
Tech Corner
Minor technical updates



StringView

Apache Traffic Server Summit Spring 2017 2



Introduction

 StringView is a class defined in lib/ts/MemView.h.

 Contains a read only view of memory as character data.

 StringView never allocates.

 StringView instances depend on some other object owning the memory.

 Must be careful of data lifetime issues.

 Useful where

 A substring is needed only while the original still exists. 

 Instead of explicitly passing a pointer and length for a string.
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STL Compliance

 C++17 adds “std::string_view” class.

 Very similar in function to StringView but done independently.

 Boost.StringRef was considered as a model but it lacked essential features.

 Different method naming

 For 8.0 StringView will have its method names and naming style changed to 

conform to std::string_view for ease of use.

 StringView is a superset of std::string_view functionality.

 StringView will be made to interoperate with std::string_view.
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Basics

 A StringView instance contains a base pointer to the start of the memory view 

and a length for the size of the view.

 Acts like a pointer as much as possible.

 Equality operator compares only pointer and length.

 Compare contents with methods and free functions.

 StringView provides methods to make string parsing easier.

 Find characters / character types.

 Split StringView (as with strtok but without modifying the string).

 Overloaded strcmp family of functions.
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Memory

size

StringView

_ptr

_size

... ...
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Benefits

 StringView instances are cheap to create and copy.

 Inexpensive way to reference temporary substrings.

 More convenient than passing an explicit pointer and length and just as fast.

 Strong support for string parsing.

 Easily replaces strtok and the internal “tokenizer” library.
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Example: VIA header

 PR 1520 – Change VIA header to include full protocol stack.

 Leif bikeshedded about all the strlen use.

 PR 1534 is a StringView based version.

 No memcpy in the API.

 Only memcpy to the output VIA string without using strlen.

 Enhanced StringView to avoid allocation even on initialization.

 Source strings are static – no lifetime issues.
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Parsing support

 Can copy or split a prefix from the StringView.

 Easy to do the equivalent of strtok without allocation or string modification.

 Trivial to do on substrings because of the lack of modification. E.g. split on white 

space first, then on another separator such as ‘=‘.

 Can trim characters from front and back.

 Can increment like a pointer.

 Lifetime can be managed by reading the entire file and keeping that buffer 

around. Instance of StringView are views of that buffer.
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Parsing

 Style is layered.

 Outer loop splits out lines.

 Next loop splits out tokens.

 Tokens can be further split as needed (e.g. key value pairs split on ‘=‘).

 CacheTool uses StringView to parse the storage.config and volume.config files 

with much less library support.
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Errata
Cache::loadSpanConfig(FilePath const &path)
{
static const ts::StringView TAG_ID("id");
static const ts::StringView TAG_VOL("volume");

Errata zret;

ts::BulkFile cfile(path);
if (0 == cfile.load()) {

ts::StringView content = cfile.content();
while (content) {

ts::StringView line = content.extractPrefix('\n');
line.ltrim(&isspace);
if (!line || '#' == *line)
continue;
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ts::StringView path = line.splitPrefix(&isspace);
if (path) {
// After this the line is [size] [id=string] [volume=#]
while (line) {

ts::StringView value(line.extractPrefix(&isspace));
if (value) {

ts::StringView tag(value.splitPrefix('='));
if (!tag) { // must be the size
} else if (0 == strcasecmp(tag, TAG_ID)) {
} else if (0 == strcasecmp(tag, TAG_VOL)) {

ts::StringView text;
auto n = ts::svtoi(value, &text);
if (text == value && 0 < n && n < 256) {
} else {
zret.push(0, 0, "Invalid volume index '", value, "'");

}
}

}
}



Apache Traffic Server Summit Spring 2017 13

zret = this->loadSpan(FilePath(path));
}

}
} else {

zret = Errata::Message(0, EBADF, "Unable to load ", path);
}
return zret;

}



CPP API

 CPP API should be converted to use StringView in most places std::string is 

used now.

 This is particularly true for the transform logic. Copying the data to be processed 

by the override method seems unnecessarily expensive.

 However passing a raw pointer and length was too ugly.

 StringView provides the best of both.
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Notes on VIA changes

 Internal strings for ALPN were changed to be StringView instances

 A special constructor was added to cause the StringView to be a view of the 

literal string.

 Only one copy of the string.

 Not even strlen is used in the constructor.

 No lifetime issues.

 Many of the strings were moved to ink_inet.cc because that seemed a more 

appropriate home than the HTTP proxy string parsing.
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Notes

 Would like to make StringView available to plugins.
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MemView
Read only memory view
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Basics

 MemView is very similar to StringView.

 Originally the same class but differences became too large to stay unified.

 MemView treats its contents as a slab of bytes.

 Allows searching for a value or condition in its view as if it were an array of 

arbitrary types.

 Rarely useful for classes.

 Very handy for multi-byte integral values.

 Allows array access for arbitrary types. Similar utility as for searching.
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Notes

 Not as useful as StringView but still handy in places where currently a void *

and length are passed. MemView is more convenient.

 Very tempted to make a writeable version.

 I’ve encountered a number of situations where having a memory window that is 

writeable would be quite nice. Not yet convinced it’s a good idea.
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Cache Tool
traffic_cache_tool
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Cache Tool

 New command line tool for Traffic Server.

 Operates on Traffic Server cache

 Currently provides some analysis on cache structure.

 Can pre-allocate cache volumes.

 Being used internally to fix the problem reported by Yahoo! and Comcast where a 

disk fails but when replaced is still not used by the cache.
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History

 Originally done via the “stripe inspector” using the --check option to 

traffic_server.

 This was in practice not usable because of the memory requirements, which 

in turned required stopping Traffic Server.

 Assigned to fix problem with replaced cache disks not being used.

 Built traffic_cache_tool from scratch.

 Reduce run time footprint.

 Create understandable code.

 Experiment with new cache data structures.

 Add additional features
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Scratch Built

 Reduce run time footprint.

 Create understandable code.

 Experiment with new cache data structures.

 Experiment with new layout algorithms.

 Additional features that only make sense for a separate tool.
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The Challenge

 Critical bits of information are missing from the storage.

 Traffic Server recomputes all the cache structure every process start.

 Resets cache if computations don’t agree with cache state.

 Critically the average object size controls data structure sizes.
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Cache Stripe Layout
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Techniques

 Need to read the content directory until the footer is found.

 Can validate against the B copies because the sizes are determined if the 

footer had been found.
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Improvements to base logic

 Much faster and more even allocation of disk space to volumes.

 Better organized data structures.

 Accept layout in preference to clearing cache.
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Future work

 Directory analysis

 Still not feature complete with the stripe inspector.

 Robustness in the face of live cache

 Double check the A and B copies to validate a consistent read.
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Changes

 Change stripe meta data to have

 Number of segments

 Number of buckets per segments

 So little data, so much win…

 Problem with backward/forward compatibility

 A problem if a newer version is rolled back with a different stripe structure.

 Use two structures. One with extra data tucked behind existing data and another 

that is the entirely new structure.

 8.0 adds the extra without changing the current data to existing caches, uses the 

new structure for new caches.

 Cleared caches aren’t forward compatible but that’s OK.
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Goals

 With additional data in the stripe meta data those values can be read instead 

of computed and therefore changed.

 Then structure of an existing cache can be changed without destroying the 

cache.

 The effective average object size could then be adjusted with minimal loss of 

data. This is simply not currently possible.

 Eventually will be possible to disable cache initialization in Traffic Server and 

allow on the CacheTool to put disks into and out of cache.
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Scalar
Quantized and scaled integer values.
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Scaled values

 Scalar is a template library that allows the creation of scaled / quantized 

values.

 A scalar instance has a scale and a value.

 Scale is the multiplier.

 The value is the unitary value of the scalar.

 A scalar with a scale of 100 has possible values of 0, 100, 200, 300…

 The scale is a compiler constant, an instance is only the size of an integer.
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Operations

 Scalars silently convert from large scales to smaller ones because information 

is not lost.

 Conversion from smaller to larger scale requires a cast to indicate rounding 

up or down.

 Construction is very cheap.

 Increment / decrement is by scale.

 Binary operators require homogenous types or scale casting.

 With mixed types, rules for automatic resolution become incomprehensible.

 Unfortunately result is “x += 4;” is valid but “x = x + 4;” is not.

 I consider this the lesser evil.
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Use

 Driven by the needs of the CacheTool and all the crazy sizes inside the cache.

 Makes it much harder to pass the wrong scaled value.

 Still need to be careful about rounding.

 Still a bit of a work in progress, testing out in the CacheTool implementation.
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Possible changes

 Add function operator that converts a raw integral value into a scaled value 

of the same scale.

Scalar<100> x(4); // x value is 400

Scalar<10> y(8); // y value is 80

x += 4; // x value is now 800

x = round_up(y) + x(6); // x value becomes 700
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Partial Object Caching
The millstone of my life
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Current Status

 I’m working on it.
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