

Alistair Crooks
October 25, 2017

• > 100 million members

• > 190 countries

• > 125 million hours of TV shows and movies
per day

• Multiple tens of Tbps

• Hundreds of partners

• Multiple thousands of machines

The Internet: USA, downstream, 2016

The Internet: US, upstream, 2016

How

Works

Open Connect Architecture

Use Cases
• Movie/TV Shows

• Pre-located content

• Popularity, churn and fill windows

DATA PLANE
Open Connect

Content
Delivery
Network

CONTROL PLANE

STREAMNETFLIX
DEVICE

Basic Architecture
• FreeBSD

• Nginx

• Bare metal, no hardware RAID

before streaming starts = control plane =

streaming = data plane = Open Connect

Data Plane
(streaming playback)

Open Connect
A NETFLIX ORIGINAL

Q: What is a Content Delivery Network?

A: Geographically distributed content servers attached to networks
+

a way of routing requests to the closest (and/or best performing)
server / network path

History

Streaming
Launched
(“EHub”)

2007

Third Party CDN
2009

Open Connect
2011

Hardware
Open
Connect
Appliances

Open Connect Appliance

https://openconnect.netflix.com/en/appliances/

Open Connect Appliance Hardware
Type Storage Throughput Use

Storage 108-288 TB HDD 
6-10 TB SSD

10-20 Gbps Hold large % of
catalog, ISP sites

Flash 14 TB NVMe 40-100 Gbps Very high traffic sites

Global 64 TB HDD  
6 TB SSD

8 Gbps Smaller ISP sites

Open Connect Hardware
• No field maintenance

• Balance cost, reliability, density, throughput

• Consumer, not Enterprise hardware

Mid 2017 Storage

Mid 2017 Global

Mid 2017 Flash

One firmware image
• Runs on all hardware types

• Now have about 40 different hardware types

• New ones coming all the time

Diversion - Deployment
• Basic unit is a firmware image

• Holds kernel, userland, scripts, configuration

• Change something? Deploy new firmware

Netflix clients
• Given URLs of 3 OCAs holding content

• Perform tests on all 3 to find nearest OCA

• Continues testing while serving

Also builds up content buffer
• Can be up to 2 minutes

• Allows for router reboot while watching

No test network
• All testing in production

• AB testing done across organisation

• Instant idea if a change is good/bad/neutral

Continuous Integration
• All images are tested as we go

• Typically long sprints ~5 weeks

• One image for every hardware type

Control Plane
• OCAs ask control plane for desired firmware

• Will download and boot once

• Control multiple OCAs

OCA Firmware
• Use standard OS and webserver features

• Feed any changes back

• Peer review, third-party testing

OCA Firmware Implications
• try not to make minor changes

• upstream changes by developer

• bring in changes with next OS sync

Implications of Implications
• have upstream write access via developers

• regular upstream syncs

• incompatible changes minimised

Sendfile System Call

Sendfile + TLS

Sendfile + TLS
• Non-encrypted performance 18-20 Gbps

• 2.5x-3x times drop in throughput

• AES-NI still showed 2.3x drop

Sendfile + kernel TLS

Step 1- Encrypted throughput
• Hardware - NVMe storage

• 18-20 Gbps with SSDs

• 58 Gbps with NVMe

PCM expose memory bw limits
• temporal implementation in ISA-L

• Intel produced non-temporal code

• 65 Gbps throughput

Step 3 - Encrypted throughput
• Hardware - faster DDR4 RAM

• 65 Gbps before

• 76 Gbps after

Step 4 - Encrypted throughput
• Use Vtune, recover wasted memory

bandwidth

• 76 Gbps before

• 80 Gbps after

Sendfile + kernel TLS Performance

80 Gbps is so 2016…
• https://medium.com/netflix-techblog/

serving-100-gbps-from-an-open-connect-
appliance-cdb51dda3b99

• Blog post detailing steps to improve
throughput

Steps taken
• Fake NUMA

• Pbufs

• Proactive VM Page Scanning

• RSS-Assisted LRO

TLS at 100 Gbps
• More VTune-driven optimisations - m_ext

• Getting out of our own way

• Mbuf page arrays

• “At this point, we’re able to serve 100% TLS
traffic comfortably at 90 Gbps using the
default FreeBSD TCP stack.”

In-kernel TLS - how effective?
• “in case anybody is curious how effective

kernel TLS is for us, I inadvertently disabled
it. We served ~60Gb/s with CPU maxed on
a 100G box that is normally 50% idle.

Questions?

