UIMA Version 3 User's Guide

Written and maintained by the Apache
UIMA™ Development Community

Version 3.0.0-SNAPSHOT

Copyright © 2006, 2016 The Apache Software Foundation
Copyright © 2004, 2006 | nternational Business Machines Corporation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date October, 2016

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. SEEC FramBWOIKiiee e 1
1.1. Select's use of the builder Patterncooo e i e 1
1.2. SOUrCeS Of FEAIUIE SITUCLUMNESuuuuuieiiiiiiiiiiiiiiiititttiibbababebebeeebbbeebebebeeeeeaeeeeebenenees 1

1.2.1. Sources and generiC LYPING «...eeueieeeeiieeiiiirie e e e e eeeiitin e e e e eeeriri e e e aeeaeenes 3

1.3, Selection and OFOENINGuueeie e e e e e et e e e e e e e eearen e e eeeeees 3
20 2 T o == g T o) (0] o= 1= 4
1.3.2. Configuration fOr @NY SOUMCEuuuuiiieeeiiieiiiiiiae e e e ee ettt e e e e eeebae e 4
1.3.3. Configuration for any INOEXeeiiieeeiiieiiies e 4
1.3.4. Configuration for ordered iNJEXEScoevvvviiiiiiieeieeeee e 5
1.3.5. Bounded sub-selection within an Annotation INAEXeevevvieiiviieieneninnn. 5
1.3.6. Variations in Bounded sub-selection within an Annotation Index 6
1.3.7. Defaults for bounded SEIECESoooiiiiiii 7
1.3.8. Following or Precedingccoooeeieiiieieieee e 7

1.4, PrOCESSING BCHIOMSvttttutttititiiiiirsreebbibbb bbbt nenenee 8
O = = o TP 8
1.4.2. ArrayS @N0 LISESuuniiiiiii e 8
143, SINGIE TTEIMS ..ottt e e e e e e e r e e e e e eeeennes 9
FLA4. SITAIMSeeeeiiie ettt e e 9
UIMA Version 3 User's Guide iii

Chapter 1. The select framework for working
with CAS data

The select framework provides a concise way to work with Feature Structure data stored in the
CAS. It isintegrated with the Java 8 stream framework, and provides additional capabilities
supported by the underlying UIMA framework, including the ability to move both forwards and
backwards while iterating, moving to specific positions, and doing various kinds of specialized
Annotation selection such as working with Annotations spanned by another annotation (think of a
Paragraph annotation, and the Sentences or Tokens within that).

There are 3 main parts to this framework:

» The source
» what to select, ordering
» what to do
Selection Processing
Sources . i
and ordering action

Figure 1.1. Sdlect - the big picture

These are described in code using a builder pattern to specify the many options and parameters.
Some of the very common parameters are also available as positional arguments in some contexts.
Most of the variations are defaulted so that in the common use cases, they may be omitted.

1.1. Select's use of the builder pattern

The various options and specifications are specified using the builder pattern. Each specification
has a name, which is a Java method name, sometimes having further parameters. These methods
return an instance of SelectFSs; thisinstance is updated by each builder method.

A common approach isto chain these methods together. When thisis done, each subsequent
method updates the SelectFSs instance. This means that the last method in case there are multiple
method calls specifying the same specification is the one that is used.

For example,
a_cas.select().typePriority(true).typePriority(false).typePriority(true)

would configure the select to be using typePriority (described later).

Some parameters are specified as positional parameters, for example, aUIMA Type, or astarting
position or shift-offset.

1.2. Sources of Feature Structures

Feature Structures are kept in the CAS, and are accessed using UIMA Indexes. There are separate
sets of these indexes per CAS view. A common source is the Feature Structures belonging to a
particular index, in a particular CAS view.

Select framework

Sources of Feature Structures

Y ou can omit the index, in which case, the default is to start with all Feature Structuresin a Cas
View, or, if the selection and ordering specifications require an Annotationindex, it defaults to that
index. Thereis away to extend thisto all Feature Structuresin al views.

If the index is omitted, Omitted index

A UIMA index isthe usual source. If a CASisused, all Feature Structures that were added to the
index in the specified CAS view are used as the source. The FSArray and FSList sources have more
limited configurability, because they are considered non-sorted, and therefore cannot be used for an
operations which require a sorted order.

There are 4 sources of Feature Structures supported:
 aCASview
* anIndex over aCASview
» Feature Structuresin aUIMA FSArray instance
* Feature Structuresin aUIMA FSList

Each of these sources has anew API method, sel ect (. . .), whichinitiates the select
specification. The select method can take an optional positional parameter, specifying the UIMA
typeto return.

Selection Processing
Sources o> [o gt] E>[action

——
FSArray
-/
—_— Type:
FSList - (omitted) xx.select()
- - Class xx.select{Token.class)
— -uima_Type xx.select(token)
CAS -JCas.type xx.select(Token.type)
-“name” xx.select(“pkg.Token”)
e
Index
-/

Figure 1.2. select method with type

A UIMA index isthe usual source. If a CASisused, al Feature Structures that were added to the
index in the specified CAS view are used as the source. The FSArray and FSList sources have more
limited configurability, because they are considered non-sorted, and therefore cannot be used for an
operations which require a sorted order.

The optional type argument for sel ect (...) specifiesa UIMA type. Thisrestricts the Feature
Structures to just those of the specified type or any of its subtypes. If omitted, if anindex isused as
asource, its type specification is used; otherwise the TOP typeis used (meaning all types).

Select framework UIMA Version 3.0.0

Sources and generic typing

Type specifications may be specified in multiple ways. The best practice, if you have a JCas cover
class defined for the type, isto use the form MyJCasd ass. cl ass. This has the advantage of
setting the expected generic type of the select to that Javatype.

The type may also be specified by using the actual UIMA type instance (useful if not using the
JCas), using afully qualified type name as a string, or using the JCas class static t ype field.

1.2.1. Sources and generic typing

The select method results in a generically typed object, which is used to have subsequent operations
make use of the generic type, which may reduce the need for casting.

The generic type can come from arguments or from where avalue is being assigned, if that target
has a generic type. Thislatter sourceisonly partially available in Java, as it does not propagate past
thefirst object in achain of cals; this becomes a problem when using sel ect with generically
typed index variables.

A static version of the sel ect method (named ssel ect) gets around this by providing the
generically typed information as an argument, rather than having it come from the receiver.

/1 this works
/1l the generic type for Token is passed as an argunent to sel ect
FSlt er at or <Token> token_it = cas. sel ect (Token.cl ass).fslterator();

FSI ndex<Token> token_index = ... ; // generically typed

/1 this next fails because the

/1 Token generic type fromthe index variabl e being assi gned

/1 doesn't get passed to the select().

FSI t er at or <Token> token_iterator = token_index.select().fslterator();

/1 You can overconme this in tw ways:
/'l explicitly set the generic type select() should use, like this
FSIt er at or <Token> token_iterator =

t oken_i ndex. <Token>sel ect().fslterator();

/! You can also use the static form of select

FSI t er at or <Token> token_iterator = ssel ect(token_index).fslterator();
/1 Java nakes use of the generic information fromthe index,

/1 comng in as an argumnent

Thessel ect method may be statically imported into code that usesit, to avoid repeatedly
qualifying thiswith its class, Sel ect FSs.

1.3. Selection and Ordering

There are four sets of sub-selection and ordering specifications, grouped by what they apply to:
« al sources
* Indexesor FSArrays or FSLists
* Ordered Indexes
» The Annotation Index

With some exceptions, configuration items to the left also apply to items on the right.

UIMA Version 3.0.0 Select framework 3

Boolean properties

When the same configuration item is specified multiple times, the last one specified is the one that

isused.
Selection Processing
Sources . action
and ordering

Any index /
collection

Annotationindex - Annotation index Annotationindex
Ordered Index o
subselect - variations follow / preceed

limit
— unordered coveredBy typePriority }» following
nullok covering ositionUsesType recedin
startAt L L P g
at I nonQOverlapping
between — endWithinBounds
allViews backwards skipEquals

Figure 1.3. Selection and Ordering

1.3.1. Boolean properties

Many configuration items specify aboolean property. These are named so the default (if you don't
specify them) is generally what is desired, and the specification of the method with null parameter
switches the property to the other (non-default) value.

For example, normally, when working with bounded limits within Annotation Indexes, type
priorities are ignored when computing the bound positions. Specifying typePriority() saysto use
type priorities.

Additionally, the boolean configuration methods have an optional form where they take a boolean
value; true sets the property. So, for example typePriority(true) is equivalent to typePriority(), and
typePriority(false) is equiva ent to omitting this configuration.

1.3.2. Configuration for any source

limit
alimit to the number of Feature Structures that will be produced or iterated over.
nullOk

changes the behavior for some processing actions, which would otherwise throw an exception
if anull result happened.

1.3.3. Configuration for any index

allViews
Normally, only Feature Structures belonging to the particular CAS view areincluded in the
selection. If you want, instead, to include Feature Structures from all views, you can specify
al I Views().

Select framework UIMA Version 3.0.0

Configuration for ordered indexes

When thisis specified, it acts as an aggregation, in no particular order, of the underlying
selections, one per view in the CAS. Because of thisimplementation, the items in the selection
may not be unique - that is a single Feature Structure may be in multiple views.

1.3.4. Configuration for ordered indexes

When an index is ordered, there are additional capabilities that can be configured, in particular
positioning to particular Feature Structures, and running various iterations backwards.

unordered
relaxes any iteration by allowing it to proceed in an unordered manner. Specifying this may
improve performance in some cases. When thisis specified, the current implementation
skips the work of keeping multiple iterators for atype and all of its subtypesin the proper
synchronization.

startAt
position the starting point of any iteration. st ar t At (xxx) takestwo forms, each of which has,
inturn 2 subforms. The form using begi n, end isonly valid for Annotation Indexes.

start At (fs); /1l fs specifies a feature structure
/1 indicating the starting position

startAt(fs, shifted); // same as above, but after positioning,

/1 shift to the right or left by the shift

/1 anmpbunt which can be positive or negative
/1 the next two forns are only valid for Annotationlndex sources
start At (begin, end); // start at the position indicated by begin/end
start At (begin, end, shifted) // same as above,

[/ but with a subsequent shift.
/'l which can be positive or negative

backwards
specifies a backwards order (from last to first position) for subsequent operations

1.3.5. Bounded sub-selection within an Annotation Index

When selecting Feature Structures to process, frequently you may want to select only those which
have arelation to a bounding Feature Structure. A commonly done selection isto select al Feature
Structures (of a particular type) within the span of another, bounding Feature Structure, such as all
Tokens within aSent ence.

There are four varieties of sub-selection within an annotation index. They all are based on a
bounding Feature Structure (except the bet ween which is based on two bounding Feature
Structures).

The bounding Feature Structures are specified using either a Annotation Feature Structure (or
asubtype), or by specifying the begin and end offsets that would be for the bounding Feature
Structure.

Leaving aside bet ween as a specia case, the bounding Feature Structure'sbegi n and end (and
sometimes, itst ype) is used to specify where an iteration would start, where it would end, and

UIMA Version 3.0.0 Select framework 5

Variations in Bounded sub-selection within an Annotation Index

possibly, which Feature Structures within those bounds would be filtered out. There are many
variations possible; these are described in the next section.

The bounding information is specified either as an Annotation Feature Structure (or a subtype of
Annotation), or the begin and end can be directly specified.

The returned Feature Structures exclude the one(s) which are equal to the bounding FS. There are
several variations of how thisequal test is done, discussed in the next section.

cover edBy
iterates over Feature Structures within the bound

covering
iterates over Feature Structures that span (or are equal to) the bound.

at
iterates over Feature Structures that have the same span (i.e., begin and end) as the bound.

between
uses two feature structures, and returns Feature Structures that are in between the two bounds.
If the bounds are backwards, then they are automatically used in reverse order. The meaning of
between is that an included Feature Structure's begin has to be >= the earlier bound's end, and
the Feature Structure's end has to be <= the later bound's begi n.

1.3.6. Variations in Bounded sub-selection within an
Annotation Index

There are five variations you can specify. Two affect how the starting bound position is set;
the other three affect skipping of some Annotations while iterating. The defaults (summarized
following) are designed to fit the popular use cases.

typePriority
The default isto ignore type priorities when setting the starting position, and just use the
begin / end position to locate the left-most equal spot. If you want to respect type priorities,
specify this variant.

positionUsesType
When type priorities are not being used, Annotations with the same begin and end and type
will be together in the index. The starting position, when there are many Feature Structures
which might compare equal, is the left-most (earliest) one of these. In this comparison for
equality, by default, thet ype of the bounding Annotation isignored; only its begin and end
values are used. If you want to include the type of the bounding Annotation in the equal
comparison, set thisto true.

nonOverlapping
Thisisaso called unambiguous iteration. If specified, then after the iterator reaches a position,
the noveToNext () operation moves to the next Annotation which has abegi n offset >=to
the previous Annotation's end position. If the iterator is run backwards, it isfirst run forwards
to locate all the items that would be in the forward iteration following the rules; and then those
are traversed backwards. This variant isignored for cover i ng selection.

endWithinBounds
Thisisalso called strict. For cover edBy selection, if specified, then any Annotations whose
end position is > the end position of the bounding Annotation is skipped. The bet ween
selection always behaves as if thisis set. Thisvariant isignored for cover i ng selection.

6 Select framework UIMA Version 3.0.0

Defaults for bounded selects

skipEquals
While doing bounded iteration, if the Annotation being returned isidentical (has the same
_id()) with the bounding Annotation, it is skipped. If this variant is specified, in addition
to that, any Annotation which has the same begin, end, and (maybe) type is aso skipped.
Theposi ti onUsesType setting is used to specify in this variant whether or not the typeis
included when doing the equals test.

1.3.7. Defaults for bounded selects

The ordinary core UIMA Subiterator implementation defaults to using type order as part of the

bounds determination. uimaFI T, in contrast, doesn't use type order, and sets bounds according to

the begin and end positions.

Thissel ect implementation mostly follows the uimaFI T approach by default, but provides the

above configuration settings to flexibly alter this to the user's preferences. For reference, here are

the default settings, with some comparisons to the defaults for Subi t er at or s:

typePriority
default: type priorites are not used when determining bounds in bounded selects. Subiterators,
in contrast, use type priorities.

positionUsesType
default: the type of the bounding Feature Structure isignored when determining boundsin
bounded selects; only its begin and end position are used

nonOverlapping
default: this mode isignored. It corresponds to the "unambiguous' mode in Subiterators, so the
default is "ambiguous’.

endWithinBounds
default: thismode isignored. In any case, it only isused for cover edBy selections; the other
subselect operationsignore it. This corresponds to Subiterator's "strict” option, so the default is
"not strict”.

skipEquals
default: only the single Feature Structure with the same _id() is skipped when doing sub
selecting. Subiterators, in contrast, skip al Feature Structures which compare equal using the
Annotationlndex comparator.

1.3.8. Following or Preceding

For an Annotation Index, you can specify al Annotations following or preceding a position. The
position can be specified either as a Annotation, or by using begin and end values. The arguments
areidentical to those of the st ar t At specification, but are interpreted differently.

The underlying iteration can be any of the kinds supported by the Annotation Index, except that
endW t hi nBounds isforced on.

following
Position the iterator according to the argument, get that Feature Structure's end value, and then
move the iterator forwards until the Annotation at that position has its begin value >=to the
saved end value.

UIMA Version 3.0.0 Select framework 7

Processing actions

preceding
Position the iterator according to the argument, save that Annotation's begi n value, and
then move it backwards until the Annotation's (at that position) end valueis <= to the saved
begi nvalue.

1.4. Processing actions

After the sources and selection and ordering options have been specified, one processing action
may be specified. This can be an iterator, something that convertsto an array or list, something
that retrieves a single value with various extra checks, or a stream operation. A stream operation
converts the object to a stream; from that point on, any stream operation may be used.

S Processing
Sources and X
ordering actions

{ Iterators } {Arrays and} {Single items} { Streams }

Lists
fslterator asArray get ‘ Any/all
stream
iterator asList single methods
spliterator singleOrNull

Figure 1.4. Select Processing Actions

1.4.1. Iterators

fslterator
returns a configured fslterator or sublterator. Thisiterator implementsLi st 1 t er at or aswell.
Modifications to the list using add or set are not supported.

iterator
Thisisjust the plain Javaiterator, for convenience.

spliterator
This returns a spliterator, which can be marginally more efficient to use than a normal iterator.
It is configured to be sequentia (not parallel), and has other characteristics set according to the
sources and selection/ordering configuration.

1.4.2. Arrays and Lists

asArray

Thistakes 1 argument, the class of the returned array type, which must be the type or subtype
of the select.

8 Select framework UIMA Version 3.0.0

Single Items

asList
Returns a Javalist, configured from the sources and selection and ordering specifications.

1.4.3. Single Items

These methods return just a single item, according to the previously specified select configuration.
Variations may throw exceptions on empty or more than one item situations.

These have no-argument forms as well as argument formsidentical to st art At (see above). When
arguments are specified, they server to adjust the item returned by positioning within the index
according to the arguments.

Note: If the positioning arguments is other than a simple shift or omitted, then the
underlying index must be an Annotationlndex.

get
If no argument is specified, then returns the first item, or null. If nullOk(false) is configured,
then if the result is null, an exception will be thrown.

If any positioning arguments are specified, then this returns the item at that position unless
thereis no item at that position, in which case it throws an exception unlessnul | Ok is set.

single
returns the item at the position, but throws exceptions if there are more than one item in the
selection, or if there are no itemsin the selection.

singleOr Null
returns the item at the position, but throws an exception if there are more than one item in the
selection.

1.4.4. Streams

any stream method
Select supports all the stream methods. The first occurance of a stream method converts the
select into astream, using spl i t er at or, and from then on, it behavesjust like a stream
object.

UIMA Version 3.0.0 Select framework 9

	UIMA Version 3 User's Guide
	Table of Contents
	Chapter 1. The select framework for working with CAS data
	1.1. Select's use of the builder pattern
	1.2. Sources of Feature Structures
	1.2.1. Sources and generic typing

	1.3. Selection and Ordering
	1.3.1. Boolean properties
	1.3.2. Configuration for any source
	1.3.3. Configuration for any index
	1.3.4. Configuration for ordered indexes
	1.3.5. Bounded sub-selection within an Annotation Index
	1.3.6. Variations in Bounded sub-selection within an Annotation Index
	1.3.7. Defaults for bounded selects
	1.3.8. Following or Preceding

	1.4. Processing actions
	1.4.1. Iterators
	1.4.2. Arrays and Lists
	1.4.3. Single Items
	1.4.4. Streams

