

Trafodion Blueprint Design Document:

ANSI schemas

Title ANSI schemas

Date January 26, 2015

Author Trafodion Security Team

Audience Open Source community

Abstract This document describes how schemas are managed in Trafodion.

Document History

Document
Version

Date

Changes

1.0 10/28/2014 • Initial revision
1.1 11/6/2014 • Adds description of private and shared schemas
1.2 11/12/2014 • Correction of typos, other clarifications following team review
1.3 11/19/2014 • Update after project review, shared schema owners no

longer will have DML access to objects in their schema
1.4 1/26/2015 • Updated to indicate portions that have been completed for

release 1.0.

Trafodion Schemas

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Legal Notice

The information contained herein is subject to change without notice. This documentation is distributed on
an “AS IS” basis, without warranties or conditions of any kind, either express or implied. Nothing herein
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

NOTICE REGARDING OPEN SOURCE SOFTWARE: Project Trafodion is licensed under the Apache
License, Version 2.0 (the "License"); you may not use software from Project Trafodion except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

 Page 2

http://www.apache.org/licenses/LICENSE-

Trafodion Schemas

TABLE OF CONTENTS

1 INTRODUCTION .. 4
1.1 OVERVIEW – EXISTING TRAFODION SCHEMAS ... 4
1.2 REQUIREMENTS AND DESIGN – ANSI SCHEMAS IN TRAFODION.. 4

1.2.1 Private and shared schemas .. 4
1.2.2 Schema-level authority .. 5

2 EXTERNALS .. 6
2.1 CREATE SCHEMA .. 6
2.2 CREATE ROLE .. 8
2.3 DROP ROLE ... 9
2.4 DROP SCHEMA ... 10
2.5 GET SCHEMA FOR USER/ROLE ... 10
2.6 REGISTER USER ... 11
2.7 SHOWDDL SCHEMA .. 12
2.8 UNREGISTER USER ... 13

3 INTERNALS ... 14
3.1 SYNTAX/PARSER CLEANUP ... 14
3.2 NEW MODULES ... 15
3.3 METADATA... 15
3.4 UPGRADE .. 15
3.5 IMPLEMENTATION NOTES ... 16
3.6 FUTURES NOTES ... 17

 Page 3

Trafodion Schemas

1 Introduction
This document describes the addition of ANSI schema support in Trafodion.

1.1 Overview – Existing Trafodion schemas
The term “schema” is used differently in different database offerings, but the common (and ANSI)
definition is the one Trafodion follows, specifically that a schema is set of database objects grouped
under a common label and managed by a single authorization ID.

Currently Trafodion schemas are only qualification labels for database objects. The CREATE
SCHEMA command does nothing. When an object is created, the schema name does not have to
refer to an existing schema.

There is no authorization at the schema level. Any database user can create an object in any schema.
There is no concept of a schema owner or administrator to allow or deny access to the schema.

Trafodion uses the term database to describe the set of defined schemas. The term catalog is also
used, but is being replaced with the preferred term database.

1.2 Requirements and design – ANSI schemas in Trafodion
ANSI schemas require a single authorization ID to own and administer a schema. Trafodion will allow
the authorization ID to be a database user or a role. Creation of objects in a schema will require the
schema to have previously been created; no longer will objects be allowed to specify a non-existent
schema as a label name qualifier.

1.2.1 Private and shared schemas
Trafodion will support two classes of schema, private and shared.

Authority in a shared schema is similar to the current Trafodion behavior. Any user can create an
object in a shared schema, and the user owns that object and has full authority on the object. One
significant difference from the current Trafodion implementation is that the schema owner will also have
full DDL authority on any object created in the schema, regardless of who created the object. If the
schema owner is a role, any user granted the role has full DDL authority on all objects in the schema.
The schema owner can drop or alter any object in their schema, or perform any utility operation such as
update statistics.

By default, in a private schema, only the schema owner can create objects. The schema owner can
grant access to objects in their schema. This is the ANSI and Oracle model for schemas and schema
authority.

If a user has the component privilege CREATE ON SQL_OPERATIONS (or a specific create
operation), they can create objects in a private schema. They will not own the object—ownership will
be given to the schema owner. The creator of the object will be granted full DML privileges on the
object they create, but the schema owner can revoke any or all of those privileges. Only the schema
owner can alter or drop objects in a private schema.

 Page 4

Trafodion Schemas

 PRIVATE SHARED
Who owns
objects

Schema owner Object creator – user that issued create
object command.

Who can create
objects

Schema owner, users or roles granted
create privilege

Any database user

Who can grant
access to
objects

Schema owner Object owner/creator

Who can alter
objects in
schema

Schema owner, users granted alter
privilege

Schema owner plus object creator and
users granted the alter privilege

Who can drop
objects in
schema

Schema owner, users granted drop
privilege

Schema owner plus object creator and
users granted the drop privilege

All Trafodion reserved1 schemas are private. They are owned by DB__ROOT. No one can explicitly
create objects in Trafodion reserved schemas – the set of objects is defined when Trafodion is
initialized.

If authorization is not enabled, all non-reserved schemas are shared. If authorization is dropped, all
existing non-reserved schemas are converted to shared schemas and the owner is set to DB__ROOT.
If authorization is subsequently initialized, all non-reserved schemas remain shared. There is currently
no way to convert a shared schema back to private.

Upgrade will convert all existing schemas to shared schemas owned by DB__ROOT. For more
information on upgrade, see section 3.4 Upgrade.

1.2.2 Schema-level authority

The schema owner has full DDL authority on all objects in their schema. That means even though
another user may have created the object, the schema owner can alter or drop any object.

The schema owner may be a role. In that case, all users who are granted the role have full authority on
all objects in the schema owned by the schema owner and DDL authority for objects owned by other
users or roles. Note that currently the GRANTED BY clause for object level grants has not been
implemented. Until it is implemented, it will not be possible for users to grant object privileges on behalf
of a role.

The schema owner may grant access on any object they own to another user. In a shared schema, the
object owner may grant access to other users and roles.

DB__ROOT may also grant access on any object to another user or role. For both shared and private
schemas, DB__ROOT is granting on behalf of the object owner.

Eventually schema owners will be able to grant authority at the schema level. Schema-level privileges
will apply to all objects in a schema. If an object is created in a schema after a schema-level privilege
is granted, the privilege will still apply.

1 Reserved schemas in Trafodion begin with an underscore

 Page 5

Trafodion Schemas

2 Externals
This section describes the commands used to manage schemas in a Trafodion database. For existing
commands, the changes relative to ANSI schemas are shown in green.

All changes described in the Externals section have been implemented in release 1.0 with the
exception of the proposed changes to CREATE ROLE and REGISTER USER. Those changes are not
part of release 1.0 and are not currently in progress.

2.1 CREATE SCHEMA
The CREATE SCHEMA command creates a new schema in the database. Previously the CREATE
SCHEMA command was a nop; effectively this is a new command.

CREATE [schema-class] SCHEMA schema-clause
schema-class is: [PRIVATE | SHARED]
schema-clause is:
 { schema-name [AUTHORIZATION authorizationID] | AUTHORIZATION authorizationID }

schema-class
indicates whether access to the schema is restricted to the authorization ID by default, or if any
database user may add objects to the schema. The default class for a schema is PRIVATE. Note,
schemas created in 0.9 or earlier are SHARED schemas.

schema-name
is a name for the new schema and is a SQL identifier that specifies a name that is not a current schema
name. This parameter is optional, however, if you do not specify a schema name, you must specify the
authorization clause. If a schema name is not provided, the authorization ID is used for the schema
name. If the authorization ID name matches an existing schema, the command fails.

authorizationID
is the name of the user or role who will own and administer the schema. If this clause is not present, the
current user becomes the schema owner.

Semantic Considerations
• Reserved Schema Names

Schema names that begin with a leading underscore (_) are reserved for internal use.

• AUTHORIZATION Clause
The AUTHORIZATION clause is optional. If you omit this clause, the current user becomes the
schema owner. Note, an authorization ID is assigned to a schema even if authorization is not
enabled for the Trafodion database, however no enforcement occurs unless authorization is
enabled.

The schema owner can perform operations on the schema and on objects within the schema.

For example:
o Alter DDL of objects
o Drop the schema
o Drop objects
o Manage objects with utility commands such as UPDATE STATISTICS and PURGEDATA.

 Page 6

Trafodion Schemas

• Who Can Create a Schema
The privilege to create a schema is controlled by the component privilege CREATE_SCHEMA
for the SQL_OPERATIONS component. By default, this privilege is granted to PUBLIC, but it
can be revoked by DB__ROOT.

When authorization is initialized, the following authorization IDs are granted the
CREATE_SCHEMA privilege:
o PUBLIC
o DB__ROOT
o DB__ROOTROLE

DB__ROOT or anyone granted the DB__ROOTROLE role can grant the CREATE_SCHEMA
privilege.

Examples
This example creates a private schema named MYSCHEMA owned by the current user:
CREATE SCHEMA myschema;

This example creates a shared schema and designates user GaryB as the schema owner:
CREATE SHARED SCHEMA hockey_league AUTHORIZATION GaryB;

This example creates a private schema and designates role DBA as the schema owner: Users with the
role DBA can subsequently grant access to the objects in the schema to other users or roles.
CREATE PRIVATE SCHEMA Contracts AUTHORIZATION DBA;

This example creates a schema named JSMITH.
CREATE PRIVATE SCHEMA AUTHORIZATION JSmith;

 Page 7

Trafodion Schemas

2.2 CREATE ROLE

The CREATE ROLE statement creates a SQL role and optionally a schema managed by that role.

CREATE ROLE role-name [WITH ADMIN grantor] [schema-clause]
 schema-clause is: [schema-class] SCHEMA [schema-name]
 grantor is: database-username
 schema-class is: PRIVATE | SHARED
 schema-name is: SQL-identifier

role-name:
is a SQL identifier that specifies the new role. role-name cannot be an existing role name.
role-name cannot be a registered database username. However, role-name can be a
configured directory-service username.

WITH ADMIN grantor
specifies a role owner other than the current user. This is an optional clause.

database-username
specifies a registered database username to whom you assign the role owner.

schema-class SCHEMA schema-name
if specified, creates a schema with the role as the owner of the schema. If the schema name
is omitted, the name of the role is used as the schema name. If a schema with the role
name already exists, the command fails. If the schema class is omitted, a private schema is
created. The schema clause is optional when creating a role; if omitted, no schema is
created, only a role.

Semantic Considerations
• To create a role, you must either be DB__ROOT or have been granted the MANAGE_ROLES

privilege for SQL_OPERATIONS.
• _SYSTEM, PUBLIC, NONE, as well as names beginning with DB__ are reserved. You cannot

specify a role name with any such name.
• You can give role ownership to a user by specifying the user in the WITH ADMIN grantor clause

with the grantor as the user. The role owner can perform the following operations:
• Grant and revoke the role to users
• Drop the role

• Role ownership is permanent. After the role is created, the ownership of a role cannot be
changed or assigned to another user.

• If the SCHEMA clause is specified, any user granted the role can manage the schema and has
full DDL authority for all objects within the schema. Note, until the GRANTED BY is
implemented, users will not be able to grant object-level privileges on behalf of a role.

Examples
This example creates a role named MANAGER with administration by user JSmith:
CREATE ROLE MANAGER WITH ADMIN JSmith;

This example creates a role and private schema named SALES:
CREATE ROLE SALES SCHEMA;

 Page 8

Trafodion Schemas

2.3 DROP ROLE

The DROP ROLE statement deletes a SQL role.

DROP ROLE role-name

role-name:
is an existing role name. The role cannot be dropped if any of the following are true:

• Any privileges are granted to the role
• The role is granted to any users
• The role owns any schemas

Semantic Considerations
• To drop a role, you must own the role or have user administrative privileges for the role. You

have user administrative privileges for the role if you have been granted the MANAGE_ROLES
component privilege.

• Role names beginning with DB__ are reserved and can only be dropped by DB__ROOT.
• You can determine all users to whom a role has been granted with the SHOWDDL ROLE

statement.
• Active Sessions for the User - when you drop a role from a user, the effects on any active

sessions for the user are undefined. Trafodion recommends that you disconnect such sessions.
The user then reconnects to establish new sessions with the updated set of privileges.

• Before You Drop a Role
• You must revoke all privileges granted to the role
• You must revoke the role from all users to whom it was granted
• You must drop all schemas the role is a manager for (owner of).

Examples
This example drops the SALES role:
DROP ROLE SALES;

 Page 9

Trafodion Schemas

2.4 DROP SCHEMA
The DROP SCHEMA statement deletes a Trafodion SQL schema from a Trafodion database.

DROP SCHEMA schema-name [RESTRICT | CASCADE]

schema-name
is the name of the schema to delete.

RESTRICT
If you specify RESTRICT, an error is reported if the specified schema is not empty. The default is
RESTRICT.

CASCADE
If you specify CASCADE, objects in the specified schema, and the schema itself, are dropped. Any
objects in other schemas that were dependent on objects in this schema are dropped as well.

Semantic Considerations
To drop a schema, one of the following must be true:

• you are the owner of the schema
• you have been granted the role that owns the schema,
• you have been granted the DROP_SCHEMA privilege

Examples
This example drops an empty schema:
DROP SCHEMA sales;

2.5 GET SCHEMA FOR USER/ROLE
The GET SCHEMAS FOR statement lists all the schemas managed by a specified user or role.

GET SCHEMAS [FOR [USER | ROLE] authorization-ID]

authorizationID
is the name of a user or role. All schemas owned by this user or role will be displayed. Note, either
USER or ROLE may be specified for users or roles. If the FOR clause is omitted, all schemas in the
database are displayed.

Examples
>>GET SCHEMAS FOR USER daniel;
Schemas for User DANIEL
=======================

DANIEL
LITERATURE
MUSIC

--- SQL operation complete.TBD

 Page 10

Trafodion Schemas

2.6 REGISTER USER

The REGISTER USER statement defines a user reference in the database and optionally creates a
schema managed by that user. A database user, identified by an SQL identifier, has a set of
privileges defined by the union of the privileges whose grantee is the username.

REGISTER USER dir-user-name [AS database-user-name] [schema-clause]
 schema-clause is: [schema-class] SCHEMA [schema-name]
 schema-class is: PRIVATE | SHARED
 schema-name is: SQL-identifier

dir-user-name is:
The username specified at logon that identifies the user in the directory service

database-user-name is:
An SQL identifier that denotes the username as defined in the database. It cannot be the
same as an existing database username or role name.

schema-class SCHEMA schema-name
specifies a schema to be created with the user as the owner of the schema. If the schema
name is omitted, the name of the user is used as the schema name. If a schema with the
username already exists, the command fails. If the schema class is omitted, a private
schema is created. The schema clause is optional when registering a user.

Semantic Considerations:
1) Only DB__ROOT or an authorization ID granted the component privilege MANAGE_USER

ON SQL_OPERATIONS can register a user.

2) The AS clause can be specified to allow the username used by the database to be different
than the username defined in the directory service - for example, using jsmith as the
database user instead of “jsmith@company.com”. If the AS clause is specified, then this
name is the name recognized in the database as the user.

3) Users cannot be registered with database usernames _SYSTEM or PUBLIC or any name
that begins with DB__.

Examples
This example registers the user Marion Morrison with database name DUKE and creates a shared
schema named SAG and owned by DUKE.
REGISTER USER Marion.Morrison@west.com AS DUKE SHARED SCHEMA SAG;

 Page 11

mailto:Marion.Morrison@west.com

Trafodion Schemas

2.7 SHOWDDL SCHEMA
The SHOWDDL SCHEMA statement describes details about schema including the authorization ID in
its display.

SHOWDDL SCHEMA schema-name
 schema-name is: SQL-identifier

Examples

SHOWDDL SCHEMA myschema;
CREATE PRIVATE SCHEMA MYSCHEMA AUTHORIZATION JSMITH;

SHOWDDL SCHEMA Sales;
CREATE SHARED SCHEMA SALES AUTHORIZATION DBA;

Note, the AUTHORIZATION clause is shown even if authorization is not enabled.

 Page 12

Trafodion Schemas

2.8 UNREGISTER USER
The UNREGISTER USER statement removes a user reference from the database. A user, identified by
an SQL identifier, has a set of privileges defined by the union of the privileges whose grantee is the
username.

UNREGISTER USER user-name [drop-behavior]
drop-behavior is: { RESTRICT | CASCADE }

 user-name is:
An SQL identifier that denotes the username as defined in the metadata.

 drop_behavior:
Describes how to handle objects currently owned by the user

Semantic Considerations:
1) Only DB__ROOT or an authorization ID granted the component privilege MANAGE_USER

ON SQL_OPERATIONS can unregister a user.

2) Objects owned, and privileges and roles granted to the user being unregistered are
managed according to the drop_behavior.

o If the drop_behavior is not specified or RESTRICT is specified, the user cannot be
unregistered if there are any objects or schemas in the database owned by user-
name or privileges granted to said user. To enforce this, the metadata is searched to
see if the user owns any object or is granted any privileges. If so, the UNREGISTER
USER command fails.

o If CASCADE is specified, then all objects and schemas owned by the user are
dropped. In addition, any objects owned by other users that were able to be created
due to privileges granted on objects owned by this user are dropped. Any privileges
granted to this user are revoked.

Examples
UNREGISTER USER DUKE;

 Page 13

Trafodion Schemas

3 Internals
3.1 Syntax/Parser cleanup
As of Trafodion 0.9, the CREATE SCHEMA command syntax contains unused clauses. They will be
removed. These include specifying a catalog, re-using a location, collation, and creating objects in the
schema. This will result in productions being removed from sqlparser.y and member data and functions
being removed from StmtDDLCreateSchema.h.

Data members in StmtDDLCreateSchema to be removed:
NAString subvolumeName_;
SchemaName schemaQualName_;
NABoolean allowLocationReuse_;
StmtDDLCreateIndexArray createIndexArray_;
StmtDDLCreateTableArray createTableArray_;
StmtDDLCreateViewArray createViewArray_;
StmtDDLCreateTriggerArray createTriggerArray_;
StmtDDLGrantArray grantArray_;
ComBoolean isCompoundCreateSchema_;
CharType *pCharType_;
StmtDDLAddConstraintCheckArray addConstraintCheckArray_;
StmtDDLAddConstraintRIArray addConstraintRIArray_;
StmtDDLAddConstraintUniqueArray addConstraintUniqueArray_;
ElemDDLNode * children_[MAX_STMT_DDL_CREATE_SCHEMA_ARITY];

This will also result in the remove of the StmtDDLCreate*Array types and the header files that declare
them, as well as their constructor and other function definitions in StmtDDLCreate.cpp and
StmtDDLNode.cpp.

Functions in StmtDDLCreateSchema to be removed:
StmtDDLAddConstraintCheckArray & getAddConstraintCheckArray();
const StmtDDLAddConstraintCheckArray & getAddConstraintCheckArray() const;
StmtDDLAddConstraintRIArray & getAddConstraintRIArray();
const StmtDDLAddConstraintRIArray & getAddConstraintRIArray() const;
StmtDDLAddConstraintUniqueArray & getAddConstraintUniqueArray();
const StmtDDLAddConstraintUniqueArray & getAddConstraintUniqueArray() const;
Int32 getArity() const;
const NAString &getSubvolumeName() const;
NABoolean getLocationReuse() const { return allowLocationReuse_; };
ExprNode * getChild(Lng32 index);
StmtDDLCreateIndexArray & getCreateIndexArray();
const StmtDDLCreateIndexArray & getCreateIndexArray() const;
StmtDDLCreateTableArray & getCreateTableArray();
const StmtDDLCreateTableArray & getCreateTableArray() const;
StmtDDLCreateViewArray & getCreateViewArray();
const StmtDDLCreateViewArray & getCreateViewArray() const;
StmtDDLCreateTriggerArray & getCreateTriggerArray();
const StmtDDLCreateTriggerArray & getCreateTriggerArray() const;
StmtDDLGrantArray & getGrantArray();
const StmtDDLGrantArray & getGrantArray() const;
const SchemaName & getSchemaNameAsQualifiedName() const;
SchemaName & getSchemaNameAsQualifiedName();
const ComBoolean isCompoundCreateSchema() const;

 Page 14

Trafodion Schemas

3.2 New modules
A new module (CmpSeabaseDDLschema.cpp) will be added to implement the CREATE SCHEMA and
DROP SCHEMA commands, as well as the describe portion of the SHOWDDL command. There will
not be a separate CmpSeabaseDDLschema class. Functions needed to implement CREATE
SCHEMA, DROP SCHEMA, and support SHOWDDL SCHEMA will be declared in CmpSeabaseDDL.h.

3.3 Metadata
Creation of a schema will add a row to the objects table. The object name used for this schema object
row will be __SCHEMA__. The object type enum COM_SCHEMA_LABEL_OBJECT will be replaced
with COM_PRIVATE_SCHEMA_OBJECT and COM_SHARED_SCHEMA_OBJECT. The two
character literals will be “PS” and “SS” respectively. The define names for the new literals will be
COM_PRIVATE_SCHEMA_OBJECT_LIT and COM_SHARED_SCHEMA_OBJECT_LIT. Note, no
existing code is using the current literal string value “SH” for objects and no code is using the current
COM_SCHEMA_LABEL_OBJECT enum.

In addition, a new column will be added to the OBJECTS table, schema_owner.

3.4 UPGRADE
A new column, SCHEMA_OWNER, is being added to the OBJECTS table. Upgrade will set the
schema owner for all existing objects to DB__ROOT.

All existing schemas will be classified as SHARED schemas. Upgrade will need to scan the objects
table for distinct catalog name/schema name pairs.
SELECT DISTINCT CATALOG_NAME,SCHEMA_NAME FROM OBJECTS;

For each distinct pair, a row will be added to the OBJECTS table with these values:

CATALOG_NAME: from rowset
SCHEMA_NAME: from rowset
OBJECT_NAME: __SCHEMA__
OBJECT_TYPE: SS
OBJECT_UID: generated
CREATE_TIME: generated
REDEF_TIME: generated
VALID_DEF: Y
OBJECT_OWNER: 333332
SCHEMA_OWNER: 33333

Currently PUBLIC is granted ALTER, DROP, and CREATE privilege (or in some interim versions, just
the CREATE privilege). These privileges will be revoked from PUBLIC and CREATE_SCHEMA will be
granted to PUBLIC.

The new column will be added as part of the current 3.0 upgrade effort. The 3.0 upgrade code will also
call a function to upgrade PrivMgr data. Initially it will be a stub, but prior to the official release it will be
implemented to add the additional schema object rows and set the correct PUBLIC privileges. A script
will be provided that performs these same steps for any internal or external users who install and
upgrade between the initial 3.0 version availability and the delivery of this task.

2 33333 is the reserved ID for DB__ROOT.

 Page 15

Trafodion Schemas

3.5 Implementation notes
These are just notes on changes that are required internally to implement the externals and semantic
considerations described in Externals. This section may not be complete and is not intended to be
exhaustive, however, any additions or suggestions are appreciated.

Any objects created in a private schema will be owned by the schema owner, not the user who created
the object. The creator will be granted all privileges with grant option on the object they created; the
grantor will be the owner of the schema, not the system.

Objects created in shared schemas will continue to be owned by the user who created them, with the
initial grantor the system as before.

Although roles can own schemas, there is a dependency on the GRANTED BY clause for object-level
grants. If this is not implemented, it will not be possible to grant privileges on objects owned by a role.

CREATE ROLE and REGISTER USER code in CmpSeabaseDDLauth.cpp will handle the new optional
AUTHORIZATION clause. Common code will be called (perhaps in PrivMgrObjects.cpp) to add the
schema object row to the OBJECTS table.

If the schema owner is a role, and the role has been granted to the user, then that user’s privileges will
automatically include privileges granted to the role. No changes to privileges for DML operation is
anticipated.

The GET SCHEMAS command is already implemented. Code in ExeExeUtilGet.cpp will be updated to
implement the user/role specific query. The output label will say “Schemas for authorization ID authID”.
A new QueryType enum, SCHEMAS_FOR_ROLES_ will be added to ComTbdExeUtil.h in addition to
the existing SCHEMAS_FOR_USERS_. Both will go to the same case/query, the only difference being
the addition of the ROLE keyword being allowed in the GET syntax defined in GenRelExeUtil.cpp. It
has been requested that the USER/ROLE keywords be optional. Also, the ability to get only shared or
private schemas. Get commands are not particularly flexible or user friendly; they don’t report errors
well or offer many options. Typically options require essentially a new command/query. Not a
requirement for this blueprint, but in the future we should consider the best way to deliver information
on schemas and other objects.

DROP SCHEMA will delete the row for the schema from the OBJECTS table after all objects in the
schema are successfully dropped (CASCADE) or if schema is empty (RESTRICT).
Create authority will move from isDDLOperationAuthorized() to verifyDDLCreateOperationAuthorized().
Both functions will be located in CmpSeabaseDDLcommon.cpp. Function isDDLOperationAuthorized()
needs to handle the case of the schema owner performing a DDL operation on an object in their shared
schema.

DDL Create commands require one of:

1) User ID DB__ROOT
2) Authorization is not enabled
3) User is schema owner
4) Schema is a shared schema
5) User has CREATE* component privilege
6) Eventually, schema-level DDL privileges as well.

The CREATE ON SQL_OPERATIONS privilege will no longer be granted to PUBLIC when
authorization is initialized. PUBLIC will be granted CREATE SCHEMA.

 Page 16

Trafodion Schemas

3.6 Futures notes
Can we add GIVE SCHEMA at the same time? Would require updating OBJECT_PRIVILEGES.
Could be rejected if new user is in the grant tree for any objects in the schema. Would need to notify
query invalidation. Perhaps ALTER SCHEMA is a better command name.

Potential to add LDAP groups. Roles and groups association, with groups managed outside of
Trafodion. Any effect on ANSI schemas as described above? What happens when a group is
removed? Loss of role is one thing, but if data is associated with role, there needs to be a way to
reauthorize access. Perhaps GIVE SCHEMA (or ALTER SCHEMA) is a requirement to support
groups.

 Page 17

	1 Introduction
	1.1 Overview – Existing Trafodion schemas
	1.2 Requirements and design – ANSI schemas in Trafodion
	1.2.1 Private and shared schemas
	1.2.2 Schema-level authority

	2 Externals
	2.1 CREATE SCHEMA
	2.2 CREATE ROLE
	2.3 DROP ROLE
	2.4 DROP SCHEMA
	2.5 GET SCHEMA FOR USER/ROLE
	2.6 REGISTER USER
	2.7 SHOWDDL SCHEMA
	2.8 UNREGISTER USER

	3 Internals
	3.1 Syntax/Parser cleanup
	3.2 New modules
	3.3 Metadata
	3.4 UPGRADE
	3.5 Implementation notes
	3.6 Futures notes

