
Apache Traffic Control
& Lua

Matt Mills
Comcast

Who am I & What is this talk about?

● Sr. Systems Engineer - Comcast CDN - Denver, Colorado
● Somewhere in between Dev and Ops
● How I want to use Lua within Traffic Control
● Why I want to build a generic layer for describing programmatic functionality
● Some tangentially related problems

Traffic Control Refresher

Problem:
1. UI, database schema, and API all speak ATS

a. Self service users don’t understand regex or header rewrite or...
b. Can’t leverage non-ATS caching proxy without a LOT of development

2. Adding new custom delivery service functionality requires touching too many
components

1. CDN changes propagate too slowly and can cause a thundering herd.
2. Changes are not atomic (Queued updates & Snapshot CRConfig)

a. Different users’ changes can collide
b. User A can push out User B’s changes before User B is ready

Related problems:

How changes happen in ATC

Delivery service configuration

What does “custom delivery
service functionality” mean?

Support in-url range requests

● Customer had legacy clients that couldn’t support Range: header
● But also clients that DO support and use Range header
● So they put it in the URL (/path/to/file/range/100-200)
● Need to parse in-URL range request when present, and convert to normal

Range header at the edge
● 11 lines of Lua

Manipulate URLs in flight to “capture” sessions

● Customer wanted our CDN to use another CDN as upstream
● But they can’t change the URLs that they use for playback (streaming video)
● Also, they didn’t want us to talk to the other CDN about it
● Need to manipulate API responses as well as HLS m3u8 manifests
● Replace existing URLs with our CDN edge URL
● 9 Lines of Lua

Speed test (mod_hotair/generator at the edge)

● Generate hot air (bytes) at the edge, no upstream request
● Variable size (1 byte to 1 gigabyte)
● Should respond with 200 OK to POST (upload speed test)
● Upstream requests to other URLs should still work
● Preferably doesn’t crash server or leak memory
● 57 lines of Lua

AWS S3 v4 Signing

● Before the existing ATS s3_auth plugin was updated to support v4 we had a
customer requirement to support upstream auth against AWS S3 v4 signing

● Didn’t need to support full feature set, just sign GET requests
● LUA OpenSSL binding library
● Now we can do HMAC SHA256 in Lua!
● 109 Lines of Lua

Simpler stuff
● Add/Remove/Modify headers
● Manipulate parent or origin URL / URI / Query Params / Scheme
● Manipulate parent or origin hostname
● Enabling debug logging
● Config overrideables per delivery service
● A lot of the existing functionality of:

○ Header_rewrite
○ Cache URL / Cache Key
○ Regex remap

What do I want to do?
LUA all the things!

What do I want to do (cont’d)
● Create a structured way to describe programmatic functionality of a Delivery

Service (rules)
● Create a Lua plugin for ATS that interprets & executes that structure, but also

allows custom expansion
● Replace existing ATS specific database & API elements in Traffic Control
● Add a web UI for manipulating these rules easily to existing Traffic Portal
● Add an administrative UI for managing the defined components of a rule

(conditions and actions) as well as adding custom functionality and defining
who can access it

url client_request store variable1

custom_thing_here

Hook points

Why?
● Moves most ATS specific functionality out of the core of Traffic Control

○ Simpler to upgrade ATS

● Rules functionality can be re-implemented or translated to existing config
language on other caches (nginx, varnish, homebrew_cache.exe)

● Allows self-service users (of a CDN) to access a lot more functionality
● Can build simple and “advanced” rules UIs for easier use
● Adding new custom (lua based) functionality is as simple as:

○ Write Lua code & check into CI/CD system (should run tests & deploy)
○ Add newly defined condition or action to admin UI, configure permission levels
○ Users with appropriate permissions can now configure that rule on their delivery services
○ Probably not quite that simple in reality

● Provides better isolation between delivery services

Examples from
proof of concept

(This probably isn’t how the final result will look)

{

 name = 'test_set_header-client_request',

 hook_point = '',

 conditions = {

 {

 type = 'uri',

 target = 'client_request',

 args = {},

 operator = '==',

 value = '/test_set_header-client_request',

 },

 },

 actions = {

 {

 type = 'set_header',

 target = 'client_request',

 args = {name='X-test-header', value='This is only a test.'},

 },

 }

 },

{
 name = 'test_set_response',
 hook_point = '',
 conditions =
 {
 },
 actions =
 {
 {
 type = 'set_response',
 target = '',
 args = {response_code=418, body="I'm a teapot"},
 },
 }
 },

