
Benchmarking for HTTP/2
Kit Chan (kichan@yahoo-inc.com)

Kenny Peng (kennyp@yahoo-inc.com)
Nora Shoemaker (nshoemak@andrew.cmu.edu)

mailto:kichan@yahoo-inc.com
mailto:kennyp@yahoo-inc.com
mailto:nshoemak@andrew.cmu.edu

HTTP/2 is Great!!!

So...
● Which server software should I use? (Hopefully ATS)
● How many machines I need to buy?

Perspective of a System Engineer

Benchmarking Tool Needed
● h2load to the rescue
● part of nghttp2
● latest version is 1.4.0

Some examples

● Basic
h2load -n100 -c10 -m10 https://www.google.com/

● Adding/Changing header
h2load -n100 -c10 -m10 --header="accept-encoding: gzip" https://www.google.
com/

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/

More Examples

Multi-threading support
h2load -t2 -n100 -c10 -m10 --header="accept-encoding: gzip" https://www.google.
com/

Timeout
h2load -t2 -n100 -c10 -m10 --header="accept-encoding: gzip" --connection-active-
timeout=3 --connection-inactivity-timeout=3 https://www.google.com/

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/

Protocols & Ciphers
● --npn-list

○ Allows you to define preferences of protocol to be used
○ Allows you to load test with h2, spdy/3.1 or http/1.1

● --ciphers
○ Allows you to define the ciphers to be used

Rate Mode / Timing Script
● Rate Mode - you can control # of connections per seconds
● Timing Script - you can define a list of URLs for each connection to cycle

through. (each line is a time in millisecond, a tab and then the url) e.g

100.0 https://screen.yahoo.com/
200.0 /__rapid-worker-1.1.js
300.0 /__test.css

● Example Usage

h2load -c100 -r10 -t5 --header="accept-encoding: gzip" --timing-script-
file=/tmp/myscript.txt

h2load output

Experiment 0: Baseline
Background

● One page
● Heavy use of ESI - i.e. ATS is doing page assembly
● Other plugins use to validate cookie, finding out locations, determining

buckets for testing + other stuff

Experiment 0: Baseline

Experiment 1: Just turn H2 on

Experiment 2: No Domain Sharding
● Same page + 8 assets in one connection (e.g. CSS/JS/SWF/WOFF etc)

Experiment 2: no domain sharding

Experiment 3 & 4: combo handling or not
● Combo Handling of assets. e.g.

https://s.yimg.com/zz/combo?/os/stencil/2.0.26/styles.css&/os/mit/td/lasso-1.2.197
/cinematron-simple-dark/cinematron-simple-dark-min.css

● First experiment retrieving one page and 5 combo assets URLs
● Second experiment retriveing one page and the “un-combo-ed” URLs of the

above 5 combo assets URLs (80+ URLs)

Experiment 3: Combo Handling

Experiment 4: No combo handling
● Latency/Response time is too high even with low CPS

Experiment 5: ATS vs nghttpx
● Settings - access/error log turned on, no ocsp stapling, no cache for ATS,

same # of execution theads
● Just do http/2 termination and proxy the requests
● Requests - 3 large image objects (60K to 200K) per connection

Experiment 5: Results
● Process CPU utilization during idle - ATS: 0.5%, nghttpx: 0%
● System CPU utilization during idle - ATS: 7%, nghttpx: 6.5%
● Peak System CPU utilization under same traffic load - ATS: 18%, nghttpx:

15%

● Imply nothing! Simply a comparison worth investigating further for a very
particular scenario.

Final Words
● We need to consider server capacity for H2 and related deployment
● h2load far from perfect

○ Contribution opportunities!!!

Credits/Shoutouts
Nora - patches for timeout, rate mode and its multithread support

Kenny - patches for header, running most of the experiments

Tatsuhiro Tsujikawa - Owner of the nghttp2 project - https://nghttp2.org/

https://nghttp2.org/

Thanks

Bonus - Generating HAR
e.g. -

nghttp -nv --har=/tmp/sample.out https://www.google.com/

Bonus - HAR Viewer

