Spark SQL:
Past, Present and Future

Wenchen Fan
2017-9-2 £ databricks

About Me

- Software Engineer @& databrickg

- Apache Spark Committer and PMC Member

« One of the most active Spark contributors

#databricks

About Databricks

TEAM

Started Spark project (now Apache Spark) at UC Berkeley in
2009

MISSON
Make Big Data Simple

PRODUC
Wnified Analytics Platform

@ databricks

A long time ago In a galaxy
far far away...

#databricks

Birth of Spark

@ databricks

Birth of Spark

Birth of Shark

@ databricks

Birth of Spark Birth of Spark

Birth of Shark

@ databricks

Catalyst: an extensible optimizer
D+: Spark SQL Optimization

@ Spark SQL uses Catalyst rules © This phase applies I Stetas one or more

. - * physical plans, using
: and Catalog object that tracks + standard rule based i i i
* the table ingall c:ata sources to » optimization to the e operators that , i Pha? 5 "'WOIveS
- ot lvaattibiE * logical plan. * match the spark execution = generating java bytecode
: resolvethe unresolveattributes. s’ =t " engine.it then select a * to run on each machine
. o * plan using a cost model ST CET LT
Aral Optimaton Plan_nﬁi'g' L C.d
Rule Rule Strategies U3 . :
: Generation :

A
L

Unresolved Logical Optimized Physical Selected
" II hysi :
logical Plan —)_> logical Plan Plans slay:slcal =

. o
..

]

Cost Model

Frontend
ricks

[SPARK-12032] [SQL] Re-order inner joins to do join with conditions f... Browse files

.irst

Currently, the order of joins is exactly the same as SQL query, some conditions may not pushed down to the correct join, then those
join will become cross product and is extremely slow.

This patch try to re-order the inner joins (which are common in SQL quer

delay those that does not have conditions. Ce rtai n WO rkloads
After this patch, the TPCDS query Q64/65 can run hundreds times faster. can ru n h u nd reds

cc marmbrus nongli ti mes faSter

Author: Davies Liu <davies@databricks.com>

Closes #10073 from davies/reorder_joins.

[master (#1) © 2.0.0-preview

ﬁ davies committed with davies on Dec 7, 2015 ~ 2 00 I i n e s Of 9c1212920a1d9000539b
Showing 3 changed files with 185 additions and 6 deletions. c h a n g e S Unified Split

[SPARK-8992][SQL] Add pivot to dataframe api Browse files

This adds a pivot method to the dataframe api.
Following the lead of cube and rollup this adds a Pivot operator that is translated into an Aggregate by the analyzer.

Currently the syntax is like:
~~courseSales.pivot(Seq($"year"), $"course", Seq("dotNET", "Java"), sum($"earnings"))~~

~~Would we be interested in the following syntax also/alternatively? and~~
courseSales.groupBy($"year").pivot($"course”, "dotNET", "Java").agg(sum($"earnings"))
//or
courseSales.groupBy($"year").pivot($"course").agg(sum($"earnings"))
Later we can add it to “SQLParser™, but as Hive doesn't support it we cant add it there, right?
~~Also what would be the suggested Java friendly method signature for this?~~
Author: Andrew Ray <ray.andrew@gmail.com>

Closes #7841 from aray/sql-pivot.

P master (#3) © 2.0.0-preview

| |
q; aray committed with yhuai on Nov 11, 2015 ~J 250 I I n es Of +£2d4b9c759710a195
Showing 6 changed files with 255 additions and 10 deletions. c h a n g e s Unified = Split

More Details about Catalyst

https://spark-summit.org/2017/events/a-deep-
dive-into-spark-sqls-catalyst-optimizer/

#databricks

Backend Execution
Engine:

Compile query plan to
RDD

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

Volcano—An Extensible and Parallel Query
Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface hetween algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The semantics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

tem as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano is able to serve as an experimental vehicle for a mul-
titude of purposes, all of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it

G. Graefe, Volcano— An Extensible and Parallel Query Evaluation System,
In IEEE Transactions on Knowledge and Data Engineering 1994

databricks

Volcano lterator Model

« Standard for 30 years:
almost all databases do it

« Each operator is an
“iterator” that consumes
records from its input
operator data rows

data rows

@ databricks

How Spark SQL Run Queries

name

SELECT name
age < 30
FROM person

WHERE age < 30 -

@ databricks

How Spark SQL Run Queries

class ParquetScan {
def execute(): RDD[Row] = {

}

}

#databricks

How Spark SQL Run Queries

class FilterExec(condition: Expression) {
def execute(): RDD[Row] = {
child.execute().mapPartitions { input
val predicate: Row => Boolean = row
condition.eval(row)

}
input.filter(predicate)

#databricks

How Spark SQL Run Queries

class ProjectExec(projectlList: Seq[Expression]) {
def execute(): RDD[Row] = {
child.execute().mapPartitions { input =>
val project: Row => Row = ...

input.map(project)

#databricks

How Spark SQL Run Queries

val tableScan: RDD[Row] = ...
tableScan.mapPartitions { input =>

val predicate: Row => Boolean = ...

input.filter(predicate)
}.mapPartitions { input =>
val project: Row => Row = ...
input.map(project)
}

@ databricks

Birth of Spark Birth of Spark

Birth of Shark Project
Tungsten

@ databricks

Making Sense of Performance in Data Analytics Frameworks

Kay Ousterhout*, Ryan Rasti*®, Sylvia Ratnasamy*, Scott Shenker*', Byung-Gon Chun*
*UC Berkeley, TICSI, °VMware, *Seoul National University

Abstract

There has been much research devoted to improving the
performance of data analytics frameworks, but compara-
tively little effort has been spent systematically identify-
ing the performance bottlenecks of these systems. In this
paper, we develop blocked time analysis, a methodology
for quantifying performance bottlenecks in distributed
computation frameworks, and use it to analyze the Spark
framework’s performance on two SQL benchmarks and
a production workload. Contrary to our expectations, we
find that (i) CPU (and not I/O) is often the bottleneck, (ii)
improving network performance can improve job comple-
tion time by a median of at most 2%, and (iii) the causes
of most stragglers can be identified.

This paper makes two contributions towards a more
comprehensive understanding of performance. First, we
develop a methodology for analyzing end-to-end per-
formance of data analytics frameworks; and second, we
use our methodology to study performance of two SQL
benchmarks and one production workload. Our results
run counter to all three of the aforementioned mantras.

The first contribution of this paper is blocked time
analysis, a methodology for quantifying performance
bottlenecks. Identifying bottlenecks is challenging for
data analytics frameworks because of pervasive paral-
lelism: jobs are composed of many parallel tasks, and
each task uses pipelining to parallelize the use of network,
disk, and CPU. One task may be bottlenecked on different

Kay Ousterhout, Making Sense of Performance in Data Analytics Frameworks,
In NSDI on Networked Systems Design 2015

databricks

Tungsten Format:

efficient binary format for
Row

#databric

ks

Efficient Binary Format
(123, “data”, “bricks”)

null trackin g #databricks

Efficient Binary Format
(123, “data”, “bricks”)

\4

null trackin g #databricks

Efficient Binary Format
(123, “data”, “bricks”)

Y |]

null tracking offset and length of & databricks

Efficient Binary Format
(123, “data”, “bricks”)

offset and length of

null tracking offset and length of & databricks

Expression Code
Generation:
evaluate expressions
faster

#databric

ks

How to Evaluate Expression

a+1+2 Function calls

= g

@ databricks

Expression Code Generation

DataFrame Code / SQL df.where(df("year") > 2015)

Catalyst Expressions GreaterThan(year#234, Literal(2015))

boolean filter(Object baseObject) {
int offset = baseOffset + bitSetWidthInBytes + 3*8L;

Low-level Java code int value = Platform.getInt(baseObiject, offset);
return value34 > 2015;

} JVM intrinsic JIT-ed to
pointer arithmetic

Whole Stage CodeGen:
plan-level code generation

How to Evaluate Query Plan

Function calls

T

@ databricks

Generate code like handwritten

Aggregate
counq*i
T long count = 0;
Project for (ss_item_sk in store_sales) {

if (ss_item sk == 1000) {
T ﬁ count += 1;

S ;
T
’ Scan \

}

Scan Vectorization:
load data faster

#databric

ks

Vectorized Parquet Reader

Parquet 11 million
rows/sec
Parquet 90 million
vectorized rows/sec

High throughput

Scan Vectorization

- more efficient to read columnar data with vectorization.

- more likely for JVM to generate SIMD instructions.

* lazy decompression.

#databricks

Current Spark: Not a Database

l and more...

ff-},}‘ 0mongo

cassan dra

R P R C HE

Birth of Spark Birth of Spark What’s next?

Birth of Shark Project
Tungsten

@ databricks

SPARK-15689: Data
Source V2

more powerful data source

Complete Vectorization:
for sink and shuffle

—
-

@ databricks

Native Code Generation

Why Java?

« Because Spark is running on JVM ©
« Run generated code directly
- Easy to share data

Why not Java?
- not good for vectorization (no explicit SIMD support)
 performance depends on JIT a lot

- Generated code is hard to read (too verbose)
 Alternatives: LLVM, Weld

#databricks

Thank You

® databricks

