Introduction

Apache Ranger provides centralized security for Enterprise Hadoop ecosystem, including fine-
grained access control and centralized auditing. In ranger-0.5 Version, Apache Ranger
introduced stack-model to make it easier for new components to use Apache Ranger
authorization and auditing. Further, to enable extending/adapting Apache Ranger for new or
deployment-specific authorization requirements, the stack model provides hooks like context-
enrichers and policy-conditions.

In this document, we will see the details of extending Apache Ranger to support authorization
of a Hive request based on all Hive resources requested by it. In particular, a Ranger Policy
may be written which prohibits certain users/groups from accessing specified Hive Resources
together in the Hive query.

Here is the outline of the tasks to be done:

- Enable Ranger to support deny policies for Hive.

« Register a policy-condition to enforce mutual exclusion/ prohibition of Hive objects
specified in the policy.

« Create/update Apache Ranger policies to specify the locations to allow/deny the access

Enable Ranger to support deny policies for Hive

To enable Ranger GUI to support specification of deny policies for the Hive component please
update Hive’s service-definition by including the following:

"options": {

"enableDenyAndExceptionsInPolicies":"true"

Register Policy Conditions

Apache Ranger provides policy-condition hooks to execute custom conditions while evaluating
authorization requests. To determine the authorization result, Apache Ranger policy engine
evaluates the policies that are applicable to the accessed resource. Only when various criteria
like user/group, access-type and policy-conditions specified in the policy match the request,
the policy engine will use the policy to determine the result.

Policy conditions RangerHiveResourcesAccessedTogether (and
RangerHiveResourcesNotAccessedTogether), available in Ranger 0.6, evaluate to true
only when the specified request contains (does not contain) minimum of two resources
specified in the policy-condition. This can be used to deny Hive requests that include Hive
resources that should not be accessed together.

To register policy-condition for the Hive component, please update the Hive component’s
service-definition by including the following:

"policyConditions": [{
"itemId": 1,
"name": "accessed-together",

"evaluator":
"org.apache.ranger.plugin.conditionevaluator.RangerHiveResourcesAcces
sedTogetherCondition",

"evaluatorOptions": {},

"label": "Accessed Together ?",

"description": "List of Hive resources"
oo A

"itemId": 2,

"name": "not-accessed-together",

"evaluator":
"org.apache.ranger.plugin.conditionevaluator.RangerHiveResourcesNotAc
cessedTogetherCondition",

"evaluatorOptions": {},
"label": "Not Accessed Together?",

"description": "List of Hive resources"

H]

Once this policy condition is registered with Ranger, the policy editing Ul will prompt for
condition values to be used during evaluation — as shown below:

Ranger UAccess Manager [Audit %* Settings

.?‘ admin
Allow Conditions :
Policy L Delegate
Select Group Select User L Permissions)
Conditions Admin
not-acces
sed-toget
her: hr.e
{7] mployee.
* public ‘ Select User ‘ age,hr.e n
mployee. m t/
zip,hr.em
ployee.id
| add/edit conditions
Select Group ‘ % hive Accessed Together?: B n

- Not Accessed Together? :

(% hr.employee.age |
Exclude from Allow Conditions : ‘

show ~

(% hr.employee.zip | |

=

Example

In this section, we will see the details of an Apache Ranger policy that denies access to a
specific Hive Resources when they are accessed together with other Hive Resources using the
policy-conditions described above. The steps are :

* Create a sample Hive table.
* Determine the access policy for this table.
* Create a Ranger policy to implement access policy.

* Test Ranger policy by accessing Hive resources using a command tool (such as
beeline).

Create a sample Hive table

For a Postgres database, create an employee table in hr database with the following
commands:

==> CREATE DATABASE hr;

==> CREATE TABLE hr.employee(id INT, name STRING, salary INT, age
INT, zip STRING);

Determine the access policy for this table

* User ‘hive’ may read/update all columns of employee table in hr database individually or
collectively.
* All other users cannot read
o id column with either age, zip, name or salary column
o age column with zip column
o name column with salary column

Create a Ranger policy to implement access policy

Ranger policy for implementing the access policy above is as follows:

Ranger UAccess Manager [Audit % Settings .?‘ admin

Hive Database * || x hr | include .
me 4t . @)
e comn ([X

add/edit conditions

Audit Logging

Accessed Together? :

Description Demonstrate accessed-together

5.
and not-accessed-together policy p Not Accessed Together? :

» hr.employee.age
Allow Conditions : * hr.employee.zip
* hr.employee.id

Delegate
Select Group Select Us: % Adrﬁin

not-acces
sed-toget
her: hr.e
mployee.
age,hr.e
mployee.
zip,hr.em
ployee.id

|

Select User ‘

(2]

wi B
| conaions . o KN

Select Group ‘

Ranger UAccess Manager ~ [3 Audit % Settings ‘?‘ admin

+ add/edit conditions

- Accessed Together? :
Exclude from Allow Conditions : show ~
| % hr.employee.id

| % hr.employee.name |

| % hr.employee.salary |

Not Accessed Together? :

Deny Conditions : show v

Delegate
J Admin

Select Group Select US(‘ %

accessed-
together :
hr.emplo
yee.id,hr.
employee
.name,hr.
employee
.salary

| % public | Select User ‘

e o 3

+

Exclude from Deny Conditions : show ~

Poli Delegate
<y Permissions 8

Select Group Select User L. .
Conditions Admin

Add

| % hive | ‘ Conditions n

+

Select Group

This policy applies to all columns of employee table. Allow policy-items specify that user ‘hive’
can read/update any Hive resource in the request, but for all other users (i.e. members of
group ‘public’), allow read access only if any two columns from id, age and zip do not appear
together in the request. Similarly, deny policy-items specifies that all users, except ‘hive’, is
denied access if any two columns from id, name and salary appear together in the request.

Testing Ranger policy by accessing Hive resources using beeline
When logged in as ‘hive’:

% ./beeline -n hive -p hive -u jdbc:hive2://localhost:10000
Connecting to jdbc:hive2://localhost:10000

Connected to: Apache Hive (version 1.2.1000.2.5.0.0-1245)

Driver: Hive JDBC (version 1.2.1000.2.5.0.0-1245)

Transaction isolation: TRANSACTION_REPEATABLE_READ

Beeline version 1.2.1000.2.5.0.0-1245 by Apache Hive

0:jdbc:hive2://localhost:10000> select id, name, salary, age, zip from

hr.employee;

+-mmm- +ommme- e +ommmm- +omme- +--+
| id | name | salary | age | zip |
+-mmm- +ommme- e +ommmm- +omme- +--+
+-mmm- +ommme- e +ommmm- +omme- +--+

No rows selected (0.171 seconds)
When logged in as ‘testuser’:

% ./beeline -n testuser -p testuser -u jdbc:hive2://localhost:10000
Connecting to jdbc:hive2://localhost:10000

Connected to: Apache Hive (version 1.2.1000.2.5.0.0-1245)

Driver: Hive JDBC (version 1.2.1000.2.5.0.0-1245)

Transaction isolation: TRANSACTION_REPEATABLE _READ

Beeline version 1.2.1000.2.5.0.0-1245 by Apache Hive

0:jdbc:hive2://localhost:10000> select id, name, salary, age, zip from
hr.employee;

Error: Error while compiling statement: FAILED: HiveAccessControlException Permission denied:
user [testuser] does not have [SELECT] privilege on [hr/employee/age,id,name,salary,zip]
(state=42000,code=40000)

0:jdbc:hive2://localhost:10000> select id, name from hr.employee;

Error: Error while compiling statement: FAILED: HiveAccessControlException Permission denied:
user [testuser] does not have [SELECT] privilege on [hr/employee/id,name]
(state=42000,code=40000)

0: jdbc:hive2://localhost:10000> select age, zip from hr.employee;

Error: Error while compiling statement: FAILED: HiveAccessControlException Permission denied:
user [testuser] does not have [SELECT] privilege on [hr/employee/age,zip]
(state=42000,code=40000)

0: jdbc:hive2://localhost:10000> select name, salary from hr.employee;

Error: Error while compiling statement: FAILED: HiveAccessControlException Permission denied:
user [testuser] does not have [SELECT] privilege on [hr/employee/name,salary]
(state=42000,code=40000)

0: jdbc:hive2://localhost:10000> select name, zip from hr.employee;

+ommmee- +omme- +--+

| name | zip |

+ommmee- +omme- +--+

+ommmee- +omme- +--+

No rows selected (0.211 seconds)

0: jdbc:hive2://localhost:10000> select salary, age from hr.employee;

o +ommee- +--+

| salary | age |

o +ommee- +--+

o +ommee- +--+

Syntax of specifying Hive Objects in policy
conditions

As shown above, a dot-separated string, such as ‘hr.employee.id’, specifies column ‘id’ in table
‘employee’ of database ‘hr’. It is possible to omit some but not all parts of this specification.
The following shows how such specification is interpreted.

« ‘hr.employee’ - interpreted as ‘hr.employee.*

« ‘hr.employee.’ — interpreted as ‘hr.employee.”

« ‘hr..id’ — interpreted as ‘hr.*.employee’

« ‘employee’ — interpreted as ‘employee.*.”

If no value is specified for policy-condition, then such policy-condition is considered as not
specified at all for that policy-item.

