
TSConfig & Lua Config
Better together

Apache Traffic Server Summit Spring 2017 1



C++ vs. Lua

 Use the TSConfig C++ API (roughly) as an interface to Lua configuration data.

 TSConfig interface takes a path or buffer, along with a list of global symbols.

 The content is parsed / executed by Lua.

 TSConfig copies the data rooted at the specific symbols to internal data

 A C++ tree / value interface lets this data be examined by the caller.

Apache Traffic Server Summit Spring 2017 2



Notes

 Requiring every component to build Lua support is not so good.

 I prefer a generic pull model (C++ logic does the equivalent of ‘dump’) vs. a 

specialized Lua API for each component.

 Have done some experimentation, still working on the precise mechanism for 

doing the dump to C++.

Apache Traffic Server Summit Spring 2017 3



Continuation Tracking
We know where you came from

Apache Traffic Server Summit Spring 2017 4



Tracking Continuation Sources

 Each continuation has a link back to a plugin registration.

 Core maintains a “plugin context” in a thread local variable that tracks the 

currently active plugin.

 Push on plugin call, pop on return.

 TSContCreate uses this to set the plugin field of the new continuation.

 Prototype implementation as part of the plugin priority work.

 Remap plugins are also tracked in this way.

 Base reference stored during remap.config processing.

 Super class PluginInfo to create registration data structure.

Apache Traffic Server Summit Spring 2017 5



Goals and Features

 Debugging

 While running can examine which plugin created the continuation.

 Error / warning messages can describe the responsible plugin

 “Use of deleted continuation”

 Continuation counts

 Track the total # of outstanding continuations per plugin.

 Leak detection with plugin localization.

 Plugin reload

 Create new registration data.

 Mark old registration as “dead” then skip events on “dead” plugins.

Apache Traffic Server Summit Spring 2017 6



Overridable Configuration
Leif has it exactly backwards

Apache Traffic Server Summit Spring 2017 7



Goal: Plugin API to override 

configuration per transaction

 Problem when overridable data is in a subsystem.

 Duplicate in HttpSM and pass in locally.

 Pass in HttpSM configuration structure to subsystem

 Circular dependency! Yay!

Apache Traffic Server Summit Spring 2017 8



My approach

 Each subsystem defines a struct that is the per transaction (“local”) 

configuration values.

 HttpSM override struct inherits the subsystem struct.

 At run time the HttpSM configuration struct is static_cast to the subsystem 

struct and passed down.

 No more circular dependencies. Yay!

 Easier maintenance.

Apache Traffic Server Summit Spring 2017 9


