NextkioR

L/
COMCAST John Rushford

g

[¢ Vijay Mamidi

Oath Aaron Canary

Agenda

HostStatus

XDebug probe
NextHop Design
Shared Data Storage
NH HealthCheck

In master

testing

wiki soon
experimental soon

experimental soon

Host Status

* Hosts managed by ATS can be origin servers and parents
* Hosts are configured in remap.config and parent.config
* remap.config hosts status is maintained in HostDB

 parent.config hosts status is maintained in Parent Structures (in
memory only)

e Status of the Hosts is currently managed Passively.
* Passive: Did the host respond to queries. (variables configurable)
* Config files are edited to manage hosts.

Active Liveness Check

* Passive Host Status : Requests are involved to determine the status.
* Latency problems.
* Timeouts.
* Maintenance of a Hosts need config file edits.
*Harder to figure out Parent Host is down or the OS that the Parent Host talking to is down
* Per Parent Host Status
*Works Well when OS is down -- isolates specific origin problem.
*Can’t reuse the parent liveness information.
* The more configs, the more sacrificial requests to keep parent down.
* Manual Host Status : Take this host out of rotation.
*Solves editing config files.
* Does not solve other problems.

Active Liveness Check

* Active Host Status: Is this host responding?
* Solves the Latency problems and Timeouts.
* Can distinguish between Parent/OS problems.
* But.. Increase in Network Traffic and requests/second
* What if the Host goes down in between the checks?
* Active Distributed Host Status: External process performs health check and notifies ATS
* Solves the Latency problems and Timeouts
* Can distinguish between Parent/OS problems.
* Reduces Network Traffic.
* Does not solve the problem of host being down in between the health checks

* An External process communication to a Host doesn’t necessarily mean that ATS can talk to that
particular host.

Solution

* No Host single liveness checking strategy solve all the use cases.
* Why don’t we use all with some hierarchy ?
* Highest Priority: Manual.
* No more config file edits.
* Followed by Distributed Host Status.
* Reduces network traffic.
* Solves the Latency problems and Timeouts.
* Can distinguish between Parent/OS problems.
* Followed by Local Host Status.
*Solves the problem when there are network connectivity issues between ATS and Host
* Followed by passive
*Solves the problem when the host is done in between the distributed/local health checks.

Completed...

* Parent hosts defined in parent.config
* Parents hosts can be manually marked up/down using traffic_ctl(new)
* Parents hosts can be manually marked up/down using APl (new)

* Manual/Plugin based checks are considered before a parent is chosen(
new)

* The http state machine marks down a parent due to connection errors
or timeouts (passive down). A parent will be marked for retry once the
retry window has elapsed. The parent is marked up if a retry is
successful.(existing)

traffic_ctl enhancement (PR #3302)

* Using traffic_ctl mark down parents(s) globally.
* Only used with parents listed in parent.config.

* Future use with next hop to mark any origin or parent down.

Example:

traffic_ctl host status parent-cache-01.kabletown.net
host_status.parent-cache-01.kabletown.net 0

traffic_ctl host up parent-cache-01.kabletown.net

traffic_ctl host status parent-cache-01.kabletown.net
host_status.parent-cache-01.kabletown.net 1

traffic_ctl host down parent-cache-01.kabletown.net

Global status available as stats

* Host status is available in metrics and from the stats_over_http endpoint.

curl http://192.168.1.66:8080/ stats

"proxy.process.traffic_server.memory.rss": "365764608",
"host_status.parent-cache-01.kabletown.net": "1",
"host_status.parent-cache-02.kabletown.net": "1",
"host_status.parent-cache-03.kabletown.net": "1",

"host_status.parent-cache-04.kabletown.net": "1",

http://192.168.1.66:8080/_stats

Example traffic_ctl metric subcommand

/opt/trafficserver/bin/traffic_ctl metric match host_status
host_status.parent-cache-01.kabletown.net 1
host_status.parent-cache-02.kabletown.net 1
host_status.parent-cache-03.kabletown.net 1
host_status.parent-cache-04.kabletown.net 1

host_status.parent-cache-05.kabletown.net 1

Use with management tools

 Use traffic_ctl to manage the state of parents on a trafficserver proxy
host.

* Use ‘stats_over_http’ to monitor the current state of parents on a
trafficsever proxy host.

* Incorporate ‘traffic_ctl host’ into management and monitoring tools:
* OpenNMS
* Nagios
* Puppet
 Pdsh scripts.

-H “X-Debug: probe”

NOT SECURE!

Extendible

Performant

14

Extendible

Performant

More sharing
and reuse

Reduce
HttpSM

Comprehension

Extendible

Performant

Easy test and
deploy new
routing

Meets variety
of needs

Easy to write
fast code

16

Define the selection behavior of
fransaction proxy connection
with modular plugins.

AKA: Robustly find a valid upstream.

(HttpSM_remap

(HttpSM_cacheLookup

. (HttpSM_writeRequest (HttpSM_errorResponse
Design Update:

Internalizing Session Manager to allow more flexibility to the resolver script.
NextHop IP Generator -> Proxy Transaction Generator

18

CDN Config Example

cdn_map ={

‘pod_a”: {parents: [], “seed”: 13, “vip”: vip_a, “hosts”: [a1,a2,a3,a4,...]},
‘pod_b”: {parents: [‘pod_a"], “seed”: 17, “vip”: vip_b, “hosts”: [b1,b2,b3,b4,...1},
“‘pod_c”: {parents: [‘pod_a’], “seed”: 23, “vip”: vip_c, “hosts”: [c1,c2,c3,c4,...]},
.}
selfPod = findSelfPod(cdn_map)
peers = cdn_mapl[selfPod][*hosts”]

parents = listParentHosts(cdn_map, selfPod)

19

Resolver Config Example

request = Request()

hosts = First(2, CHash(peers, request)) + CHash(parents, request) + request

hosts = First(2, CHash(peers, request)) + CHash(parents, request) + request

ips = EtcHost(ok_hosts) + Currentlp(ok hosts) + DNSCache(ok hosts) + DNS(ok hosts)
ok_ips = IpStatus(HealthCheck(ips))

pxtxn_stream = SessionMgr(ok_ips)

Resolve(pxtxn_stream, “tumblr”)

20

Remap Config Example

map https://static.tumblr.com

https://sc.yimg.com @resolver="tumblr”

e Only used to map origins. No longer have to remap to next layer of cache.

e Remap configs at CDN layers will likely converge.

map https://static.tumblr.com

https://static.tumblr.com @resolver="tumblr”

21

Recursive Resolver Stack

HttpSM TxnResolver PluginResolver PluginService
I I I
1 . | I
I get connection ! I
t > 1
! [1 .
until successful connection ,f :
1

until successful resolve /

request

1
S
>
I
i
i

1
1 resolve to parent

request from children

1
I
I
1
1
I
1
T
I
I
I
I
I
I
1
I
I
I
I
I
I
I
1

I

wait for 'event' !

1

:

]
cevent . !
i i
resolve ! :
] |
_ continue ! !
— I 1
I |
: :
] |
1 H H | |
.connection failed . .
1 I |
1 connection success ! !
. (St et it Dy 1 1
1 I] I

Txn Events
AEs) N— — — >,
1 | 1 |
HttpSM TxnResolver PluginResolver PluginService

22

Discuss:
Async Event System

Experimental timeline 2
0 ctaros

e Config Routing

/ Architecture

e Connection Generator

/ e Modular Routing Code

e Modern C++ & STL

e Minimal Blocking Containers
e Shared Data Storage

24

Phase O:

Shared
Data
Storage

of NextHop

Currently host state is stored by system.

HostDB
HttpConnectionCount
HOStStatUS Each new s%/stem requtirgs

e new storage container
CARP/HOSt e reimplement thread safety
ParentHost e indexing and hashing

HealthCheCkP|ugin e performance optimization

26

Scale with lower overhead.

HostDB

HttpConnectionCount HostSharedData
HostStatus AddrSharedData
CARP/Host

Each new system requires

Pa rentHOSt _ e Alloc fields in sharedData container
HealthCheckPlugin

27

Data storage API

HostDB

auto fld _dns record = HostSharedData.schema.addField<COPYSWAP, vector<lpAddr>>(“dns_record”);
auto fld_dns_ttl = AddrSharedData.schema.addField<ATOMIC, uint32_t>(“dns_ttl");

auto host_data = HostSharedData.find(hostname);
if (host_data) {
auto addrs = host_data>get(fld_dns_record);
auto ip_ttl = AddrSharedData.find(addrs[0])->get(fld_dns_ttl);

Type Safety

28

Data Design: Extendible Simple

Data storage API

HostStatus

auto fld_host oor = HostSharedData.schema.addField<BIT, bool>(“*host OOR”);
auto fld_addr_oor = AddrSharedData.schema.addField<BIT, bool>(“addr_OOR”);

auto host_data = HostSharedData.find(hostname);
if (host_data) {
if (host_data->get(fld_host oor) {

auto addr_data = AddrSharedData.find(addr); lock, cp shared_ptr, unlock

if (addr_data) {

if (addr_data->get(fld_addr oo lock free atomic

29

Data Design: Extendible Simple Performant

NextHop Core Data Structures

© SharedMap

0O vector<unordered_map<key,ptr>>
| O vector<mutex>

© HostData © AddrData

0 shared_map<name,HostData>

0 shared_map<IpAddr,AddrData> o ptr find(key)
o ptr create(key)
o destroy(key)

o visit((*fp)(ptr))

© SharedExtendible

0 memory_block © .
S schwna FieldSchema © 5y
ST N SR field <ATOMIC, T map<name,field>

field is strongly typed [o atomic<T>& get(field) map<size,count> [name

by access & type — map<size,offset> access_type
............ ﬁeld(BlT’ BoOl>eeeemenes construct fp
o bool get(field) o field addField<Access,T>(name) destruct_fp
o write(field) @ call_construct(memory) =
,,,,,,, field<COPYSWAP, T>---- o call_destruct(memory)

o shared_ptr<T> get(field)
o writer_ptr<T> write(field)

Code Review Invite:

(Can we make a Nexthop Branch?)
e Aligning atomics in heap
e writer ptr w/ COPYSWAP

Less continuations.

More concise code.

Columns
vs Rows

Optimizing CPU cache usage

Host

Field

CPUs will more reliably precache

data when it is stored for
contiguous reads.

OperateAllHosts(Field)
OperateAllFields(Host)
OperateAllHosts(Field)
OperateAllFields(Host)

Host

stored by Field
stored by Field
stored by
stored by

Field

v Optimal CPU cache usage
X CPU Cannot preload cache
X CPU Cannot preload cache

v Optimal CPU cache usage

34

Improve CPU cache usage.
Expect performance wins.

HostDB

HttpConnectionCount HostSharedData
HostStatus AddrSharedData
CARP/Host

ParentHost

HealthCheckPlugin

35

Shared Data storage:

e reduce overhead work

e more concise code

e improve CPU cache efficiency

Discuss:

Shared Storage
Opportunities & Risks

Experimental timeline 2
0 ctaros

e Config Routing

/ Architecture

e Connection Generator

/ e Modular Routing Code

e Modern C++ & STL

e Minimal Blocking Containers
e Shared Data Storage

38

Phase 1:
Modular
Routing
Code

Request
First CHash

HostStatus

EtcHost Currentlp

DNS

IpStatus HealthCheck
SessionMgr

Resolve

DNSCache

39

IES1 stream

request stream

functor | *

W request stream

uest stream [funCtOr J

request stream

functor | *

)

[functor |

Generate - increase stream length

e ConsistentHash
e DNS
e SessionMgr

Filter - decrease stream length

e First(n)
e HostStatus
e HealthCheck

Modify

e FEtcHost
e ServelfCachedOnly

Sort

e LoadBalancing
e RR

(

-

request stream

functor | 1

Discuss:
RoundRobin

VS

Uniform Random

HealthCheckPlugin Service

| NHAddr I | HCService l | UpdateQueue I | HttpFetcher I
I

I
poll status !

request update

1

|

1

1

1

|

1

]

|

new fetcher 2

| Allocate $(min(num_requests,limit)) Fetchers 5

>

while request queue /

paalascd it

SR m R ety G

|_ status change

o

| I
; ; ', pop(empty)
| I

| NHAddr . | HCService l | UpdateQueue I | Htthetcher l

43

Upstream Health Check States

f

manual_up

(down

edisable txn forwarding
®ping server every 60s

last 3 sucessful /last 3 failed

ﬂ

last 3 failed

k

C

'3 I
active last 1 successful S

. eenable txn forwarding

enable txn forwarding last resp old #ping server every 60s

all numbers configurable separately.

RPC
RPC

manual_down

44

Discuss:
Host Up/Down Metrics

Discuss:
Pre-warming cache

Discuss:
Hot Object Caching

Discuss:
Load Balancing
Metrics & Methods

Experimental timeline 2
0 ctaros

e Config Routing

/ Architecture

e Connection Generator

/ e Modular Routing Code

e Modern C++ & STL

e Minimal Blocking Containers
e Shared Data Storage

49

The End

BONUS Discussion:
Edge Compute

