directory-service-username [AS database-username]

Syntax Description of REGISTER USER

directory-service-username

is the name that identifies the user in the directory service. This is also the name the user specifies
when logging in to a Trafodion database. The directory-service-username is a regular
or delimited case-insensitive identifier. See “Case-Insensitive Delimited Identifiers” (page 221).

database-username

is a regular or delimited case-insensitive identifier that denotes the username as defined in the
database. The database username cannot be identical to a registered database username or
an existing role name. However, it can be the same as the directory-service username. If you
omit the AS database-username clause, the database username will be the same as the
directory-service username.

Considerations for REGISTER USER
Who Can Register a User

To register a user, you must have user administrative privileges. You have user administrative
privileges if you have been granted the MANAGE_USERS component privilege. Initially, DB__ROOT
is the only database user who has been granted the MANAGE_USERS component privilege.

Add the User to the Directory Before Registering the User

Add the user to the appropriate directory service before you register the user. Otherwise, REGISTER
USER will fail.

AS database-username Clause

Use the AS database-username clause to assign a database username that is different than
the username defined in the directory service. In particular, it is often convenient to assign a
database username that is shorter and easier to type than the directory-service username. For
example, if the user logs on as John.Allen.Doe.the.Second@mycompany.com, you might want to
assign the user a database username of JDoe.

Database usernames are authorization IDs. If you specify a name already assigned to another

user or fo an existing role, the command will fail. For more information, see “Authorization IDs”
(page 193).

Reserved Names
PUBLIC, _SYSTEM, NONE, and database usernames beginning with DB__ are reserved. You

cannot register users with any such name.

128 SQL Statements

Username Length

Database usernames are limited to 128 characters.

Examples of REGISTER USER

» To register a user and assign a database username different than the user's login name:
REGISTER USER "jsmithehp.com" AS jsmith;

o To register a user without specifying a database username, so the database username will
be the same as the user's login name:

REGISTER USER "jsmith@hp.com";

REGISTER USER Statement 129

REVOKE Statement
e “Syntax Description of REVOKE”
e “Considerations for REVOKE”
e “Examples of REVOKE”

The REVOKE statement revokes access privileges on an SQL object from specified users or roles.

® IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

REVOKE [GRANT OPTION FOR]

{privilege [,privilegel...| ALL [PRIVILEGES] }
ON [object-typel [schema.]object
FROM {grantee [,grantee]...}

[[GRANTED] BY grantor]
[RESTRICT | CASCADE]

privilege is:
SELECT

| DELETE

| INSERT

| REFERENCES

| UPDATE

| EXECUTE

| USAGE

object-type is:
TABLE
| PROCEDURE
| LIBRARY
| FUNCTION

grantee is:
auth-name

grantor is:
role-name

Syntax Description of REVOKE
GRANT OPTION FOR

specifies that the grantee’s authority to grant the specified privileges to other users or roles
(that is, WITH GRANT OPTION) be revoked. This is an optional clause. When this clause is
specified, only the ability to grant the privilege to another user is revoked.

privilege |, privilege] ... | ALL [PRIVILEGES]
specifies the privileges to revoke. You can specify these privileges for an object:

SELECT Revokes the ability to use the SELECT statement.

DELETE Revokes the ability to use the DELETE statement.

INSERT Revokes the ability to use the INSERT statement.

REFERENCES Revokes the ability to create constraints that reference the object.

UPDATE Revokes the ability to use the UPDATE statement.

EXECUTE Revokes the ability to execute a stored procedure using a CALL statement or revokes the ability
to execute a user-defined function (UDF).

USAGE Revokes the ability to access a library using the CREATE PROCEDURE or CREATE FUNCTION
statement. Revokes read access to the library’s underlying library file.

AlL Revokes the ability to use all privileges that apply to the object type. When you specify ALL for
a table or view, this includes the SELECT, DELETE, INSERT, REFERENCES, and UPDATE

130 SQL Statements

https://wiki.trafodion.org/wiki/index.php/Enabling_Security_Features_in_Trafodion

privileges. When the object is a stored procedure or user-defined function (UDF), this includes
the EXECUTE privilege. When the object is a library, this includes the UPDATE and USAGE

privileges.

ON [object-type] [schema.]object
specifies an object on which to grant privileges. object -type can be:

e [TABLE] [schema.]object, where object is a table or view. See “Database Object
Names” (page 198).

e [PROCEDURE] [schema.]procedure-name, where procedure-name is the name of
a stored procedure in Java (SPJ) registered in the database. See “Database Object Names”
(page 198).

e [LIBRARY] [schema.]library-name, where 1ibrary-name is the name of a library
object in the database. See “Database Object Names” (page 198).

e [FUNCTION] [schema.]function-name, where function-name is the name of a
user-defined function in the database. See “Database Object Names” (page 198).

FROM {grantee [,grantee] ... }
specifies an auth-name from which you revoke privileges.

auth-name

specifies the name of an authorization ID from which you revoke privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered database username, existing role
name, or PUBLIC. The name is a regular or delimited case-insensitive identifier. See
“Case-Insensitive Delimited Identifiers” (page 221).

[GRANTED] BY grantor
allows you to revoke privileges on behalf of a role. If not specified, the privileges will be revoked
on your behalf as the current user/grantor.

role-name

specifies a role on whose behalf the GRANT operation was performed. To revoke the privileges
on behalf of a role, you must be a member of the role, and the role must have the authority to
revoke the privileges; that is, the role must have been granted the privileges WITH GRANT
OPTION.

[RESTRICT | CASCADE]

If you specifty RESTRICT, the REVOKE operation fails it any privileges were granted or any
objects were created based upon the specified privileges.

It you specity CASCADE, any such dependent privileges and objects are removed as part of
the REVOKE operation.

The default value is RESTRICT.

Considerations for REVOKE

Authorization and Availability Requirements

You can revoke privileges for which you are the grantor, either through a direct grant or a grant
done on your behalf. If you are revoking privileges that were granted on behalf of a role, you must
be a member of the role, and you must specify the role in the [GRANTED] BY clause.

If one or more privileges have not been granted, SQL returns a warning.

When you specify the CASCADE option, all objects that were created based upon the privileges
being revoked are removed.

Examples of REVOKE

o To revoke the privilege to grant SELECT and DELETE privileges on a table from a user:

REVOKE Statement 131

REVOKE GRANT OPTION FOR SELECT, DELETE ON TABLE invent.partloc
FROM jsmith;

o To revoke the privilege to grant SELECT and DELETE privileges on a table from a user and a
role:

REVOKE GRANT OPTION FOR SELECT, DELETE ON TABLE invent.partloc
FROM jsmith, clerks;

o To revoke a user’'s SELECT privileges on a table:

-- User administrator grants the SELECT privilege to JSMITH:
GRANT SELECT ON TABLE invent.partloc TO jsmith

WITH GRANT OPTION;
-- JSMITH grants the SELECT privilege to AJONES:
GRANT SELECT ON TABLE invent.partloc TO ajones;
-- If the user administrator attempts to revoke the SELECT
-- privilege from JSMITH, this would fail because
-- of the privilege granted to AJONES based on the
-- privilege granted to JSMITH.
-- To successfully revoke the SELECT privilege from
-- JSMITH, the SELECT privilege granted to AJONES
-- must be revoked first. For this example:
-- 1. JSMITH revokes the SELECT privilege granted to AJONES:
REVOKE SELECT ON TABLE invent.partloc FROM ajones;
-- 2. User administrator revokes the SELECT privilege on the
-- table from JSMITH:
REVOKE SELECT ON TABLE invent.partloc FROM jsmith RESTRICT;
-- The REVOKE operation succeeds.
-- An easier way to make the REVOKE operation successful is
-- to use the CASCADE option:
REVOKE SELECT ON TABLE invent.partloc FROM jsmith CASCADE;
-- The REVOKE operation succeeds because the CASCADE option
-- causes all specified privileges, and all privileges that
-- were granted based upon the specified privileges, to be
-- removed.

e Administration in the shipping department decides that the CLERKS role should no longer be
able to grant privileges on the invent .partloc table. Fred has recently moved to another
department, so JSMITH revokes the SELECT privilege on the invent .partloc table from
Fred, who was granted the privilege by CLERKS. Then, JSMITH revokes the grant option from
CLERKS:

REVOKE SELECT on table invent.partloc FROM fred
GRANTED BY clerks;

REVOKE GRANT OPTION FOR SELECT ON TABLE invent.partloc FROM
clerks;

132 SQL Statements

REVOKE COMPONENT PRIVILEGE Statement

e “Syntax Description of REVOKE COMPONENT PRIVILEGE”
e “Considerations for REVOKE COMPONENT PRIVILEGE”
e “Example of REVOKE COMPONENT PRIVILEGE”

The REVOKE COMPONENT PRIVILEGE statement removes one or more component privileges from
a user or role. See “Privileges” (page 247) and “Roles” (page 248).

REVOKE COMPONENT PRIVILEGE is a Trafodion SQL extension.

® IMPORTANT: This statement works only when authentication and authorization are enabled in
Trafodion. For more information, see Enabling Security Features in the Trafodion wiki.

REVOKE [GRANT OPTION FOR]
COMPONENT PRIVILEGE {privilege-namel, privilege-name]...}
ON component-name
FROM grantee
[[GRANTED] BY grantor]

grantee is:
auth-name

grantor is:
role-name

Syntax Description of REVOKE COMPONENT PRIVILEGE
GRANT OPTION FOR

specifies that the grantee’s authority to grant the specified component privileges to other users
or roles (that is, WITH GRANT OPTION) be revoked. This is an optional clause. When this
clause is specified, only the ability to grant the component privilege to another user is revoked.
privilege-name
specifies one or more component privileges to revoke. The comma-separated list can include
only privileges within the same component.
ON component -name

specifies a valid component name on which to revoke component privileges. Currently, the
only valid component name is SQL_OPERATIONS.

FROM grantee
specifies an auth-name from which you revoke the component privileges.

auth-name
specifies the name of an authorization ID from which you revoke privileges. See “Authorization
IDs” (page 193). The authorization ID must be a registered da