
XML Schema Compact Syntax (XSCS) Version 1.0

Kilian Stillhard and Erik Wilde
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology, Zürich

TIK Report 166 (March 2003)

Abstract

XML Schema is a schema language for XML, providing advanced features for creating
types, deriving types, and a library of built-in simple datatypes. The model behind XML
Schema are XML Schema components, and XML Schema uses XML syntax for repre-
senting XML Schema components. In this report, we present an alternative syntax for
XML Schema, which is defined using EBNF productions. Since the new syntax has been
designed with the design goals of readability and compactness, it is called XML Schema
Compact Syntax (XSCS). XSCS has been created for making XML Schema easier to read
and write by humans, while XML Schema’s XML syntax is better suited for automated
processing of XML Schemas. Consequently, XSCS is not meant as a replacement of the
XML syntax, but as a complementary syntax.

Contents

1 Introduction 2

2 Syntax Definition 2
2.1 Design Principles . 2
2.2 Schemas and Schema Options . 4
2.3 Describing Structures . 7
2.4 Describing Datatypes . 14
2.5 Other Features . 17

3 Syntax Summary 21
3.1 Structure . 22
3.2 Literals . 25

References 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

1 Introduction

XML Schema is a schema language for XML, providing advanced features for creating types,
deriving types, and a library of built-in simple datatypes. The model behind XML Schema
are XML Schema components, and XML Schema uses XML syntax for representing XML
Schema components. Since XML syntax typically is very verbose and rather hard to read
and write for human users, this report defines an alternative syntax for XML Schema, the
XML Schema Compact Syntax (XSCS). XSCS fully supports XML Schema Structures [5]
and Datatypes [1], with minor exceptions in in the areas of namespace declarations and
annotation/comment features.

In many cases, XML Schema is not authored directly but through the use of software, such
as graphical schema editors. While these editors often provide good support for writing and
presenting schemas, they are often proprietary for a limited number of platforms, often cost
considerable amounts of money, and in many cases only provide access to a subset of XML
Schema’s full functionality, hiding some features or at least making them difficult to access.
XSCS can be regarded as an interface also, but a character-based on instead of a graphical
interface. This makes it independent from any special software package, since character-based
representations can be used on any platform.

This report only contains the syntax definition of XSCS, Section 2 contains an explanation
of the syntax in relation to XML Schema’s XML syntax, while Section 3 simply is a summary
of the syntax definitions. For more information about XSCS, please refer to existing publi-
cations about XSCS [6,7] or to the XSCS Web page at http://dret.net/projects/xscs/.
Also available is a description of a software package implementing XSCS interpretation and
generation [4].

2 Syntax Definition

This chapter describes the compact syntax for XML Schema. It starts with a general overview
of the syntax design, followed by a more detailed description of the compact syntax features.

The compact syntax is defined using the XML representation of XML Schema. As the
XML standard itself uses the Schema Component model to define XML Schema, it would be
an obvious approach to define the compact syntax directly using the Schema Components.
Structurally, however, the compact syntax is much closer to the XML representation, which
makes the definition of the compact syntax much easier. Furthermore, the definition of the
compact syntax is also useful for XML Schema users who don’t know the Schema Components
model (which is the vast majority of XML Schema users).

2.1 Design Principles

An XML schema is basically a collection of Schema Components (XML Schema’s components
are shown in Figure 11). These components can refer to other components and they can con-
tain components themselves. The Schema Components can be divided into several categories.

1Taken from [5] (http://www.w3.org/TR/xmlschema-1); Copyright c©2003 World Wide Web Con-
sortium, (Massachusetts Institute of Technology, European Research Consortium for Informatics and
Mathematics, Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/

copyright-documents-20021231.

March 2003 2 of 26

http://dret.net/projects/xscs/
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Figure 1: XML Schema Components

March 2003 3 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

A whole schema is described by the Schema component. This component contains the top-
level components. There are several components that can occur at the top-level of a schema.
Common to all of them is that they are named, unlike certain other components that cannot
appear at top-level. The top-level components are the following:

Element, Attribute, Simple Type, Complex Type, Model Group Definition, At-
tribute Group, Notation

Note that the Complex Type and the Simple Type components can also appear un-
named (anonymous) inside other schema components. There are some more components
which only occur within other components, the inner components:

Model Group, Particle, Wildcard, Identity Constraint, Attribute Use, Facet (dif-
ferent Facet components exist).

The main design principle was to represent the top-level components using a regular syntax
of the form:

options component-type name extensions { inner components };

Options simply set or unset a specific component property. They are used for boolean and
fixed-value list properties. In the XML representation of XML Schema2, they mostly appear
as attributes with a boolean or enumerated datatype. Extensions represent properties with
a string, name, or reference datatype. In XML Schema, they appear as attributes with a
name or string datatype. The inner components are the equivalent to component reference
properties in the Schema Components and mostly appear as nested elements in XML Schema.

Some of the non-top-level components use the same syntax, whereas others use non-regular
constructs. However, the overall structure is always the same: A schema is made up of a list
of components, which can contain blocks of inner components. A block is delimited by curly
brackets. Components can optionally be terminated with a semicolon.

Another main design goal was to reuse well-known syntactical constructs to simplify the
use of the compact syntax for new users. The DTD content model notation is certainly the
best example. This notation in regular expression style is well-known and concise for the
description of element content. Other notation reuses include the interval notation used
for occurrence specifiers, and the length and range facets. Instead of using two elements or
attributes as in XML Schema, it is much clearer and shorter to use a mathematical notation
for intervals.

Some syntax elements were borrowed from programming languages like C or Java. The
grouping of multiple components with curly brackets is an example, as well as the options and
extensions constructs. Finally, the syntax for the pattern facet was inspired by the scripting
language Perl.

2.2 Schemas and Schema Options

The following grammar definition for the compact syntax uses the following conventions: Non-
Terminals appear italic and terminals are in bold-face. Optional components are enclosed

2In the following text, the term XML Schema is mainly used as a synonym for the XML syntax of XML
Schema, while XSCS or compact syntax are used for the newly defined compact syntax.

March 2003 4 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

in square brackets [], a star * is used for zero or more repetitions and the plus + denotes
one or more repetitions. The vertical bar | separates alternatives. Parentheses are used for
grouping.

2.2.1 Schemas as a whole

schema = [schemaOption] ∗ [schemaInclude] ∗
[schemaBody] +

(1)
schemaOption = targetNamespace

| namespace

| blockF inalDefault

| elementDefault

| attributeDefault

| version (2)

schemaInclude = include

| import

| redefine (3)

schemaBody = simpleType

| complexType

| element

| attribute

| group

| attributeGroup

| notation (4)

The schema production is the start symbol for the compact syntax. A sequence of tokens
matching this production corresponds to an XML file having xs:schema as its document
element.

SchemaOptions are used to set several attributes of the xs:schema element, while the
productions in schemaInclude and schemaBody correspond to the XML Schema elements
with the same names.

Annotations are documentation comments using the syntax /* text... */ and can
appear between every token. Depending on their position, they are mapped to a component.
The generated xs:annotation elements contain a xs:documentation element containing the
annotation text as a text node. XML markup inside annotations or custom attribute values
are not supported by the compact syntax.

Annotations appearing before or inside schemaOption productions or after the last schema-
Body production will become direct children of the xs:schema element. All other annotations
are mapped to the current or next following component.

March 2003 5 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Some XML-specific constructs that can appear in XML Schema documents do not have
an equivalent in the compact syntax. XML comments, an internal DTD subset or processing
instructions will be lost when the XML syntax is translated to the compact syntax.

2.2.2 Schema Options

targetNamespace = targetNamespace URI [;] (5)
namespace = namespace [Name] URI [;] (6)

blockF inalDefault = default qualifier [, qualifier] ∗ [;] (7)
elementDefault = elementDefault qualifier [;] (8)

attributeDefault = attributeDefault qualifier [;] (9)
version = version String [;] (10)

All schema options are used to set attribute values of the xs:schema element. They do
not represent schema components themselves, but they are used as default values for some
component properties.

Compact Syntax XML Syntax
targetNamespace URI targetNamespace="URI"

namespace Name URI xmlns:Name="URI"
namespace URI xmlns="URI"

Table 1: Namespace options

The targetNamespace option (see Table 1) sets the target namespace of the schema. By
default, the target namespace will also be declared as the default namespace of the schema,
but this can be overridden by explicitly specifying a prefix for the target namespace using the
namespace option.

Namespace options (see Table 1) can be used to declare additional namespace prefixes.
As default, the XML Schema namespace is mapped to the prefix xs, this can be changed
by defining another prefix for the XML Schema namespace. Note that with the compact
syntax, the only possibility to declare namespace prefixes is within the xs:schema element.
All prefixes used throughout the schema must be declared on the top-level. It is an error
for a component name or reference, a type reference or an XPath to contain QNames with
undeclared prefixes.

The default option (see Table 2) sets values for the finalDefault and blockDefault
attributes. Any combination of values is allowed, but if final or block is specified, the #all
value will always be generated.

The elementDefault and attributeDefault options (table 3) are used to control the target
namespace property of non-global element and attribute components. Applicable values are
qualified and unqualified. They correspond to the attributeFormDefault and elementFormDefault
attributes in XML Schema. Unlike in XML Schema, elementDefault defaults to qualified while
attributeDefault defaults to unqualified. The defaults have been changed due to the fact that
most schema editors use these settings.

A version option (see Table 4) can be used with any string as its value. This is for user
convenience only and corresponds to the version attribute in XML Schema.

March 2003 6 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Compact Syntax XML Syntax
default final finalDefault="#all"
default final-extension finalDefault="extension"
default final-restriction finalDefault="restriction"

default block blockDefault="#all"
default block-extension blockDefault="extension"
default block-restriction blockDefault="restriction"

multiple values can be specified comma-separated

Table 2: Final and block default settings

Compact Syntax XML Syntax
elementDefault qualified elementFormDefault="qualified"
elementDefault unqualified nothing
attributeDefault qualified attributeFormDefault="qualified"
attributeDefault unqualified nothing

Table 3: Form default settings

Compact Syntax XML Syntax
version String version="String"

Table 4: Version specification

2.2.3 Import/Include statements

include = include URI [;] (11)
import = import URI namespace URI [;] (12)

redefine = redefine URI [{ [simpleType | complexType

| group | attributeGroup] ∗ }] [;] (13)

The import, include and redefine statements (table 5) correspond to the elements with
the same name in XML Schema. Include simply includes another schema that uses the same
(or no) target namespace. Redefine does the same, except that simple types, complex types,
groups and attribute groups can be redefined inside the redefine component. Import is used
to compose schemas with different namespaces.

2.3 Describing Structures

2.3.1 Common Structures

qualifier = final | final-restriction | final-extension | final-list

| final-union | block | block-substitution

March 2003 7 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Compact Syntax XML Syntax
include URI <include schemaLocation="URI"/>
import URI namespace URI <import schemaLocation="URI"

namespace="URI"/>
redefine URI { redefinitions } <redefine schemaLocation="URI">

redefinitions </redefine>

Table 5: Import, Include and Redefine

| block-extension | block-restriction

| qualified | unqualified

| abstract | nillable

| required | optional | prohibited (14)

derivation = extends Name | restricts Name (15)

substitution = substitutes Name (16)

fixedDefault = = String | <= String (17)

Qualifiers (see Table 6) set the values of attributes that are common to some schema
components. Multiple final and block qualifiers can be specified with one component, but
qualified and unqualified as well as required, optional and prohibited exclude each other.

Compact Syntax XML Syntax
final final="#all"
final-extension etc. final="extension" etc.
block block="#all"
block-substitution etc. block="substitution" etc.
qualified form="qualified"
unqualified form="unqualified"

abstract abstract="true"

nillable nillable="true"

required use="required"
optional use="optional"
prohibited use="prohibited"

Table 6: Qualifiers

The derivation, substitution and fixedDefault extensions (see Table 7) set the values of
some attributes with name or string values. The derivation extension further influences the
derivation method used for a complex type derivation.

March 2003 8 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Compact Syntax XML Syntax
extends Name <extension base="Name"> ...

</extension>
restricts Name <restriction base="Name"> ...

</restriction>

substitutes Name substitutionGroup="Name"

= String fixed="String"
<= String default="String"

Table 7: Extensions

2.3.2 Elements

element = [qualifier] ∗ element Name

[substitution | derivation] ∗ [elementContent]
[fixedDefault] [;] (18)

elementShort = Name [{ Name }] (19)

elementContent = { [anonSimpleType | anonComplexType

| key | keyref | unique] ∗ } (20)

An element component can appear either at top-level or within another element or com-
plexType component. When used inside another component, its name must be referred from
the contentModel of this component.

qualifiers
global final, final-extension, final-restriction, block, block-

extension, block-restriction, block-substitution, nill-
able, abstract

local block, block-extension, block-restriction, block-
substitution, nillable, qualified, unqualified
extensions

global substitution, derivation
local derivation, fixedDefault

Table 8: Allowed qualifiers and extensions for element

To set the type of the declared element, either a reference to an existing type, or an
anonymous simple or complex type can be used. Considering the inner components of the
element component, these alternatives are chosen as follows:

• If there is a derivation extension, an inner contentModel, inner elements or inner at-
tributes, then an anonymous complex type is constructed. The xs:element element will

March 2003 9 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

therefore contain an xs:complexType element that is built using the rules described in
Section 2.3.4.

• Else if there is an inner restriction with facets, union or list component, then an anony-
mous simple type is built.

• Else if there is an inner restriction component without any facets, the base name of the
restriction will be used as the value of the type attribute of xs:element.

• Else if there is nothing at all, the element will have neither a type attribute nor an
inner type definition.

The elementShort component is a shortcut for element which can only appear within
contentModel components (see Section 2.3.4). It consists of the element name and an optional
second name in curly braces which defines a type reference. When no type reference is present,
the given element name is interpreted as a reference to an existing local or global element
declaration. With a type reference, an element using the given name and type is defined.

Compact Syntax XML Syntax
element example <element name="example"/>
element example { xs:string } <element name="example"

type="xs:string"/>
element test { xs:int { [1,5] } } <element name="test">

<simpleType>
<restriction base="xs:int">
<minInclusive value="1"/>
<maxInclusive value="5"/>
</restriction>
</simpleType>

</element>
element test2 {
(a{xs:string}, b{xs:integer})*
}

<element name="test2">
<complexType>
<sequence maxOccurs="unbounded">
<element name="a"

type="xs:string"/>
<element name="b"

type="xs:integer"/>
</sequence>
</complexType>

</element>

Table 9: Examples for element

2.3.3 Attributes

attribute = [qualifier] ∗ attribute Name

March 2003 10 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

[attributeContent]? [fixedDefault] [;] (21)

attributeContent = { [anonSimpleType] } (22)

The attribute component can appear at top-level or inside element, complexType, or at-
tributeGroup components. An xs:attribute element will be generated, either with a type
attribute, or an anonymous xs:simpleType child. If there is no inner type definition or
reference, an attribute reference will be created for local attribute components.

qualifiers
global none
local qualified, unqualified, prohibited, required, optional

extensions
global fixedDefault
local fixedDefault

Table 10: Allowed qualifiers and extensions for attribute

The type alternative is chosen when the attribute component contains a restriction com-
ponent without any facets. If there is a restriction component with facets, a list or union
component, an anonymous simple type will be declared.

Compact Syntax XML Syntax
attribute test { xs:string } <attribute name="test"

type="xs:string"/>
element ex {
xs:integer; attribute foo
}

<element name="ex">
<complexType>

<simpleContent>
<extension base="xs:integer">

<attribute ref="foo"/>
</extension>

</simpleContent>
</complexType>

</element>

Table 11: Examples for attribute

2.3.4 Complex Types

complexType = [qualifier] ∗ complexType Name

[derivation] [complexTypeContent] [;] (23)

complexTypeContent = { [anonComplexType | anonSimpleType] ∗ }

March 2003 11 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

(24)
anonComplexType = contentModel | element | attribute

| attributeWC | attributeGroup (25)

The complexType component can appear only at top level. Complex types are declared
using a collection of inner components, which will all be used to construct a xs:complexType
element. These components can also show up in the element component to define an anony-
mous complex type.

To define complex types with simple content, the restriction component has to be used. A
derivation extension must not be used, as the base type for the restriction or extension is set
by the restriction component. A restriction component with facets defines a restriction of the
given base type. In XML Schema, this corresponds to the xs:restriction element. When
no facets are present, the given name is interpreted as the base type name for an extension
(xs:extension in XML Schema). To enforce a restriction even if there are no facets, an
empty pair of curly brackets has to be added after the base name.

When a contentModel component is present, or neither a contentModel nor a restriction
is present, complex content will be chosen for the xs:complexType element. If a derivation
extension is given, the produced complex type will be a restriction or extension of the given
base type. These three cases are displayed in table 12.

Compact Syntax XML Syntax
complexType ct1
{ modelGroup attributes }

<complexType name="ct1">
modelGroup
attributes

</complexType>
complexType ct2 extends ct1
{ modelGroup attributes }

<complexType name="ct2">
<complexContent>

<extension base="ct1">
modelGroup
attributes

</extension>
</complexContent>

</complexType>
complexType ct2 restricts ct1
{ modelGroup attributes }

<complexType name="ct2">
<complexContent>

<restriction base="ct1">
modelGroup
attributes

</restriction>
</complexContent>

</complexType>

Table 12: Complex content in complex types

Any attribute, attributeGroup or attributeWC components will be added inside the xs:restriction,
xs:extension or xs:complexType elements as necessary.

March 2003 12 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

contentModel = (empty

| [mixed] (modelGroup | groupRef)
[occurrenceSpec]) [;] (26)

occurrenceSpec = ? | * | + | posIntRange (27)

modelGroup = ([particle [compositor particle]∗] [compositor])
(28)

compositor = , | — | & (29)

particle = (modelGroup | elementShort | groupRef | { element }
| { elementWC }) [occurrenceSpec] (30)

A contentModel component is used to define valid element sequences. It can be either
empty, or consist of a modelGroup or groupRef. If it is empty, no corresponding XML elements
will be generated. A groupRef creates an xs:group element with the ref attribute set. The
groupRef or modelGroup can be preceded by the mixed keyword to allow text nodes between
child elements.

A modelGroup stands either for an xs:sequence, xs:choice, or xs:all element contain-
ing element declarations or references, group references, model groups, or element wildcards.
The compositors are , for sequence, | for choice, and & for all. ModelGroups that do not
contain a compositor (i.e., modelGroups with zero or one particle) default to xs:sequence.
Additional compositors can be added in these cases to force xs:choice or xs:all.

A particle denotes one part of a content model, it can be either a choice or sequence model
group, an element or group reference, or a local element declaration or element wildcard.
Optionally, an occurence specifier (see Table 13) can follow to set the number of allowed
repetitions of the particle. It defaults to one and exactly one repetition.

Compact Syntax XML Syntax
* minOccurs="0"

maxOccurs="unbounded"
? minOccurs="0"
+ maxOccurs="unbounded"
[n] minOccurs="n" maxOccurs="n"
[n, m] minOccurs="n" maxOccurs="m"
[n,] minOccurs="n"

maxOccurs="unbounded"
[,m] maxOccurs="m"

Table 13: Definition of the occurrence specifiers

An elementShort particle can be used to refer or declare an element. If only a name is
given, a reference to a locally declared or global element is assumed. An additional type

March 2003 13 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

name in curly brackets declares an element of this type. It is also possible to put full element
declarations inside the content model, simply add curly braces around the element declara-
tion component. To create a group reference, an @ char has to be added before the group
name. Element wildcards (see Section 2.5.3) are defined similar to inline elements using curly
brackets.

Element declarations can also be added inside the complexType component. When con-
structing the content model, references to these elements will be replaced with the appropriate
declaration. References that have no corresponding local element declaration will be treated
as references to global elements.

Compact Syntax XML Syntax
complexType ct3 { (a, b)+;
element a { string }
element b { integer }
}

<complexType name="ct3">
<sequence maxOccurs="unbounded">

<element name="a" type="string"/>
<element name="b" type="integer"/>

</sequence>
</complexType>

complexType ct4 { @grp+
attribute test { token }
}

<complexType name="ct4">
<group ref="grp" maxOccurs="unbounded"/>
<attribute name="test" type="token"/>

</complexType>

Table 14: Complex type examples

2.4 Describing Datatypes

2.4.1 Simple Types

simpleType = [qualifier] ∗ simpleType Name

[simpleTypeContent] [;] (31)

simpleTypeContent = { [anonSimpleType] } (32)

anonSimpleType = restriction | union | list (33)

A simpleType component can appear only at top-level. Anonymous simple types however
can appear also inside attributes, elements, and complex types.

restriction = (Name [{ [facet] ∗ }]
| simpleType { anonSimpleType } { [facet] ∗ }) [;]

(34)
union = union { [anonSimpleType] + } [;] (35)

list = list { anonSimpleType } [;] (36)

March 2003 14 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

An anonymous simple type can be defined using either a restriction, list or union com-
ponent. These components can themselves contain anonymous simple type definitions except
for the first alternative of restriction.

The restriction component is the counterpart of the xs:restriction element. The leading
Name corresponds to the base attribute, unless the second variant with an embedded simple
type is used. In that case, the xs:restriction element contains an xs:simpleType element
defining the base of the restriction. Any facets become child elements of the xs:restriction
element. The case where only a name but no facets are given is treated special in some
contexts, but not inside a simpleType component.

Union and list correspond to the XML Schema elements with the same name. Unions and
lists contain simple type definitions which are either added to the memberTypes or itemType
attributes, or attached as xs:simpleType child elements. When only a name is given (a
restriction component without facets), it is interpreted as a type reference, otherwise a type
definition is assumed.

Compact Syntax XML Syntax
simpleType int { integer } <simpleType name="int">

<restriction base="integer/>
</simpleType>

simpleType digit {
nonNegativeInteger { [,9] }
}

<simpleType name="digit">
<restriction base="nonNegativeInteger">

<maxInclusive value="9"/>
</restriction>

</simpleType>
simpleType intu {
union { integer;
token { ”undefined” } }
}

<simpleType name="intu">
<union memberTypes="integer">

<simpleType>
<restriction base="token">

<enumeration value="undefined"/>
</restriction>

</simpleType>
</union>

</simpleType>

Table 15: Simple Type examples

2.4.2 Facets

fixed = fixed | fixed-minimum | fixed-maximum

(37)
facet = [fixed] ∗ (lengthFacet | rangeFacet

| patternFacet | enumFacet | whiteSpaceFacet

| totalDigitsFacet | fractionDigitsFacet) [;]
(38)

March 2003 15 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

lengthFacet = length = (PosInt | posIntRange) (39)
rangeFacet = numRange (40)

patternFacet = / Pattern / (41)
enumFacet = String [, String] ∗ (42)

whiteSpaceFacet = whiteSpace = (preserve | collapse | replace)
(43)

totalDigitsFacet = totalDigits = PosInt (44)
fractionDigitsFacet = fractionDigits = PosInt (45)

posIntRange = [(PosInt [, PosInt] | , PosInt)] (46)
numRange = ([| () (Number [, Number] | , Number) (] |))

(47)

Facets are used to restrict simple types in various dimensions. Some facets can be fixed
using the fixed keyword which prohibits further modifications to the facet in type restrictions.
For the lengthFacet and the rangeFacet which can collect two XML Schema facets specifiying
a lower and upper bounds, also the keywords fixed-minimum and fixed-maximum exist.

The lengthFacet constrains the length of several datatypes. It can either be set to a fixed
value, or a range of values can be given. For a fixed value, a xs:length facet is generated,
while for the range variant, either xs:minLength or xs:maxLength or both are used. This
facet can be fixed using the fixed keyword, which sets the fixed attribute of all generated
facet elements to true. Fixed-minimum, and fixed-maximum can be used in combination with
a range to only fix minimum or maximum.

The rangeFacet is the counterpart to the xs:minInclusive, xs:minExclusive, xs:maxInclusive,
and max:Exclusive elements. Ranges have to be defined with mathematical interval nota-
tion using parentheses () for exclusive and brackets [] for inclusive bounds. The range facet
can be applied for all ordered datatypes (see Section 64). The fixed, fixed-minimum and
fixed-maximum keywords can be applied similar to the length facet.

Most datatypes can also be required to match a regular expression using the patternFacet.
Regular expressions must be enclosed in slashes /. Pattern facets (xs:pattern in XML
Schema) cannot be fixed.

To restrict a datatype to a list of enumerated values, the enumFacet has to be used. A
comma-separated list of quoted values has to be specified. For every value specified, one
xs:enumeration element will be generated. Enumeration facets cannot be fixed.

WhiteSpaceFacets control the normalization of string values. The three options preserve,
collapse, and replace are available. A corresponding xs:whiteSpace element is generated.
Whitespace facets can be fixed, but fixed-minimum or fixed-maximum may not be used.

TotalDigitsFacets and FractionDigitsFacets control the number of digits that datatypes de-
rived from xs:decimal can have. A non-negative integer has to be specified, and the optional
fixed keyword can be used. They correspond to the xs:totalDigits and xs:fractionDigits
elements.

March 2003 16 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Compact Syntax XML Syntax
length=8 <length value="8"/>
length=[3,6] <minLength value="3"/>

<maxLength value="8"/>
length=[,9] <maxLength value="9"/>

[2,200] <minInclusive value="2"/>
<maxInclusive value="200"/>

(2,] <minExclusive value="2"/>
[,2000-12-02) <maxExclusive value="2000-12-02"/>

/.*test.*/ <pattern value=".*test.*"/>

”A3”,”A4”,”A5” <enumeration value="A3"/>
<enumeration value="A4"/>
<enumeration value="A5"/>

whiteSpace=preserve <whiteSpace value="preserve"/>

totalDigits=8 <totalDigits value="8"/>
fractionDigits=0 <fractionDigits value="0"/>

Table 16: Facet examples

2.5 Other Features

2.5.1 Model Groups

group = group Name [{ [contentModel | element] ∗ }] [;] (48)

groupRef = @ Name (49)

The group component is used to define reusable content models. It can be used only at
top-level. Groups can be referred to from the content model of a complex type using the
groupRef component. A group that does not contain a content model implicitly contains an
empty sequence model group. The corresponding XML Schema constructs are:

Compact Syntax XML Syntax
group name { modelGroup } <group name="name">

modelGroup
</group>

@grp <group ref="grp"/>
group name <group name="name">

<sequence/>
</group>

Table 17: Group examples

March 2003 17 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

2.5.2 Attribute Groups

attributeGroup = attributeGroup Name [{ [attribute | attributeWC

| attributeGroup] + }][;] (50)

AttributeGroups define reusable sets of attributes for the use within complex type def-
initions. When the attributeGroup appears at top-level, it is interpreted as an attribute
group definition, inside complex types or other attribute groups a reference is generated. The
corresponding XML Schema constructs are:

Compact Syntax XML Syntax
attributeGroup name
{ attributes }

<attributeGroup name="name">
attributes...

</attributeGroup>
attributeGroup ref <attributeGroup ref="ref"/>

Table 18: Attribute group examples

2.5.3 Wildcards

process = lax | strict | skip (51)
wildcardNSDecl = ##targetNS | ##other | ##local | URI (52)

elementWC = [process] any [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (53)
attributeWC = [process] anyAttribute [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (54)

Wildcards (see Table 20) define placeholders for arbitrary elements or attributes. Element
wildcards (elementWC) must be used within a contentModel, they cannot be declared outside
the content model like elements. Attribute wildcards are used in complex types or attribute
groups. In XML, the following constructs are generated:

Compact Syntax XML Syntax
any <any/>
anyAttribute <anyAttribute/>

Table 19: Wildcard examples

2.5.4 Identity Constraints

idConstrF ield = field XPath [, XPath] ∗ in XPath (55)
key = key Name idConstrF ield [;] (56)

March 2003 18 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Compact Syntax XML Syntax
lax process="lax"
skip process="skip"
strict process="strict"

namespace ##targetNS namespace="##targetNamespace"
namespace ##other namespace="##other"
namespace ##local namespace="##local"
namespace URI1, URI2 namespace="URI1 URI2"

Table 20: Wildcard options

keyref = keyref Name

refers Name idConstrF ield [;] (57)
unique = unique Name idConstrF ield [;] (58)

Identity constraints can be used to define consistency constraints similar to the ID/IDREF(S)
feature in DTDs. Keys can be used to define values that must be unique within the docu-
ment and that have to exist, while unique constraints only require uniqueness. Keyrefs define
values that must refer to an existing key value. XPaths are used to define which values —
either attribute values or text nodes — are used for identity constraints. An additional XPath
defines the location of these values.

Compact Syntax XML Syntax
key key1
field XPath1 in XPath2

<key name="key1">
<field xpath="XPath1"/>
<selector xpath="XPath2"/>

</key>
keyref ref1 refers key1
field XPath3 in XPath2

<keyref name="ref1" refer="key1">
<field xpath="XPath3"/>
<selector xpath="XPath2"/>

</keyref>
unique un1
field XPath4, XPath5
in XPath2

<unique name="un1">
<field xpath="XPath4"/>
<field xpath="XPath5"/>
<selector xpath="XPath2"/>

</unique>

Table 21: Identity constraint examples

2.5.5 Notations

notation = notation Name public String system URI [;] (59)

March 2003 19 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

Notations are supported for DTD backwards compatibility. A notation definition consists
of a name, a public and a system identifier.

Compact Syntax XML Syntax
notation not1 public ”pubID”
system ”sysURI”

<notation name="not1"
public="pubID" system="sysURI"/>

Table 22: Notation example

2.5.6 Literals

Name = NCName | QName | \ NCName (60)

A Name is either a QName or NCName as defined in the XML Namespace Standard [2].
For names that are equal to any of the keywords (see Table 23), a preceding backslash has to
be added.

targetNamespace attributeGroup nillable empty
namespace anyAttribute qualified fixed
default any unqualified fixed-minimum
elementDefault notation final fixed-maximum
attributeDefault key final-extension lax
version keyref final-restriction strict
include unique final-list skip
import refers final-union length
redefine field block whiteSpace
complexType in block-substitution preserve
simpleType restricts block-restriction collapse
union extends block-extension replace
list substitutes required totalDigits
element public optional fractionDigits
attribute system prohibited
group abstract mixed

Table 23: Reserved keywords

String = ” [[∧ ” \ <nl> <cr> <ff>] | \” | \\ | \n | \r | \f | \t] ”

(61)

Strings are enclosed in double quotes. Quotes and backslashes inside the string must be
escaped using a backslash. The XML special characters < and & can be used literally. For
newline, carriage return, form feed and tabulator, the well-known escapes can be used.

March 2003 20 of 26

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

XPath = ” Selector ” (62)

The XPaths used in XML Schema are a subset of the XPath specification [3] defined in
the XML Schema standard as the Selector production. XPaths must be enclosed in double
quotes.

PosInt = [0− 9]+ (63)

PosInt are positive Integers (including zero), with no leading + allowed.

Number = NumberStart [NumberChar] ∗
| INF | -INF | NaN (64)

NumberStart = 0− 9 | + | - | . | P (65)
NumberChar = 0− 9 | + | - | . | e | E | T | Z | Y | M | D | H | S

(66)

Number can be a literal value of all the XML Schema datatypes for which the range facets
minExclusive, maxExclusive, minInclusive, and maxInclusive can be applied. This includes
the date, time, dateTime, duration and all gregorian calendar3 types, the decimal type, and
the double and float types.

URI = ” anyURI ” (67)

URIs are strings that are valid literals of the anyURI type as defined in the XML Schema
datatypes standard.

Pattern = / regExp / (68)

Patterns are strings that are valid literals of the regExp production in the XML Schema
datatypes standard. As they are enclosed with slashes, any slash inside the regular expression
has to be escaped using a backslash.

3 Syntax Summary

The following syntax summary uses the same numbering as the syntax description in the
preceding section. The summary is separated into syntax descriptions containing further
structural elements (Section 3.1), and literals (Section 3.2).

3gYearMonth, gYear, gMonthDay, gMonth, gDay

March 2003 21 of 26

http://www.w3.org/TR/xmlschema-1/#c-selector-xpath
http://www.w3.org/TR/xmlschema-1/#c-selector-xpath
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#time
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#gDay
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2/#regexs

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

3.1 Structure

schema = [schemaOption] ∗ [schemaInclude] ∗
[schemaBody] +

(1)
schemaOption = targetNamespace

| namespace

| blockF inalDefault

| elementDefault

| attributeDefault

| version (2)

schemaInclude = include

| import

| redefine (3)

schemaBody = simpleType

| complexType

| element

| attribute

| group

| attributeGroup

| notation (4)

targetNamespace = targetNamespace URI [;] (5)
namespace = namespace [Name] URI [;] (6)

blockF inalDefault = default qualifier [, qualifier] ∗ [;] (7)
elementDefault = elementDefault qualifier [;] (8)

attributeDefault = attributeDefault qualifier [;] (9)
version = version String [;] (10)

include = include URI [;] (11)
import = import URI namespace URI [;] (12)

redefine = redefine URI [{ [simpleType | complexType

| group | attributeGroup] ∗ }] [;] (13)

qualifier = final | final-restriction | final-extension | final-list

| final-union | block | block-substitution

March 2003 22 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

| block-extension | block-restriction

| qualified | unqualified

| abstract | nillable

| required | optional | prohibited (14)

derivation = extends Name | restricts Name (15)

substitution = substitutes Name (16)

fixedDefault = = String | <= String (17)

element = [qualifier] ∗ element Name

[substitution | derivation] ∗ [elementContent]
[fixedDefault] [;] (18)

elementShort = Name [{ Name }] (19)

elementContent = { [anonSimpleType | anonComplexType

| key | keyref | unique] ∗ } (20)

attribute = [qualifier] ∗ attribute Name

[attributeContent]? [fixedDefault] [;] (21)

attributeContent = { [anonSimpleType] } (22)

complexType = [qualifier] ∗ complexType Name

[derivation] [complexTypeContent] [;] (23)

complexTypeContent = { [anonComplexType | anonSimpleType] ∗ }
(24)

anonComplexType = contentModel | element | attribute

| attributeWC | attributeGroup (25)

contentModel = (empty

| [mixed] (modelGroup | groupRef)
[occurrenceSpec]) [;] (26)

occurrenceSpec = ? | * | + | posIntRange (27)

March 2003 23 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

modelGroup = ([particle [compositor particle]∗] [compositor])
(28)

compositor = , | — | & (29)

particle = (modelGroup | elementShort | groupRef | { element }
| { elementWC }) [occurrenceSpec] (30)

simpleType = [qualifier] ∗ simpleType Name

[simpleTypeContent] [;] (31)

simpleTypeContent = { [anonSimpleType] } (32)

anonSimpleType = restriction | union | list (33)

restriction = (Name [{ [facet] ∗ }]
| simpleType { anonSimpleType } { [facet] ∗ }) [;]

(34)
union = union { [anonSimpleType] + } [;] (35)

list = list { anonSimpleType } [;] (36)

fixed = fixed | fixed-minimum | fixed-maximum

(37)
facet = [fixed] ∗ (lengthFacet | rangeFacet

| patternFacet | enumFacet | whiteSpaceFacet

| totalDigitsFacet | fractionDigitsFacet) [;]
(38)

lengthFacet = length = (PosInt | posIntRange) (39)
rangeFacet = numRange (40)

patternFacet = / Pattern / (41)
enumFacet = String [, String] ∗ (42)

whiteSpaceFacet = whiteSpace = (preserve | collapse | replace)
(43)

totalDigitsFacet = totalDigits = PosInt (44)
fractionDigitsFacet = fractionDigits = PosInt (45)

posIntRange = [(PosInt [, PosInt] | , PosInt)] (46)

March 2003 24 of 26

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

numRange = ([| () (Number [, Number] | , Number) (] |))
(47)

group = group Name [{ [contentModel | element] ∗ }] [;]
(48)

groupRef = @ Name (49)

attributeGroup = attributeGroup Name [{ [attribute | attributeWC

| attributeGroup] + }][;] (50)

process = lax | strict | skip (51)
wildcardNSDecl = ##targetNS | ##other | ##local | URI (52)

elementWC = [process] any [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (53)
attributeWC = [process] anyAttribute [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (54)

idConstrF ield = field XPath [, XPath] ∗ in XPath (55)
key = key Name idConstrF ield [;] (56)

keyref = keyref Name

refers Name idConstrF ield [;] (57)
unique = unique Name idConstrF ield [;] (58)

notation = notation Name public String system URI [;]
(59)

3.2 Literals

Name = NCName | QName | \ NCName (60)

String = ” [[∧ ” \ <nl> <cr> <ff>] | \” | \\ | \n | \r | \f | \t] ”

(61)
XPath = ” Selector ” (62)

PosInt = [0− 9] + (63)

Number = NumberStart [NumberChar] ∗
| INF | -INF | NaN (64)

March 2003 25 of 26

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/xmlschema-1/#c-selector-xpath

TIK Report 166 XML Schema Compact Syntax (XSCS) Version 1.0

NumberStart = 0− 9 | + | - | . | P (65)
NumberChar = 0− 9 | + | - | . | e | E | T | Z | Y | M | D | H | S

(66)
URI = ” anyURI ” (67)

Pattern = / regExp / (68)

References

[1] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. World Wide Web
Consortium, Recommendation REC-xmlschema-2-20010502, May 2001.

[2] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. World Wide
Web Consortium, Recommendation REC-xml-names-19990114, January 1999.

[3] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0. World
Wide Web Consortium, Recommendation REC-xpath-19991116, November 1999.

[4] Kilian Stillhard. A Compact Syntax for XML Schema. Master’s thesis, Computer Engi-
neering and Networks Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland,
March 2003.

[5] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. World Wide Web Consortium, Recommendation REC-xmlschema-
1-20010502, May 2001.

[6] Erik Wilde and Kilian Stillhard. A Compact XML Schema Syntax. In Proceedings of
XML Europe 2003, London, UK, May 2003.

[7] Erik Wilde and Kilian Stillhard. Making XML Schema Easier to Read and Write. In
Poster Proceedings of the Twelfth International World Wide Web Conference, Budapest, Hun-
gary, May 2003.

March 2003 26 of 26

http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#regexs

	Introduction
	Syntax Definition
	Design Principles
	Schemas and Schema Options
	Describing Structures
	Describing Datatypes
	Other Features

	Syntax Summary
	Structure
	Literals

	References

