
CONCURRENT
ACTIVATIONS

OPENWHISK TECH INTERCHANGE

MOTIVATION

• Primary: Throughput improvement for steady-use actions

• Secondary: Fewer containers to operate (manage larger load with fewer containers,
IFF there is steady traffic for at least some of those actions)

STEPS TO ACHIEVING CONCURRENCY

• Action image changes:

• Disable inherent state/concurrency tracking in action image

• Only nodejs (https://github.com/apache/incubator-openwhisk-runtime-nodejs/pull/41)

• Interleaved logs - either prevent interleaving by buffering in nodejs, or force structure to log to include activation id (relies on queries via
LogStore impl). For now:

• bring-your-own-action-images

• OR disable log collection

• Invoker changes

• MessageFeed.maximumHandlerCapacity (peeking behavior)

• ContainerPool.maxConcurrent (free -> busy behavior)

• ContainerProxy.activeActivationCount (stay in Running state till all complete)

• HttpUtils.maxConcurrent (use PoolingHttpClientConnectionManager)

https://github.com/apache/incubator-openwhisk-runtime-nodejs/pull/41

QUEUEING BEHAVIOR

• Worst case: all activations are unique actions

• Result: extra messages peeked and held in memory while all containers are busy for that invoker

• Risk: in event of a crash, the number of lost messages will be greater than before (previously:
<maximumContainers> messages lost, now: <maximumContainers*maxConcurrent> messages lost)

• Best case: all activations are same action

• Result: all messages are processed on a single warm container

• Risk: same risk for peeked message loss on crash, but less waiting will result in messages lingering in
memory for a shorter period

• May reduce message peeking to <maximumContainers*maxConcurrent*concurrentPeekRatio> to adjust
peek size to be between worst case and best case.

TESTS

• throughput.sh (existing)

• throughput-async.sh (new)

• 175ms response delay

• Emulates downstream API waiting (or other wait scenarios)

• Async (throughput-async.sh) example results (100 connections):

• 114 RPS (maxConcurrent=200) vs 20 RPS (maxConcurrent=1) vs 5 RPS (master)

• Sync (throughput.sh) example results (100 connections):

• 60 RPS (maxConcurrent=200) vs 60 RPS (maxConcurrent=1) vs 48 RPS (master)

DRAWBACKS

• Potential for activation state leaks

• Make sure the actions (and runtime images) do not introduce or rely on state that
exists across activations (don’t use globals, etc)

• Interleaved logs

• Use a customized action image to buffers the activation logs internally (to prevent
the interleave)

• Use a LogStore impl to deal with log storage + fetching based on activation id

• And… use a customized action image to structure logs to include the activation id
in each log line

NEXT STEPS

• Allow action devs to signal their own concurrency limits

• Default = 1 (existing behavior unchanged)

• Annotation: wsk action create … --annotation max-concurrent 200

• Leave existing config (whisk.container-pool.max-concurrent) in place as a
systemwide max

• Action images with structured (or buffered?) log options to use concurrency locally

FUTURE: MORE INTELLIGENCE

• Separate topic for concurrent actions

• Need to manage consuming multiple topics to avoid starving non-concurrent
actions

• Dedicated invokers

• Allow some invokers to be reserved for concurrent actions

• Because concurrent actions (may) have different traffic patterns and container
lifecycle. (but what if they don’t actually get used concurrently?)

• Separate grace period to stop concurrent action containers

