
Tech Corner
Minor technical updates

StringView

Apache Traffic Server Summit Spring 2017 2

Introduction

 StringView is a class defined in lib/ts/MemView.h.

 Contains a read only view of memory as character data.

 StringView never allocates.

 StringView instances depend on some other object owning the memory.

 Must be careful of data lifetime issues.

 Useful where

 A substring is needed only while the original still exists.

 Instead of explicitly passing a pointer and length for a string.

Apache Traffic Server Summit Spring 2017 3

STL Compliance

 C++17 adds “std::string_view” class.

 Very similar in function to StringView but done independently.

 Boost.StringRef was considered as a model but it lacked essential features.

 Different method naming

 For 8.0 StringView will have its method names and naming style changed to

conform to std::string_view for ease of use.

 StringView is a superset of std::string_view functionality.

 StringView will be made to interoperate with std::string_view.

Apache Traffic Server Summit Spring 2017 4

Basics

 A StringView instance contains a base pointer to the start of the memory view

and a length for the size of the view.

 Acts like a pointer as much as possible.

 Equality operator compares only pointer and length.

 Compare contents with methods and free functions.

 StringView provides methods to make string parsing easier.

 Find characters / character types.

 Split StringView (as with strtok but without modifying the string).

 Overloaded strcmp family of functions.

Apache Traffic Server Summit Spring 2017 5

Memory

size

StringView

_ptr

_size

... ...

Apache Traffic Server Summit Spring 2017 6

Benefits

 StringView instances are cheap to create and copy.

 Inexpensive way to reference temporary substrings.

 More convenient than passing an explicit pointer and length and just as fast.

 Strong support for string parsing.

 Easily replaces strtok and the internal “tokenizer” library.

Apache Traffic Server Summit Spring 2017 7

Example: VIA header

 PR 1520 – Change VIA header to include full protocol stack.

 Leif bikeshedded about all the strlen use.

 PR 1534 is a StringView based version.

 No memcpy in the API.

 Only memcpy to the output VIA string without using strlen.

 Enhanced StringView to avoid allocation even on initialization.

 Source strings are static – no lifetime issues.

Apache Traffic Server Summit Spring 2017 8

Parsing support

 Can copy or split a prefix from the StringView.

 Easy to do the equivalent of strtok without allocation or string modification.

 Trivial to do on substrings because of the lack of modification. E.g. split on white

space first, then on another separator such as ‘=‘.

 Can trim characters from front and back.

 Can increment like a pointer.

 Lifetime can be managed by reading the entire file and keeping that buffer

around. Instance of StringView are views of that buffer.

Apache Traffic Server Summit Spring 2017 9

Parsing

 Style is layered.

 Outer loop splits out lines.

 Next loop splits out tokens.

 Tokens can be further split as needed (e.g. key value pairs split on ‘=‘).

 CacheTool uses StringView to parse the storage.config and volume.config files

with much less library support.

Apache Traffic Server Summit Spring 2017 10

Apache Traffic Server Summit Spring 2017 11

Errata
Cache::loadSpanConfig(FilePath const &path)
{
static const ts::StringView TAG_ID("id");
static const ts::StringView TAG_VOL("volume");

Errata zret;

ts::BulkFile cfile(path);
if (0 == cfile.load()) {

ts::StringView content = cfile.content();
while (content) {

ts::StringView line = content.extractPrefix('\n');
line.ltrim(&isspace);
if (!line || '#' == *line)
continue;

Apache Traffic Server Summit Spring 2017 12

ts::StringView path = line.splitPrefix(&isspace);
if (path) {
// After this the line is [size] [id=string] [volume=#]
while (line) {

ts::StringView value(line.extractPrefix(&isspace));
if (value) {

ts::StringView tag(value.splitPrefix('='));
if (!tag) { // must be the size
} else if (0 == strcasecmp(tag, TAG_ID)) {
} else if (0 == strcasecmp(tag, TAG_VOL)) {

ts::StringView text;
auto n = ts::svtoi(value, &text);
if (text == value && 0 < n && n < 256) {
} else {
zret.push(0, 0, "Invalid volume index '", value, "'");

}
}

}
}

Apache Traffic Server Summit Spring 2017 13

zret = this->loadSpan(FilePath(path));
}

}
} else {

zret = Errata::Message(0, EBADF, "Unable to load ", path);
}
return zret;

}

CPP API

 CPP API should be converted to use StringView in most places std::string is

used now.

 This is particularly true for the transform logic. Copying the data to be processed

by the override method seems unnecessarily expensive.

 However passing a raw pointer and length was too ugly.

 StringView provides the best of both.

Apache Traffic Server Summit Spring 2017 14

Notes on VIA changes

 Internal strings for ALPN were changed to be StringView instances

 A special constructor was added to cause the StringView to be a view of the

literal string.

 Only one copy of the string.

 Not even strlen is used in the constructor.

 No lifetime issues.

 Many of the strings were moved to ink_inet.cc because that seemed a more

appropriate home than the HTTP proxy string parsing.

Apache Traffic Server Summit Spring 2017 15

Notes

 Would like to make StringView available to plugins.

Apache Traffic Server Summit Spring 2017 16

MemView
Read only memory view

Apache Traffic Server Summit Spring 2017 17

Basics

 MemView is very similar to StringView.

 Originally the same class but differences became too large to stay unified.

 MemView treats its contents as a slab of bytes.

 Allows searching for a value or condition in its view as if it were an array of

arbitrary types.

 Rarely useful for classes.

 Very handy for multi-byte integral values.

 Allows array access for arbitrary types. Similar utility as for searching.

Apache Traffic Server Summit Spring 2017 18

Notes

 Not as useful as StringView but still handy in places where currently a void *

and length are passed. MemView is more convenient.

 Very tempted to make a writeable version.

 I’ve encountered a number of situations where having a memory window that is

writeable would be quite nice. Not yet convinced it’s a good idea.

Apache Traffic Server Summit Spring 2017 19

Cache Tool
traffic_cache_tool

Apache Traffic Server Summit Spring 2017 20

Cache Tool

 New command line tool for Traffic Server.

 Operates on Traffic Server cache

 Currently provides some analysis on cache structure.

 Can pre-allocate cache volumes.

 Being used internally to fix the problem reported by Yahoo! and Comcast where a

disk fails but when replaced is still not used by the cache.

Apache Traffic Server Summit Spring 2017 21

History

 Originally done via the “stripe inspector” using the --check option to

traffic_server.

 This was in practice not usable because of the memory requirements, which

in turned required stopping Traffic Server.

 Assigned to fix problem with replaced cache disks not being used.

 Built traffic_cache_tool from scratch.

 Reduce run time footprint.

 Create understandable code.

 Experiment with new cache data structures.

 Add additional features

Apache Traffic Server Summit Spring 2017 22

Scratch Built

 Reduce run time footprint.

 Create understandable code.

 Experiment with new cache data structures.

 Experiment with new layout algorithms.

 Additional features that only make sense for a separate tool.

Apache Traffic Server Summit Spring 2017 23

The Challenge

 Critical bits of information are missing from the storage.

 Traffic Server recomputes all the cache structure every process start.

 Resets cache if computations don’t agree with cache state.

 Critically the average object size controls data structure sizes.

Apache Traffic Server Summit Spring 2017 24

Cache Stripe Layout

Apache Traffic Server Summit Spring 2017 25

Techniques

 Need to read the content directory until the footer is found.

 Can validate against the B copies because the sizes are determined if the

footer had been found.

Apache Traffic Server Summit Spring 2017 26

Improvements to base logic

 Much faster and more even allocation of disk space to volumes.

 Better organized data structures.

 Accept layout in preference to clearing cache.

Apache Traffic Server Summit Spring 2017 27

Future work

 Directory analysis

 Still not feature complete with the stripe inspector.

 Robustness in the face of live cache

 Double check the A and B copies to validate a consistent read.

Apache Traffic Server Summit Spring 2017 28

Changes

 Change stripe meta data to have

 Number of segments

 Number of buckets per segments

 So little data, so much win…

 Problem with backward/forward compatibility

 A problem if a newer version is rolled back with a different stripe structure.

 Use two structures. One with extra data tucked behind existing data and another

that is the entirely new structure.

 8.0 adds the extra without changing the current data to existing caches, uses the

new structure for new caches.

 Cleared caches aren’t forward compatible but that’s OK.

Apache Traffic Server Summit Spring 2017 29

Goals

 With additional data in the stripe meta data those values can be read instead

of computed and therefore changed.

 Then structure of an existing cache can be changed without destroying the

cache.

 The effective average object size could then be adjusted with minimal loss of

data. This is simply not currently possible.

 Eventually will be possible to disable cache initialization in Traffic Server and

allow on the CacheTool to put disks into and out of cache.

Apache Traffic Server Summit Spring 2017 30

Scalar
Quantized and scaled integer values.

Apache Traffic Server Summit Spring 2017 31

Scaled values

 Scalar is a template library that allows the creation of scaled / quantized

values.

 A scalar instance has a scale and a value.

 Scale is the multiplier.

 The value is the unitary value of the scalar.

 A scalar with a scale of 100 has possible values of 0, 100, 200, 300…

 The scale is a compiler constant, an instance is only the size of an integer.

Apache Traffic Server Summit Spring 2017 32

Operations

 Scalars silently convert from large scales to smaller ones because information

is not lost.

 Conversion from smaller to larger scale requires a cast to indicate rounding

up or down.

 Construction is very cheap.

 Increment / decrement is by scale.

 Binary operators require homogenous types or scale casting.

 With mixed types, rules for automatic resolution become incomprehensible.

 Unfortunately result is “x += 4;” is valid but “x = x + 4;” is not.

 I consider this the lesser evil.

Apache Traffic Server Summit Spring 2017 33

Use

 Driven by the needs of the CacheTool and all the crazy sizes inside the cache.

 Makes it much harder to pass the wrong scaled value.

 Still need to be careful about rounding.

 Still a bit of a work in progress, testing out in the CacheTool implementation.

Apache Traffic Server Summit Spring 2017 34

Possible changes

 Add function operator that converts a raw integral value into a scaled value

of the same scale.

Scalar<100> x(4); // x value is 400

Scalar<10> y(8); // y value is 80

x += 4; // x value is now 800

x = round_up(y) + x(6); // x value becomes 700

Apache Traffic Server Summit Spring 2017 35

Partial Object Caching
The millstone of my life

Apache Traffic Server Summit Spring 2017 36

Current Status

 I’m working on it.

Apache Traffic Server Summit Spring 2017 37

