
TSConfig & Lua Config
Better together

Apache Traffic Server Summit Spring 2017 1



C++ vs. Lua

 Use the TSConfig C++ API (roughly) as an interface to Lua configuration data.

 TSConfig interface takes a path or buffer, along with a list of global symbols.

 The content is parsed / executed by Lua.

 TSConfig copies the data rooted at the specific symbols to internal data

 A C++ tree / value interface lets this data be examined by the caller.

Apache Traffic Server Summit Spring 2017 2



Notes

 Requiring every component to build Lua support is not so good.

 I prefer a generic pull model (C++ logic does the equivalent of ‘dump’) vs. a 

specialized Lua API for each component.

 Have done some experimentation, still working on the precise mechanism for 

doing the dump to C++.

Apache Traffic Server Summit Spring 2017 3



Continuation Tracking
We know where you came from

Apache Traffic Server Summit Spring 2017 4



Tracking Continuation Sources

 Each continuation has a link back to a plugin registration.

 Core maintains a “plugin context” in a thread local variable that tracks the 

currently active plugin.

 Push on plugin call, pop on return.

 TSContCreate uses this to set the plugin field of the new continuation.

 Prototype implementation as part of the plugin priority work.

 Remap plugins are also tracked in this way.

 Base reference stored during remap.config processing.

 Super class PluginInfo to create registration data structure.

Apache Traffic Server Summit Spring 2017 5



Goals and Features

 Debugging

 While running can examine which plugin created the continuation.

 Error / warning messages can describe the responsible plugin

 “Use of deleted continuation”

 Continuation counts

 Track the total # of outstanding continuations per plugin.

 Leak detection with plugin localization.

 Plugin reload

 Create new registration data.

 Mark old registration as “dead” then skip events on “dead” plugins.

Apache Traffic Server Summit Spring 2017 6



Overridable Configuration
Leif has it exactly backwards

Apache Traffic Server Summit Spring 2017 7



Goal: Plugin API to override 

configuration per transaction

 Problem when overridable data is in a subsystem.

 Duplicate in HttpSM and pass in locally.

 Pass in HttpSM configuration structure to subsystem

 Circular dependency! Yay!

Apache Traffic Server Summit Spring 2017 8



My approach

 Each subsystem defines a struct that is the per transaction (“local”) 

configuration values.

 HttpSM override struct inherits the subsystem struct.

 At run time the HttpSM configuration struct is static_cast to the subsystem 

struct and passed down.

 No more circular dependencies. Yay!

 Easier maintenance.

Apache Traffic Server Summit Spring 2017 9


