
TsLuaConfig

Alan M. Carroll (Committer, Oath)

Syeda “Persia” Aziz (Committer, Oath)

2

Introduction

It is current policy that all new configuration should be done using

Lua as a base. This work is an attempt to provide a generalized

API for using Lua configurations.

3

Configuration Support using
Lua

• Avoid need to write Lua code or use Lua C API calls.

• No need to understand Lua internals

• Easy access to configuration data after loading.

• Provide as much diagnostic feedback as possible during

configuration processing.

4

Design Goals

This work was originally started to reuse the TsConfig front end

with a Lua backend in order to make using Lua for configuration

not require learning Lua and Lua internals.

Additional requirements from prototype use lead to the current

design which takes a very different approach to access

configuration data. This was driven primarily to provide additional

features to make use by both developers and administrators

easier.

5

Background

6

Design and
Theory

TsLuaConfig files are defined by a schema. This specifies the

structure of the input data.

The schema is used to generate C++ and Lua code which

implements loading and verifying the configuration file contents.

The developer writes the schema, builds the code, and at run time

instantiates a class and tells it to load the file. The configuration

data is placed in this class for later access.

7

Schema Based Configuration

Schema
Use

8

The current configuration support for `records.config` can be

considered to be a very primitive schema. It has types and a little

support for input validation. TsLuaConfig is simply a much richer

and powerful upgrade.

This should also make expanding and tweaking Lua configuration

processing much easier.

9

Rationalization 1

A key design goal for the schema is to provide much clearer

feedback for administrators. The point is to not just detect errors

but provide clear corrective feedback.

“‘Enable Debug’ should be an integer, not a string.”

“Unrecognized tag ‘Leif’ – the valid options are ‘amc’, ‘Persia’, or

‘Phil’.”.

Doing this well is a lot of work, but can be done more easily with

schema based automation.
10

Rationalization 2

11

Implementation
and
Usage

Although the schema design is Traffic Server specific, it is

essentially a rip off of JSON schema design from `json-

schema.org`.

The primary difference is the schema is in Lua, not JSON,

because I think it is overall better to use one language (Lua)

rather than adding yet another (JSON) to the mix.

JSON schema features that didn’t seem useful are not included.

12

Schema Background

The schema is used to generate C++ code.

• A set of configuration classes which load and contain the

configuration data from the file. The structure follows that of the

schema. The outermost configuration class is called the main

configuration class.

• Static data classes that encode schema data that is the same

every instance of the configuration class.

13

Code Generation

The configuration class constructors are designed to be light

weight. They only

• Initialize the configuration data member to a default, if any.

• Load a pointer to the static schema data.

This is the reason the static data is split in to separate classes.

14

Dynamic vs. static

Usage is simple. The main configuration class is instantiated and

the load method called on the configuration file. Valid data is

loaded in to the class instance and an error report returned. Valid

data is accessed directly from storage in the configuration

classes.

15

Usage

Supported types are

• Integer

• Number

• String

• Enumeration

• Object

• Array
16

Schema Details

Strings, Integers, and Numbers are the obvious mapping. An

Object is a table with explicit keys. An Array is a table with integer

keys and stored as a `std::vector`.

To avoid confusion it is not permitted to have a table with both

integer (Array) and non-integer (Object) keys.

Enumerations and Objects require special handling.

17

Lua Types

Objects are modeled as configuration classes. The configuration

class has a member for each member of the Lua object. The class

nesting of the configuration class exactly follows the nesting of

objects in the schema.

18

Objects

An Enumeration is stored internally as a table mapping strings to

integers. The Lua configuration value of an Enumeration can be

either a string or an integer. It is converted to an integer when

loaded from Lua. Validation is done to verify the Lua value is a

key or value in the enumeration table.

The enumeration table is stored in the static data of configuration

class twice, once by key and once by value.

19

Enumerations

Persia has updated her SNI based configuration project to use the

equivalent of the generated C++ to validate the code works.

The schema is mostly designed and work is being done on an

official schema.

Code generation work has not yet been done.

20

State of Work

21

Example

Persia’s SNI based configuration pull request

https://github.com/persiaAziz/trafficserver/pull/6

contains a working example of Lua config, written by hand instead

of generated.

22

Active Work

https://github.com/persiaAziz/trafficserver/pull/6

name_servers={

round_robin={

count=100,

style="STRICT"

},

ns={"ns-1.oath.com","ns-2.oath.com"}

}

23

Example: Resolver
Configuration

{

["$schema"]="http://trafficserver.apache.org/schema/dns_resolver",

lua_global="name_servers",

c_name="ResolverConfig",

type="object",

description="Nameserver resolver configuration.",

properties={

round_robin={

type="object",

properties={

style={

type="enum",

kv={"STRICT":0,"TIMED":1}

},

time={

type="integer",

description="Time interval for a single nameserver before shifting to the next."

},

count={

type="integer",

description="Number of queries for a single namserver before shifting to the next."

}

}

},

ns={

type="array",

description="List of nameservers",

items={

type="string",

description="FQDN or IP address of nameserver."

}

}

}

}
24

struct ResolverConfig : public TSConfigBase {

struct Round_Robin_Config : public TSConfigBase {

int style;

int time;

int count;

} round_robin;

std::vector<std::string> ns;

ts::Errata load(ts::string_view path); /// External load method.

ts::Errata loader(LuaState *); /// Internal load method.

};

25

Generated Code
Outline Version

struct ResolverConfig : public TSConfigBase {
struct Round_Robin_Config : TSConfigBase {
Round_Robin_Config() : _meta_style(&_META_style) {}

int style;

static TsConfigEnumDescriptor _META_style;
TSConfigEnum<Round_Robin_Config> _meta_style;
/// ...

} round_robin;
/// ...

};
26

Generated Code
Meta data

ResolverConfig ns_config;

ts::Errata zret = ns_config.load(“resolver.lua”);

printf(“The round robin type is %d\n”,

ns_config.round_robin.style);

27

Use

28

Issues

• There does not seem to be a way to get line numbers in
validation messages. It is hoped the availability of static
schema data will provide sufficient context to provide useful
error reports.

• Enumeration support requires a non-trivial deviance from the
JSON schema, as its enumeration support is just a list, not a
mapping of keys ↔ values.

29

Easy to describe issues

For enumerations it might be preferable to have Lua constants

with the values rather than literal strings. This makes error

detection better as Lua does the checks instead of the generated

code.

The exact naming and style of these is a bit more difficult to

decide. My preference would be schema data that specifies the

global name in which to put a table that maps names to integers.

30

Enumerations and
Lua Constants

Direct assignment doesn’t work because the nested tables do not

exist. These could be prepopulated easily based on the schema

but that will prevent source tracking. This may be doable with

some metatable cleverness. From the example

name_servers.round_robin.count=100;

name_servers.round_robin.style="STRICT";

name_servers.ns[0]="ns-1.oath.com";

name_servers.ns[1]="ns-2.oath.com";

31

Prepopulation and assignment

Give a Lua based configuration, how can specific values in that

configuration be updated from the command line?

Either this will need to be restricted to leaf, primitive values or Lua

processing will be needed inside traffic_ctl. It seems requiring a

full configuration reload will not be feasible in general.

32

Lua vs. traffic_ctl

33

Future Work

I would like the schema to become rich enough that reference

documentation can be generated directly from it. This would put

all of the boiler plate information about configuration in a single

place, thereby ensuring consistency between documentation and

code.

This will likely require adding description fields not in the JSON

schema and not required for actual operation.

34

Documentation Generation

The original design (from TsConfig) was based on the direct

mapping of Lua variables to C++ variants. This is not needed with

the current schema as the exact type of all values is specified.

It may be desirable to allow explicitly variant types in the Schema

(as is allows by the JSON schema). The utility of this is unclear

however.

The only use case I have is the promotion of singletons of type T

to arrays of T if the schema specifies an array.

35

Variants

Although this design is data driven, it would be easy to add

additional Lua code to support a more function oriented style (as

with the logging configuration).

36

Lua assignment support

37

Frequenly
Asked
Questions

Nothing. The schema files are used only during the build phase.

After that all of the schema information is embedded the

generated C++ code. Changes to a schema only take effect after

rebuilding Traffic Server.

38

What happens if an
administrator alters the schema
file?

Yes, but with a much bigger payoff of being able to use Lua with

type safety, input validation, useful error message and hopefully

generated documentation.

39

Isn’t this a lot more work than
records.config?

