

CarbonData Compaction

2

Why Compaction?

Frequent data loading into the Carbon table results in large number of Segments. As the
number of segments increases, the number of B-trees also increase. This can result in the
degradation of the performance of the query on the Carbon table.

Compaction is a process in which the 2 or
more segments of the Carbon table are
merged into a single segment. i.e 2 or
more B-trees will combine into 1 single B-
tree so as to increase the query
performance.

What is Compaction?

SEGMENT_0

SEGMENT_1

SEGMENT_2

SEGMENT_0.1

Syntax: ALTER TABLE [db_name.]table_name COMPACT 'MINOR/MAJOR';

3

Types of Compaction - Major

This is a size based compaction in which, User will specify the compaction size until which
segments can be merged. Major compaction is usually done during the off-peak time.
Here the size means the size of the files inside the segment.

SEGMENT_0
20 GB

SEGMENT_1
20 GB

SEGMENT_0.1 Example:
If the user has defined the Major compaction
size as 40 GB. This means when the major
compaction DDL is run then all the segments
which are present will be merged into the
segments of 40 GB size.

SEGMENT_2
20 GB

SEGMENT_3
20 GB

SEGMENT_2.1

4

Types of Compaction - Minor

In minor compaction, the user can give the segment count based on which compaction will
take place.
Minor compaction is a 2 level process. User can configure the threshold parameter like 3,2.

Example:
If the threshold is 3,2 then the
working of compaction will be as
below.

SEGMENT_0

SEGMENT_1 SEGMENT_0.1

SEGMENT_2

SEGMENT_3

SEGMENT_3.1 SEGMENT_4

SEGMENT_5

SEGMENT_0.2

5

Working – Flow Diagram

DDL
Identify

Segments

Select

Query
Sort Data Data Writer

On each executor

Note: Auto load merge property is also present in carbon which will trigger the compaction automatically after the data load.
carbon.enable.auto.load.merge = true

6

Working

1. Based on the user configured values for compaction the identification of segments to be compaction will happen in
DataManagementFunc.scala

2. The task based grouping will happen, and for each executor a set of tasks will be allocated to be compacted. The executor will fire
a select query on the allocated blocks of data. This is a special type of select query where the data will be in form of RawData.
Refer to: CarbonCompactionExecutor.java

3. The result of the select query will be a List of RawResultIterator. This data needs to be sorted and is done using the priorityQueue.
And each sorted data is sent to the next step which is CarbonDataWriter step.
Refer to: RowResultMerger.java

4. Sorted data should be written to the new compacted segment folder and this will reuse the data load process writing flow.
Refer to: CarbonFactHandler.java

7

Compaction – Class System

class System

Executor

CarbonSqlParser

+ alterTable(): LogicalPlan

CarbonDDLSqlParser

CarbonTableSchema

AlterTableCompaction

«interface»

RunnableCommand

CarbonDataRddFactory

+ alterTableForCompaction()

Driver side code where

the Identification of the

segments to be merged

is present.

DataManagementFunc

+ executeCompaction()

CarbonMergerRDD

RDD

CarbonCompactionExecutor

+ processTableBlocks(): List<RawResultIterator>

RowResultMerger

- recordHolderHeap: AbstractQueue<RawResultIterator>

+ mergeSlice(): boolean

«interface»

CarbonFactHandler

+ addDataToStore(object[])

+ clostHandler()

+ finish()

+ initialise()

CarbonFactDataHandlerColumnar

Thank you

