
 
Trafodion Blueprint Design Document: 

Privilege Management 

 
 

Title Privilege Management 

Date September 2014 

Author Trafodion Security Team 

Audience Open Source community  

Abstract This document describes how users and roles are managed in Trafodion. 

Document History 

Document 

Version 

 

Date 

 

Changes 

0.1 06/26/2014 • Initial revision 

0.2 07/07/2014 • Revision after document review by Trafodion Security Team 

0.3 07/31/2014 • Added roles 

0.4 08/7/2014 • Added component privileges 

0.5 09/15/2014 • Corrections from reviews 

 



Privilege Management for Trafodion 
 

                                                               Page 2 

© Copyright 2014 Hewlett-Packard Development Company, L.P. 
 

Legal Notice 
 
The information contained herein is subject to change without notice. This documentation is distributed on 
an “AS IS” basis, without warranties or conditions of any kind, either express or implied. Nothing herein 
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial 
errors or omissions contained herein. 
 
NOTICE REGARDING OPEN SOURCE SOFTWARE: Project Trafodion is licensed under the Apache 
License, Version 2.0 (the "License"); you may not use software from Project Trafodion except in 
compliance with the License. You may obtain a copy of the License at 
http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, 
software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language 
governing permissions and limitations under the License. 

 

http://www.apache.org/licenses/LICENSE-


Privilege Management for Trafodion 
 

                                                               Page 3 

 
TABLE OF CONTENTS 

 
 

1 INTRODUCTION ............................................................................................................................................................ 4 

1.1 OVERVIEW .................................................................................................................................................................. 4 
1.2 SECURITY FUNCTION DESCRIPTIONS............................................................................................................................ 4 

2 EXTERNALS .................................................................................................................................................................... 5 

2.1 OVERVIEW .................................................................................................................................................................. 5 
2.1.1 Authentication ....................................................................................................................................................... 5 
2.1.2 Groups, roles, users, and ownership ..................................................................................................................... 5 
2.1.3 Authorization overview .......................................................................................................................................... 7 
2.1.4 Configuration changes .......................................................................................................................................... 8 
2.1.5 Privileges ............................................................................................................................................................... 8 
2.1.6 Metadata ............................................................................................................................................................... 9 

2.2 FEATURES ................................................................................................................................................................... 9 
2.3 NEW AND CHANGED COMMANDS ................................................................................................................................ 9 

2.3.1 Initialize Authorization .......................................................................................................................................... 9 
2.3.2 Register user statement........................................................................................................................................ 10 
2.3.3 Unregister user statement .................................................................................................................................... 11 
2.3.4 Alter user statement ............................................................................................................................................. 12 
2.3.5 Grant and revoke object privileges ..................................................................................................................... 13 
2.3.6 Create role ........................................................................................................................................................... 14 
2.3.7 Drop role ............................................................................................................................................................. 15 
2.3.8 Grant and revoke role privileges ......................................................................................................................... 16 
2.3.9 Register component statement ............................................................................................................................. 17 
2.3.10 Unregister component statement..................................................................................................................... 17 
2.3.11 Create component privilege statement ............................................................................................................ 18 
2.3.12 Drop component privilege statement .............................................................................................................. 18 
2.3.13 Grant and revoke component privilege statements ......................................................................................... 19 
2.3.14 SHOWDDL statement ..................................................................................................................................... 20 
2.3.15 Built-in functions ............................................................................................................................................. 21 
2.3.16 Get statements ................................................................................................................................................. 21 

2.4 METADATA TABLES .................................................................................................................................................. 22 
 



Privilege Management for Trafodion 
 

                                                               Page 4 

1 Introduction 

1.1 Overview 

There are two ways privileges will be enforced for Trafodion: pass-through authorization and Trafodion 
managed authorization.  Pass-through authorization accepts grant and revoke statements, converts 
them to HBase requests and passes them to HBase.  HBase is responsible for handling all 
authorization through their access controller and visibility labels co-processors.  Trafodion managed 
authorization is performed through a new set of classes called Privilege Manager.  Privileges are 
gathered and accessibility is checked at query compile time.  With Trafodion managed authorization, 
all HBase objects are owned by the Trafodion ID. 
 
This proposal describes Trafodion managed authorization through the privilege manager interface. The 
privilege manager grants and revokes privileges to authorization IDs, and Trafodion enforces these 
privilege settings when queries are performed. Authorization IDs include identifiers for users, roles and 
some special IDs such as PUBLIC. 
 
The many different facets of authorization and privilege management will be implemented in several 
releases.  There are also features that have been mentioned in this proposal that will be documented 
separately and be delivered as they complete.  
 

1.2 Security function descriptions 

The following terms are used throughout the document to describe the various roles required to 
manage Trafodion and the Trafodion ecosystem. 
 

 Enterprise security administrator - a term referring to a person or office that manages 
information security across the customer’s enterprise.  The enterprise security administrator, 
among other things, defines and manages users in their service providers. Service providers 
may be single sign-on (SSO) providers such as Kerberos or directory services such as 
OpenLDAP. Trafodion supports OpenLDAP. 

 

 Trafodion security administrator 
a term referring to a person or office that manages information security in the Trafodion eco-
system.  The Trafodion security administrator configures Trafodion to be accessible to the 
authentication service and manages security aspects of the system.   

 

 Database security administrator 
a term referring to a person or office that manages security for the database(s) defined in the 
Trafodion ecosystem.  The database security administrator manages roles and users described 
in the database by assigning users to roles and associating authentication service groups to 
roles. 

 

 Database administrator 
a term referring to a person or office that manages the database(s) in the Trafodion ecosystem.  
The database administrator is responsible for, among other things, creating schemas and 
managing the data in the database.  

 
The various security and administrator roles may be managed by separate individuals or offices; 
alternatively, an individual or office may perform two or more functions.  There might even be separate 



Privilege Management for Trafodion 
 

                                                               Page 5 

database administrators for each database defined in the customer's environment.  It is up to the 
customer on how these different administrators are set up and managed.   

2 Externals 

2.1 Overview 

This section discusses some basic terminology and information needed to understand the remainder of 
the document. 

2.1.1 Authentication 

When authentication is enabled, every user accessing Trafodion needs to be defined in the OpenLDAP 
directory service configured for the database. The customer should use their enterprise directory 
service with which the database communicates.  Within the OpenLDAP directory service, users are 
defined along with their passwords; at authentication time, users pass their name and password; the 
database sends authentication information to the directory service to verify the user’s credentials. 

2.1.2 Groups, roles, users, and ownership 

2.1.2.1 Groups 

 
Open LDAP directory service groups 
 
A group refers to the OpenLDAP group. OpenLDAP groups define a set of users and give them 
common access to features and functionalities in the directory. 
 
Platform groups 
 
The platform being used for Trafodion is Linux. Certain database objects such as UDF libraries and 
java files used by stored procedures are not stored in the database but in platform files.  These files 
are secured using standard Linux security.  In Linux, each file has a set of file permissions assigned.  
File permissions describe read, write, and execute privileges for the user, the group, and everyone 
else.  When group is referenced in context of Linux security it is referring to the group attributes within 
LInux file permissions. 
 

2.1.2.2 Roles 

A role offers the flexibility of implicitly assigning a set of privileges to users, instead of assigning 
privileges individually. A user can be granted one or more roles. A role can be granted to one or more 
users. A role can be granted by, or revoked by, a database-user administrator, a role owner, or a 
member of the role. 
 
Privileges are granted to a role. When a role is granted to a user, the privileges granted to the role 
become available to the user.  If new privileges are granted to the role, then those privileges become 
available to all users who have been granted the role. When a role is revoked from a user, the 
privileges granted to the role are no longer available to the user. 
 
A role is identified as follows: 
 

 By the role name described in the CREATE ROLE statement which is either a regular or delimited 
SQL identifier 



Privilege Management for Trafodion 
 

                                                               Page 6 

 By a role id which is a 32 bit number associated with the role that is used internally in the 
database for efficient access and storage 

 
Roles are created through a CREATE ROLE command and removed through a DROP ROLE 
command.  At creation time, the user specifies an SQL identifier and the software associates this name 
with a role id.  At DROP ROLE time, the role name and role id become available for re-use.  The role 
cannot be dropped until all privileges granted to the role are revoked.  
 
Privileges on SQL objects may be granted to roles.  When a role is granted to a database user, the 
user inherits authority based on the privileges granted to the role.  When a role is revoked from a 
database user, the role authority is also revoked, but the user retains all directly granted privileges and 
authority based on other granted roles. 
 
The ANSI SQL standard is limited in how privileges are checked for users.  According to the standard, 
only privileges assigned to the current user and the current role can be used during authorization 
validation; so if privileges are required from multiple roles to authorize access, it is not possible.  
Therefore, ANSI has produced a standard called "Role Based Access Control" that describes the 
fundamentals of role based access control which allows a customer to define what roles are associated 
with users by default and interactively during a session.  

2.1.2.3 Users 

In ANSI, a database user is implementation defined; for Trafodion, the user is defined in the directory 
service and mapped to a name recognized by the database.  The enterprise security administrator 
creates users in the directory service, and the database security administrator registers these directory 
service users as database users and assigns them a database username via a REGISTER USER 
command.  Usage information for database users is stored in the Trafodion metadata.  Only registered 
database users may access the Trafodion database. 
 
Users are identified as follows: 
 

 By the directory service username specified at logon time 

 By an alternate username specified as part of the REGISTER USER command.  It must be up to 
128 characters long and is treated as an SQL identifier. 

 By a user id which is a 32-bit number generated by the database to allow efficient processing 
while managing relationships.  

 
The directory service username is the name used to logon to Trafodion.  This name can take various 
forms; for example: 
 

 Americas\JSmith 

 jsmith@hp.com 
 
When a user is registered in the database, the database security administrator can choose to use a 
different name since the directory service username is often somewhat cumbersome; for example: 
 

 REGISTER USER “Americas/JSmith”; 

 REGISTER USER “Americas/JSmith” as jsmith; 
 
In the first case, both the directory service username and the database username are the same.  So if 
privileges are assigned, the entire name is required:  GRANT SELECT ON table1 TO 
“Americas/JSmith”.  In the second case, the directory service username and the database username 



Privilege Management for Trafodion 
 

                                                               Page 7 

are different.  So, when privileges are assigned, the database username is required: GRANT SELECT 
ON  table1 TO JSmith.   
 
For purposes of this document, when username is specified unqualified, it is referring to the database 
username. 
 
ANSI has a concept of a current user and, for a session, specifying a current user is optional as long 
as a current role exists. For Trafodion, we always require a current user to exist and the current user 
cannot change during the session. 

2.1.2.4 Ownership 

Object ownership: 
 
At object create time, information is written into the database about the object, the object owner, and 
other characteristics.  Some objects, such as tables, also create physical objects that store data.  In 
the metadata, all objects are owned by an authorization ID which is the numeric equivalent of the 
username that created the object. When a physical file is created, it is assigned standard Linux 
permissions.  Linux file permissions and other access control lists (ACLs) are managed by HDFS.  The 
actual permissions defined on the Linux file are not necessarily the same IDs as defined in Trafodion. 
The different layers in the eco-system perform their own mapping of user IDs.  <add a picture of this 
mapping> 
 
File ownership: 
 
There are files used by the database that are stored on the platform.  These include .jar files for stored 
procedures and library files for user defined functions.  <add details on how these files are secured>.  

2.1.3 Authorization overview 
 
A schema consists of objects (tables, views, procedures, etc) owned by a user.  The owner of an 
object (grantor) has all privileges on the object and can assign these privileges to other users 
(grantee).  The owner can assign the following DML privileges:  EXECUTE for user defined routines, 
USAGE and UPDATE for libraries, and SELECT, UPDATE, DELETE, INSERT, REFERENCES for all 
other objects.  In addition, the owner can specify WITH GRANT OPTION which allows the grantee to 
assign their granted privileges to yet more users.  Privileges are additive. 
 
The privilege manager supports two special authorization IDs: PUBLIC and _SYSTEM. PUBLIC is an 
ANSI SQL term which represents all authorization identifiers in the database as grantees.  Granting a 
privilege to PUBLIC means that any existing or future user can perform the operation.  PUBLIC may be 
specified as a grantee of a privilege, but PUBLIC may not be specified as a grantor. _SYSTEM is the 
special grantor who grants the initial privileges on an object to the object owner.  _SYSTEM is not a 
valid grantor or grantee value for the GRANT and REVOKE commands. 
 
When a user attempts an operation which is protected by a privilege, the authorization algorithm gets 
the list of the session user's privileges on the objects being accessed.  This list is checked to determine 
if the user has the correct authority to perform the request.  If so, the request can be completed; if not, 
the request fails with a “no privilege” error. 



Privilege Management for Trafodion 
 

                                                               Page 8 

2.1.4 Configuration changes 

2.1.4.1 Enabling authorization checks 

Enabling authorization is performed by an enhanced traf_authentication_setup script.  In addition to 
enabling authentication, INITIALIZE AUTHORIZATION [, UPGRADE] is called to enable authorization. 
This script is executed even if authentication has already been enabled.  The script will skip enabling 
authentication if it is already enabled. 

2.1.4.2 Configuring authorization IDs 

During the installation process, the customer configures the Trafodion ecosystem which includes 
configuring the directory service. The process for configuring the directory service so it can be used by 
Trafodion is described on the Trafodion wiki page under the "Installing - Enabling Authentication" 
section.  In addition to configuring the directory service, the database needs to be installed.  The 
following information is needed from the customer to install the database: 
 

 A directory service user that will have Trafodion database root access. When INITIALIZE 
TRAFODION is performed, a special database user called DB__ROOT is registered and 
mapped to "TRAFODION".  This relationship should be changed to map DB__ROOT to an 
OpenLDAP user that will be assigned database root privileges. <need a way to map 
DB__ROOT to an LDAP user> 

 Database security administrator – the user that manages database security functions including 
creating and managing users and roles. 

 
We also configure the two special authorization IDs including PUBLIC and _SYSTEM. 
 
PUBLIC: 

is assigned the authentication ID of  -1 and is an ANSI SQL term to mean all existing and future 
users.   

 
_SYSTEM: 

is assigned the authentication ID of -2 and is the root of all grants. 
 

One user is preconfigured: 
 
DB__ROOT: 

This user is assigned to "TRAFODION" and indicates that the user TRAFODION has root authority 
for the database.  This mapping should be changed to assign DB__ROOT to a valid OpenLDAP 
user. 

2.1.5 Privileges 

A privilege provides authority to perform a specific operation on a specific object or component. A 
privilege can be granted to, or revoked from, a user or role in many ways: 
 

 Implicit privileges are granted to an owner of an object or component when the object or 
component is created. The owner retains implicit privileges for the object's lifespan. 

  Explicit privileges can be granted to, or revoked from, a user or role. Explicit privileges can be 
granted or revoked by a database user administrator, an object owner, or a user who has been 
granted the privilege with the WITH GRANT OPTION option. 

 The privileges granted to a user can come from various sources. Privileges can be directly 
granted to a user or they can be inherited through a role. For example, a user gets the SELECT 



Privilege Management for Trafodion 
 

                                                               Page 9 

privilege on table T1 from two different roles. If one of the roles is revoked from the user, the 
user may still select from T1 via the SELECT privilege granted to the remaining role. 

  A user who is granted a role is thereby conferred all privileges of the role. The only way to 
revoke any such privilege is to revoke the role from the user (or revoke the privilege from the 
role). 

 
Privileges can be granted and revoked on the following: 
 

 components such as SQL_OPERATIONS 

 objects 

 (TBD) columns (cells) of objects 

2.1.6 Metadata 

The metadata tables required for privilege management are created and maintained as Trafodion 
tables.  This set of tables is referred to as privilege manager metadata.  Access to Trafodion metadata 
is needed to get user and object details. 
 
The following commands exist to manage privilege manager metadata: 
 

 INITIALIZE AUTHORIZATION; -> creates metadata for privilege manager 

 INITIALIZE AUTHORIZATION, DROP; -> remove privilege metadata 

 INITIALIZE AUTHORIZATION, UPGRADE; -> upgrades privilege metadata   
 

2.2 Features 

This document covers changes to Trafodion and Privilege Management: 
 
New or changed SQL Statements/functions: 
 

 INITIALIZE AUTHORIZATION [, DROP | , UPGRADE] 

 REGISTER USER statement 

 ALTER USER statement 

 UNREGISTER USER statement 

 GRANT and REVOKE privileges statement 

 CREATE ROLE 

 DROP ROLE 

 GRANT and REVOKE role statement 

 SHOWDDL statements 

 Built-in functions 

 GET statement support 
 

 

2.3 New and changed commands 

2.3.1 Initialize Authorization 

 
The INITIALIZE AUTHORIZATION statement creates, drop, or upgrades privilege management 
metadata tables. 
 

Syntax Description: 



Privilege Management for Trafodion 
 

                                                               Page 10 

 

 
 INITIALIZE AUTHORIZATION 
 INITIALIZE AUTHORIZATION, DROP 
 INITIALIZE AUTHORIZATION, UPGRADE 
 

 

Semantic Considerations: 

 
1) If INITIALIZE AUTHORIZATION is specified, then the privilege manager metadata tables are 

created in the schema "PRIVMGR_MD". After the tables are created, they are populated with 
default privileges for existing Trafodion tables.  For each object defined in Trafodion that is 
associated with a physical object, the following grant is effectively performed with the grantor as 
_SYSTEM: 

   
GRANT ALL<for object type> ON object TO object_owner WITH GRANT OPTION; 

 
2) When INITIALIZE AUTHORIZATION, UPDATE is performed, dependencies are not updated.  

For example, prior to the upgrade, user1 creates a table user1_t1 and user2 creates a view 
user2_v1 that selects from table user1_t1.  Once authorization is enabled, user2 would not be 
able to create view user2_v1 until user1 has granted user2 the correct privilege.  <something to 
consider in the future is to try and find these issues, and possibly perform the associated grants 
at upgrade time>  

 
3) The DROP option removes all the privilege manager metadata tables. Existing objects will be 

retained. 
 
4) The UPGRADE option upgrades the privilege management metadata tables. 

 
5) You must be the DB__ROOT user to execute these commands.   

 

2.3.2 Register user statement 

 

The REGISTER USER statement defines a user reference in the database. A database user, identified 
by an SQL identifier, has a set of privileges defined by the union of the privileges whose grantee is the 
username. 

 

Syntax Description: 
 

 
REGISTER USER dir-user-name [AS user-name]  [BY grantor] 

 

 
 dir-user-name is: 

The username specified at logon that identifies the user in the directory service   
  
 user-name is: 

An SQL identifier that denotes the username as defined in the database. It cannot be the 
same as an existing user or role name.  

 



Privilege Management for Trafodion 
 

                                                               Page 11 

grantor is: 
An existing user that is the operation is running on the behalf of 

 

Semantic Considerations: 
 
1)  Only someone with the user administration authority can register a user. <enhance to 

describe how user administrator privilege can be managed>  
 

2)  The AS clause can be specified to allow the username used by the database to be different 
than the username defined in the directory service - for example, using jsmith as the 
database user instead of “Americas\JSmith”.  If the AS clause is specified, then this name is 
the name recognized in the database as the user. 

 
3) If [BY grantor] is specified, then grantor must have the authority to register users. 

 
4) Users cannot be registered with database usernames _SYSTEM or PUBLIC. 
 

 Example: REGISTER USER “jsmith@hp.com” AS jsmith; 
 

2.3.3 Unregister user statement 

 

The UNREGISTER USER statement removes a user reference from the database. A user, identified 
by an SQL identifier, has a set of privileges defined by the union of the privileges whose grantee is the 
username. 
 

Syntax Description: 
 

 
UNREGISTER USER user-name [drop-behavior] 
drop-behavior ::= { RESTRICT | CASCADE } 

 

 
 user-name is: 

An SQL identifier that denotes the username as defined in the metadata. 
 

 drop_behavior: 
Describes how to handle objects currently owned by the user 
 

Semantic Considerations: 
 
1) Only someone with the user administrator authority can unregister a user. <enhance to 

describe how user administrator privilege can be managed> 
 

2)  Objects owned, and privileges and roles granted to the user being unregistered are 
managed according to the drop_behavior.   

   
o If the drop_behavior is not specified or RESTRICT is specified, then RESTRICT is 

assumed; that is, the user cannot be unregistered if there are any objects in the 
database owned by user-name or privileges granted to said user.  To enforce this, 



Privilege Management for Trafodion 
 

                                                               Page 12 

the metadata is searched to see if the user owns any object or is granted any 
privileges.  If so, the UNREGISTER fails.  

 
o If CASCADE is specified, then all objects owned by the user are dropped and any 

objects owned by users that were able to create said object through the granted 
privilege are removed. To enforce this, the all objects owned by the user are 
dropped and any privileges granted to the user are revoked. 

 
 Example: UNREGISTER USER “jsmith@hp.com”; 
 

2.3.4 Alter user statement 

The ALTER USER statement changes attributes associated with the user in the database.  

 

Syntax Description: 
 

 
ALTER USER username {options [, options] …} 
options ::= { SET ONLINE | OFFLINE 
                  | SET EXTERNAL NAME dir-user-name } 
 

 
 username is: 

An SQL identifier that denotes the database username as defined in the metadata 
 

Semantic Considerations: 
 
1)  Only someone with the user administrator authority can change the mapping between 

database username and dir-user-name. <enhance to describe how user administrator 
privilege can be managed> 

 
2) If a user is marked OFFLINE, authentication attempts fail. 



Privilege Management for Trafodion 
 

                                                               Page 13 

2.3.5 Grant and revoke object privileges 

 
The GRANT PRIVILEGES statement assigns privileges to a user.  The REVOKE PRIVILEGES 
statement removes privileges from a user. 
 

  Syntax Description: 
 
 

GRANT  

  { object-rqst } TO {grantee [, grantee]… }  

  [BY grantor] [WITH GRANT OPTION] 

 

REVOKE [GRANT OPTION FOR] 

  { object-rqst } FROM {grantee [, grantee]… }  

  [BY grantor] [RESTRICT | CASCADE] 

 

object-rqst ::=  

   object-privileges  

   ON [object-type] [schema].object 

    

object-privileges ::= 

   {object-privilege-list | ALL [PRIVILEGES]} 

 

object-privilege-list ::= 

   {object-privilege [, object-privilege]} 

 

object-privilege ::= 

    { SELECT 

    | DELETE 

    | INSERT 

    | UPDATE 

    | REFERENCES 

    | EXECUTE 

    | USAGE } 

 

object-type ::=   

   {[ TABLE 

    | PROCEDURE 

    | LIBRARY  

    | FUNCTION  

    | SEQUENCE_GENERATOR]} 

 

grantee ::= username or role name 

grantor ::= username or role name 

 

 

Semantic Considerations 
 

 The GRANT command assigns one or more privilege(s) to the grantee(s). 

 The REVOKE command removes one or more privilege(s) from the grantee(s). 

 Rules for allowing privileges to be granted: 



Privilege Management for Trafodion 
 

                                                               Page 14 

o For GRANT statements, the WITH GRANT OPTION option allows the grantee to grant 
the specified privilege(s) to other users or roles. 

o For REVOKE statements, the GRANT OPTION FOR option removes the grantee's 
authority to grant the specified privilege(s) to other users or roles. 

 
For tables and views: 

 SELECT - Can use SELECT statement on the object.   

 DELETE - Can use DELETE statement on the object. 

 INSERT - Can use INSERT statement on the object. 

 UPDATE - Can use UPDATE statement on the object. 

 REFERENCES - Can create constraints that reference the object. 

 ALL PRIVILEGES - Grantee receives all privileges (SELECT, DELETE, INSERT, UPDATE, and 
REFERENCES) that apply to the object type. 

 
For user defined routines: 

 ALL PRIVILEGES - When the object is a stored procedure and ALL is specified, only 
EXECUTE permission is applied. 

 
For libraries: 

 ALL PRIVILEGES - When the object is a stored procedure and ALL is specified, only UPDATE 
and USAGE permissions are applied. 

2.3.6 Create role 

The CREATE ROLE statement creates an SQL role.  
 

  Syntax Description: 
 

 
CREATE ROLE role-name [ WITH ADMIN grantor ]  

  grantor is: database-username 

 

 
role-name: 

is a SQL identifier that specifies the new role.  role-name cannot be an existing role name. 
role-name cannot be a registered database username. However, role-name can be a 
configured directory-service username. 

 
WITH ADMIN grantor 

specifies a role owner other than the current user. This is an optional clause.  
 
database-username  

specifies a registered database username to whom you assign the role owner. 

 

Semantic Considerations 
 

 To create a role, you must have user administrative privileges for roles. You have user 
administrative privileges for roles if you have been granted the ROLE component privilege. 

 _SYSTEM, PUBLIC, NONE, and database usernames beginning with DB__ are reserved. You 
cannot specify a role-name with any such name. 



Privilege Management for Trafodion 
 

                                                               Page 15 

 You can give role ownership to a user by specifying the user in the WITH ADMIN grantor 
clause with the grantor as the user. The role owner can perform the following operations: 

 

 Grant and revoke the role to users 

 Drop the role 
 

 Role ownership is permanent. After the role is created, the ownership of a role cannot be 
changed or assigned to another user. TDB - add a change role owner request. 

 

2.3.7 Drop role 

The DROP ROLE statement deletes a SQL role.  
 

  Syntax Description: 
 

 
DROP ROLE role-name 

 

 
role-name: 

is an existing role name. The role cannot be dropped if any of the following are true: 

 Any privileges are granted to the role 

 The role is granted to any users 
 

Semantic Considerations 
 

 To drop a role, you must own the role or have user administrative privileges for the role. You 
have user administrative privileges for the role if you have been granted the ROLE component 
privilege. 

 _SYSTEM, PUBLIC, and database usernames beginning with DB__ are reserved. You cannot 
specify a role-name with any such name. 

 You can determine all users to whom a role has been granted with the SHOWDDL ROLE 
statement. 

 TDB - How to determine granted privileges on the role where a drop would require objects to be 
removed. 

 Active Sessions for the User - when you drop a role from a user, the effects on any active 
sessions for the user are undefined. Trafodion recommends that you disconnect such sessions. 
The user then reconnects to establish new sessions with the updated set of privileges.  TBD - 
query invalidate will fix this. 

 Before You Drop a Role 

 You must revoke all privileges granted to the role 

 You must revoke the role from all users to whom it was granted 



Privilege Management for Trafodion 
 

                                                               Page 16 

2.3.8 Grant and revoke role privileges 

The GRANT ROLE statement grants one or more roles to a user.  The REVOKE ROLE statement 
removes one or more roles from a user.  
 

  Syntax Description: 
 

 
GRANT ROLE {role-name [,role-name ]...}   TO grantee 

 

REVOKE ROLE {role-name [,role-name]...}  FROM grantee  [RESTRICT | CASCADE]  

 

grantee is: database-username 

 

 
 

role-name [,role-name] ... 
specifies the existing roles to grant or revoke 

 
TO grantee 

specifies the registered database username to whom to grant the roles.  
 

FROM grantee  
specifies the user from whom to revoke the roles. 

 
grantee 

database-username specifies the registered database username from whom you revoke the 
roles. 

 
[ RESTRICT | CASCADE ] 

If you specify RESTRICT, the REVOKE ROLE operation fails if any privileges were granted 
to the role or any objects were created based upon those privileges. If you specify 
CASCADE, any dependent privileges are removed as part of the REVOKE ROLE operation. 
The default value is RESTRICT.  

 

Semantic Considerations 
 

 To grant roles to grantees or revoke roles from grantees, you must own the roles or have user 
administrative privileges for the roles. You have user administrative privileges for roles if you 
have been granted the ROLE component privilege. 

 When you grant or revoke a role to or from a grantee, the effects on any active sessions for the 
grantee are undefined. Trafodion recommends that you disconnect such sessions. The grantee 
then reconnects to establish new sessions with the updated set of privileges. TBD - query 
invalidate will fix this. 

 If any errors occur in processing a GRANT ROLE which names multiple roles, then no grants 
are done. Alternately, if the REVOKE ROLE names multiple roles and any errors occur in 
processing, no revokes are performed. This behavior differs from the GRANT and REVOKE 
object privilege statements 

 If you attempt to grant a role but a grant with the same role and grantee already exists, the 
request is ignored and returns a successful operation. 



Privilege Management for Trafodion 
 

                                                               Page 17 

 If RESTRICT (or nothing) is specified, when you revoke a role from a user that has created 
objects based solely on role privileges, the objects must be dropped before the role can be 
revoked. However, if you specify CASCADE, the dependent objects are automatically dropped 
and the role is revoked. Before you issue the REVOKE command,  (TBD) determine which 
objects will be removed. 

 All of the specified roles must have been granted to the specified user. If any role has not been 
granted to any user, the operation returns an error and no roles are revoked. 

2.3.9 Register component statement 

The REGISTER COMPONENT statement makes a component available to the database.   
 

  Syntax Description: 
 
 

 

 
 
 
 
 

Semantic Considerations 
 

 If name is not a valid regular ANSI identifier a parser error with sqlcode -15001 will be raised. 
Delimited identifiers are not supported. The only character set permitted is ISO88591 (only 7-bit 
ASCII characters). 

 If a component is designated a SYSTEM component, it can only be unregistered by DB__ROOT, 
regardless of any other privileges or roles a user may have been granted.  In addition, any 
operations created for the component may only be dropped by DB__ROOT. 

 If string exceeds 80 characters or is of a character set other than ISO88591 an error with sqlcode 
<3301> will be raised. 

 In the initial release, only DB__ROOT can register a component, otherwise error <1017> (not 
authorized) will be raised. 

 If a component with an identical name already exists in the metadata tables, then error <1055> 
will be raised. Note that component names are stored in upper case in the metadata tables and 
are not case sensitive. 

 Any single quotes within string must be doubled. 

2.3.10 Unregister component statement 

The UNREGISTER COMPONENT statement removes the component and any privileges assigned 
to the component. 
 

  Syntax Description: 
 
 

 

 
 
 

 

REGISTER COMPONENT name [SYSTEM] [DETAIL 'string '] 

 
name is a valid ANSI identifier  

 

string is arbitrary text describing the component 

UNREGISTER COMPONENT name [RESTRICT | CASCADE]; 

 
name is a valid ANSI identifier  



Privilege Management for Trafodion 
 

                                                               Page 18 

Semantic Considerations 
 

 If name is not a valid regular ANSI identifier a parser error with sqlcode -15001 will be raised. 
Delimited identifiers are not supported. The only character set permitted is ISO88591 (only 7-bit 
ASCII characters). 

 In the initial release, only DB__ROOT can unregister a component, otherwise error <1017> (not 
authorized) will be raised. 

 If a component with this name does not exist, then error <1004> will be raised. Note that 
component names are stored in upper case in the metadata tables and are not case sensitive. 

 If CASCADE is specified, all operations created for the component are automatically dropped 
and all privileges granted on the component are automatically removed. 

 If RESTRICT is specified, if there are any operations created for the component the command 
will fail. 

 

2.3.11 Create component privilege statement 

The CREATE COMPONENT PRIVILEGE statement adds a new component operation to the 
metadata. 
 

  Syntax Description: 
 
 
 

 

 
 

 

 

 
 

 

Semantic Considerations 
 

 If priv_name is not a valid ANSI identifier a parser error with sqlcode -15001 will be raised. 
Delimited identifiers are not supported. The only character set permitted is ISO88591 (only 7-bit 
ASCII characters).  

 If priv_name or priv_abbr already exists in the metadata table for this component then error 
<1055> will be raised. The same priv_name or priv_abbr can exist for another component. 

 If <priv_abbr> is not a 2 character ISO88591 string a parser error with sqlcode -15001 will be 
raised. 

 If this statement is issued by any user other than DB__ROOT then an error with sqlcode <1017> 
will be raised. 

 If a component of this name does not exist, then error <1004> will be raised. Note that 
component names are stored in upper case in the metadata tables and are not case sensitive. 

2.3.12 Drop component privilege statement 

The DROP COMPONENT PRIVILEGE statement removes the component operation from the 
metadata.   

CREATE COMPONENT PRIVILEGE priv_name AS 'priv_abbr' ON name  

[SYSTEM] [DETAIL 'string'] ; 

 

priv_name is a valid ANSI identifier  

 

priv_abbr is an abbreviation of priv_name that must be two characters long, in 

ISO8591 character set. 

 

name is a valid ANSI identifier which specifies the component 

 

string is arbitrary text describing the component privilege 

 



Privilege Management for Trafodion 
 

                                                               Page 19 

 

  Syntax Description: 

 

 

 

 

 

 

 

Semantic Considerations 
 

 If priv_name is not a valid ANSI identifier a parser error with sqlcode -15001 will be raised. 

 If priv_name does not exist in the metadata table for this component then error <1004> will be 
raised.  

 If this statement is issued by any user other than DB__ROOT then an error with sqlcode <1017> 
will be raised. 

 If a component of this name does not exist, then error <1004> will be raised. Note that 
component names are stored in upper case in the metadata tables and are not case sensitive. 

 If CASCADE is specified, all grants of this privilege to users and roles are automatically removed.  
If RESTRICT is specified, if there are any active grants the command fails. 

2.3.13 Grant and revoke component privilege statements 

The GRANT COMPONENT privilege statement associates one or more component privileges to an 
authorization ID.  You can also grant the privilege(s) WITH GRANT OPTION.  The REVOKE 
COMPONENT statement removes one or more privileges from an authorization ID.  At revoke time, 
all privileges granted WITH GRANT OPTION are effectively removed.  That is, revoke behavior is 
always CASCADE.  This may change in the future. 
 

  Syntax Description: 

 

 
 
 
 

 
 
 
 
 
 
 
 

Semantic Considerations 
 

 If priv_name, name, or user-role-name is not a valid ANSI identifier a parser error with sqlcode -
15001 will be raised. 

 If any names in the priv_name_list do not exist in the metadata table for this component then 
error <1004> will be raised.  

 If a component of with name <name> does not exist, then error <1004> will be raised.  

DROP COMPONENT PRIVILEGE <priv_name> ON <name> [RESTRICT | CASCADE]; 

 

priv_name is a valid ANSI identifier  

 

name is a valid ANSI identifier which specifies the component 

 

GRANT COMPONENT PRIVILEGE priv_name_list ON name TO authID  

[WITH GRANT OPTION]; 

 

REVOKE [GRANT OPTION FOR] COMPONENT PRIVILEGE priv_name_list ON name FROM 

user-role-name [CASCADE]; 

 

priv_name_list is a list of priv_name’s 

 

name is a valid ANSI identifier which specifies the component 

 

priv_name is a valid ANSI identifier 

 

 



Privilege Management for Trafodion 
 

                                                               Page 20 

 If a user or role name with name user-role-name does not exist then error <1008> will be raised.  

 If this statement is issued by any user without WITH GRANT OPTION then an error with sqlcode 
<1017> will be raised. 

 If all of the privileges have been granted or revoked, then error TBD will be raised. 

 If some of the privileges have been granted or revoked, they are silently ignored and the 
statement proceeds. 

 The grantee is the authID.   

 Typically the grantor is the use executing the command, but the grantor may be overridden with 
the BY clause.  Also, if the current user is DB__ROOT, but the component operation was 
created by another user, the grantor is the creator of the component operation.  

 Currently only CASCADE behavior is supported. 

2.3.14 SHOWDDL statement 

 
The SHOWDDL command displays the DDL syntax used to create an object as it exists in 
metadata.  The statement has been enhanced to return USER descriptions in the form of GRANT 
statements. GRANT statements are only provided when authorization is enabled.  
 

Syntax Description: 
 

 
SHOWDDL { [PROCEDURE] object-name 

        | COMPONENT component-name} 

        | USER username 

        | ROLE role-name} 

 

object-name is  [schema-name.]object-name 

username is a SQL identifier 
 

 

 

Semantic Considerations 
 

1) The PRIVILEGES option displays privileges granted to the object. 
 

2) The SHOWDDL USER username displays the REGISTER USER statement. 
 
3) The SHOWDDL ROLE role-name option displays the CREATE ROLE statement and the 

users that have been granted the role. 
 
4) The SHOWDDL COMPONENT component-name option displays the REGISTER 

COMPONENT statement. 
 
 



Privilege Management for Trafodion 
 

                                                               Page 21 

2.3.15 Built-in functions 

The USER and CURRENT_USER functions return the database username associated with the 
specified user ID or the current user. The AUTHNAME function returns the authorization ID 
associate with the specified authorization name. The value returned is a string data type 
VARCHAR(128).  
 

  Syntax Description: 
 

 

USER[user-id] 

CURRENT_USER 

AUTHNAME auth-id 

 

user-id is the 32-bit number associated with the user 

auth-id is the 32-bit number associated with the authorization name 
 

 

Semantic Considerations: 
 

If user-id is specified, the database username for the specified user-id is returned.  If user-id is not 
specified, then the database username for the current user-id is returned.  The current user-id is 
set at session logon time.  
 
The USER, CURRENT_USER, and AUTHNAME functions can only be specified in the top level of 
a SELECT statement. 
 

2.3.16 Get statements 

 
The GET command displays information from the metadata.  
 

  Syntax Description: 
 

 
GET USERS 

GET ROLES 

GET ROLES FOR USER user-name 

GET USERS FOR ROLE role-name 

GET COMPONENTS 

GET COMPONENT PRIVILEGES ON component-name 

GET COMPONENT PRIVILEGES ON component-name FOR authID 

 

  

 

Semantic Considerations: 
 

The following GET commands are supported related to users:   
 

1) GET USERS returns registered users 
2) GET ROLES returns available roles 
3) GET ROLES FOR USER returns all the roles granted to the specified user. 



Privilege Management for Trafodion 
 

                                                               Page 22 

4) GET USERS FOR ROLE returns all the users granted the specified role. 
5) GET COMPONENTS returns registered components 
6) GET COMPONENT PRIVILEGES ON component-name returns operations created for the 

specified component. 
7) GET COMPONENT PRIVILEGES ON component-name FOR authID returns operations 

created for the specified component granted to the specific authID. 
 

2.4 Metadata tables 

 
TABLE:   AUTHS 
 
Why:   This table defines authorization IDs  
 
Who: The AUTHS table is created as part of INITIALIZE TRAFODION. A row is written to the table 
when a REGISTER USER statement is executed.  UNREGISTER USER removes data from this table. 
ALTER USER updates the contents of the associated row.    
 
TABLE: OBJECT_PRIVILEGES 
 
Why: This table records the privileges which have been granted to perform DML on an object. 
 
Who: The OBJECT_PRIVILEGES table is created as part of INITIALIZE AUTHORIZATION. A row is 
written or updated when a GRANT PRIVILEGES statement is executed.  The REVOKE PRIVILEGES 
statement changes or removes data from this table. 
 
TABLE: COMPONENTS 
 
Why:  This table contains the list of defined components. 
 
Who:  The COMPONENTS table is created as part of INITIALIZE AUTHORIZATION.  A row is written 
when REGISTER COMPONENT statement is executed. The UNREGISTER COMPONENT statement 
removes a row from this table. 
 
TABLE: COMPONENT_OPERATIONS  
 
Why:  This table contains the list of component privilege operations for a component 
 
Who:  The COMPONENT_PRIVILEGES table is created as part of INITIALIZE AUTHORIZATION.  A 
row is written when a CREATE COMPONENT PRIVILEGE statement is executed.  The DROP 
COMPONENT PRIVILEGE statement removes a row from this table. 
 
TABLE: COMPONENT_PRIVILEGES 
 
Why: this table contains privileges that have been granted and revoked against a component privilege 
type of a component. 
 
Who:  The COMPONENT_PRIVILEGES table is created as part of INITIALIZE AUTHORIZATION.  A 
row is written the first time a GRANT COMPONENT PRIVILEGE statement is executed against the 
component for a user.  The REVOKE COMPONENT PRIVILEGE statement removes a row from this 
table when the last privilege is revoked for a user.  
 



Privilege Management for Trafodion 
 

                                                               Page 23 

TABLE: ROLE_USAGE 
 
Why: This table records the roles which have been granted to authorization IDs. 
 
Who: The ROLE_USAGE table is created as part of INITIALIZE AUTHORIZATION. A row is written or 
updated when a GRANT ROLE statement is executed.  The REVOKE ROLE statement changes or 
removes data from this table. 
 

 


	1  Introduction
	1.1 Overview
	1.2 Security function descriptions

	2 Externals
	2.1 Overview
	2.1.1 Authentication
	2.1.2 Groups, roles, users, and ownership
	2.1.2.1 Groups
	2.1.2.2 Roles
	2.1.2.3 Users
	2.1.2.4 Ownership

	2.1.3 Authorization overview
	2.1.4 Configuration changes
	2.1.4.1 Enabling authorization checks
	2.1.4.2 Configuring authorization IDs

	2.1.5 Privileges
	2.1.6 Metadata

	2.2 Features
	2.3 New and changed commands
	2.3.1 Initialize Authorization
	2.3.2 Register user statement
	2.3.3 Unregister user statement
	2.3.4 Alter user statement
	2.3.5  Grant and revoke object privileges
	2.3.6 Create role
	2.3.7 Drop role
	2.3.8  Grant and revoke role privileges
	2.3.9 Register component statement
	2.3.10 Unregister component statement
	2.3.11 Create component privilege statement
	2.3.12 Drop component privilege statement
	2.3.13 Grant and revoke component privilege statements
	2.3.14 SHOWDDL statement
	2.3.15  Built-in functions
	2.3.16 Get statements

	2.4 Metadata tables


