
Spark SQL:
Past, Present and Future

Wenchen Fan
2017-9-2



About Me
• Software Engineer @

• Apache Spark Committer and PMC Member

•One of the most active Spark contributors



About Databricks

TEAM
Started Spark project (now Apache Spark) at UC Berkeley in 
2009
MISSON
Make Big Data Simple

PRODUC
TUnified Analytics Platform



A long time ago in a galaxy 
far far away…



2009
Birth of Spark



2009 2011
Birth of Spark

Birth of Shark



2009 2011 2014
Birth of Spark

Birth of Shark

Birth of Spark
SQL



Catalyst: an extensible optimizer



Certain workloads 
can run hundreds 
times faster

~ 200 lines of 
changes
(95 lines are for 



~ 250 lines of 
changes
(99 lines are for 



More Details about Catalyst

https://spark-summit.org/2017/events/a-deep-
dive-into-spark-sqls-catalyst-optimizer/



Backend Execution 
Engine:

Compile query plan to 
RDD



G. Graefe, Volcano—An Extensible and Parallel Query Evaluation System,
In IEEE Transactions on Knowledge and Data Engineering 1994



Volcano Iterator Model
• Standard for 30 years: 
almost all databases do it

• Each operator is an 
“iterator” that consumes 
records from its input 
operator

Scan
(t1)

Scan
(t2)

Join

Filter

Project

data rows data rows



How Spark SQL Run Queries

SELECT name
FROM person
WHERE age < 30 Parquet Scan

(person)

Filter

Project name

age < 30



How Spark SQL Run Queries



How Spark SQL Run Queries



How Spark SQL Run Queries



How Spark SQL Run Queries

Project

Filter

Parquet Scan



2009 2011 2014 2015
Birth of Spark

Birth of Shark

Birth of Spark
SQL

Project
Tungsten



Kay Ousterhout, Making Sense of Performance in Data Analytics Frameworks,
In NSDI on Networked Systems Design 2015



Tungsten Format:
efficient binary format for 

Row



Efficient Binary Format

0x0

null tracking 
bitmap

(123,	“data”,	“bricks”)



Efficient Binary Format

0x0 123

null tracking 
bitmap

(123,	“data”,	“bricks”)



Efficient Binary Format

0x0 123 32 “data”4

null tracking 
bitmap

(123,	“data”,	“bricks”)

offset and length of 
data



Efficient Binary Format

“bricks”0x0 123 32 40 “data”4 6

null tracking 
bitmap

(123,	“data”,	“bricks”)

offset and length of 
data

offset and length of 
data



Expression Code
Generation:

evaluate expressions
faster



How to Evaluate Expression

Literal(2)

Add

Add

Attribute(a) Literal(1)

a + 1 + 2

Add.eval

Attribute.eval

Add.eval

Function calls



Expression Code Generation



Whole Stage CodeGen:
plan-level code generation



How to Evaluate Query Plan

Table Scan

Join

Filter

Table
Scan

Join.execute

TableScan.execute

Filter.execute

Function calls



Generate code like handwritten



Scan Vectorization:
load data faster



Vectorized Parquet Reader



Scan Vectorization
•more efficient to read columnar data with vectorization.

•more likely for JVM to generate SIMD instructions.

• lazy decompression.

•……



Current Spark: Not a Database



2009 2011 2014 2015 2017~
Birth of Spark

Birth of Shark

Birth of Spark
SQL

Project
Tungsten

What’s next?



SPARK-15689: Data
Source V2

more powerful data source



Complete Vectorization:
for sink and shuffle



Parquet Scan

Filter

ShuffleExchange

HashAggregate

Sort

Whole Stage

ShuffleExchange

Whole Stage



Native Code Generation

Why Java?
• Because Spark is running on JVM J
• Run generated code directly
• Easy to share data

Why not Java?
• not good for vectorization (no explicit SIMD support)
• performance depends on JIT a lot
• Generated code is hard to read (too verbose)
• Alternatives: LLVM, Weld



Thank You


