
OpenWhisk
Scheduling Proposal

• ActionN : the action whose name is N, also implies activation request for the ActionN

• ExecutionN: imply the execution of ActionN

• WarmedN: warmed container of ActionN

• controllerM: the controller whose index is M

• completedM: Kafka topic for controllerM to receive completion message

• invokerN: the invoker whose index is N, also it implies Kafka topic for invokerN

• homeInvoker: a target invoker to which the given action would be scheduled

Terms and Notions

1

Current Implementation Details

Index
1. InvokerSlot
2. Hash function, homeInvoker, stepSize
3. Forcable Semaphore
4. ContainerPool
5. ContainerProxy

2

• Invoker has MaxPoolSize(numCore * coreShare)

• Each controllers has its own invoker slots

• It is semi-proportional to the number of controllers (invokerN slot in a controller = MaxPoolSize / # of controllers)

• It is dynamically changed as controllers join/leave the cluster.

Current Implementation (1/6) – Invoker Slot

invoker0 6

invoker1 6

controller0
1. Add one more controller

※ Invoker MaxPoolSize: 12

invoker0 6

invoker1 6

controller1

invoker0 4

invoker1 4

controller0

invoker0 4

invoker1 4

controller1

invoker0 4

invoker1 4

controller2

2. Update invoker slots

3

• Loadbalancer use hash function to decide homeInvoker of a given action

• Loadbalancer use stepSize to choose different invoker in case homeInvoker is not available

• stepSize is the number which is coprime with the number of invokers

• For more about stepSize: https://github.com/apache/incubator-openwhisk/pull/2360

Current Implementation (2/6) – Hash function, HomeInoker, StepSize

def hashFunction(namespace, action) = {
(namespace.asString.hashCode() ^ action.asString.hashCode()).abs
homeInvoker = hash % invokersToUse.size
return homeInvoker

}

[newIndex = (oldIndex + step) % numInvokers]

[Example]
• oldIndex = 0, numInvokers =3 (0,1,2)
• coprime number with 3 -> 5
• newIndex1 = (0 + 5) % 3 -> 2
• newIndex2 = (2 + 5) % 3 -> 1
• newIndex3 = (1 + 5) % 3 -> 0
• Can iterate all invokers

4

• Loadbalancer chooses invoker based on ForcableSemaphore

Current Implementation (3/6) – Forcable Semaphore

LB

FS(Invoker0Slot)
FS(Invoker1Slot)

invoker0

invoker1
1. tryAquire(0)

2. Send activation

3. Receive completion

4. tryRelease(0)

LB

FS(Invoker0Slot)
FS(Invoker1Slot)

Invoker0
(saturated)

invoker1
1. tryAquire(0)
2. Failed to acquire
3. newIndex = (0+ step) % numInvokers
4. tryAquire(1)

LB

FS(Invoker0Slot)
FS(Invoker1Slot)

1. tryAquire(0)
2. Failed to acquire
3. newIndex = (0+ step) % numInvokers
4. tryAquire(1)
5. Failed to acquire
6. newIndex = randomlyChoosed
7. forceAcquire(0)

7. tryRelease(1)

Invoker0
(saturated)

Invoker1
(saturated)

8. Send activation

9. Waiting in the queue

Normal situation Home Invoker is saturated

All invokers are saturated

5

• Invoker has ContainerPool to keep status of containers.

• ContainerPool keeps status of 3 pools(freePool, busyPool, prewarmPool).

• When activation message comes, first, it will try to find warmed container from freePool.

• If no warmed container found, it checks current pool size and take PrewarmContainer or create new one(ColdStart).

• If (busyPool.size + freePool.size) is greater than or equals to maxPoolSize, it will try to remove a container from freePool and
take PrewarmContainer or create new one(ColdStart). If no container is deletable, just returns None.

Current Implementation (4/6) – ContainerPool

var freePool = immutable.Map.empty[ActorRef, ContainerData]
var busyPool = immutable.Map.empty[ActorRef, ContainerData]
var prewarmedPool = immutable.Map.empty[ActorRef, ContainerData]

if (busyPool.size + freePool.size < maxPoolSize) {

ContainerPool.remove(freePool).map { toDelete =>
removeContainer(toDelete)
takePrewarmContainer(r.action)

.map(container => {
(container, "recreated")

})
.getOrElse {

(createContainer(), "recreated")
}

}

6

• If any containers found, or created, invokers send activation message to it and removes it from freePool and add it into
busyPool.

• If None is returned(no container available), it reschedules that message to itself for at most 10 seconds.

Current Implementation (5/6) – ContainerPool cont`

case Some(((actor, data), containerState)) =>
busyPool = busyPool + (actor -> data)
freePool = freePool - actor
actor ! r // forwards the run request to the container
logContainerStart(r, containerState)

self ! Run(r.action, r.msg, retryLogDeadline)

7

• ContainerProxy is logical container representative in invoker side. It is implemented based on Akka[FSM]

• It has many states.

• When running codes, it subsequently calls `/init` and `/run` REST API against the container.

• Once code execution is over, it send completion message to controller(completedM).

• And collect logs from the container and store it in CouchDB.

Current Implementation (6/6) – ContainerProxy

case object Uninitialized extends ContainerState -> transient state to trigger Prewarm container creation. Next: Starting.

case object Starting extends ContainerState -> transient state to wait until Prewarm container is created. It would be registered in PreWarmPool. Next: Started.

case object Started extends ContainerState -> it is ready to receive a job. Once job message is received, it initializes the container and run the code. Next: Running

case object Running extends ContainerState -> transient state to wait until code execution is finished. Once it receives result, it is registered in WarmPool . Next: Ready

case object Ready extends ContainerState -> transient state to wait for subsequence run requests. Only wait for 50ms and pause the container. Next: Pausing

case object Pausing extends ContainerState -> transient state to wait until container is paused. Next: Paused

case object Paused extends ContainerState -> wait until job request comes. Once job request comes, it is resumed, run the code and move to Running state again. If no job

request comes for 10 minutes. It will destroy the container and move to Removing. Next: Running or Removing

case object Removing extends ContainerState -> transient state to wait until the container is removed. If container is removed, FSM is destroyed as well.

8

Basic Flow: What happens in the real scene

Controller0 Kafka Invoker0
invoker0 2

invoker1 2 invoker0

invoker1

completed0

completed1

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P P

P P

Controller1

invoker0 2

invoker1 2

9

Forcable Semaphore

ContainerProxy

Running state

Starting state

Ready state

Basic Flow: What happens in the real scene

Invoker0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P P

P P

1. tryAcquire(0) Semaphore
(Hash(ActionA) = 0)

Kafka

invoker0

invoker1

completed0

completed1

Controller0

invoker0 1

invoker1 2

Controller1

invoker0 2

invoker1 2

10

ContainerProxy

Running state

Starting state

Ready state

Basic Flow: What happens in the real scene

Invoker0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

1. Take Prewarm
2. Move to Busy
3. Create new Prewarm

Kafka

invoker0

invoker1

completed0

completed1

P

Controller0

invoker0 1

invoker1 2

Controller1

invoker0 2

invoker1 2

11

ContainerProxy

Running state

Starting state

Ready state

The container is still being created.

Basic Flow: What happens in the real scene

Invoker0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

P

1. Send completion
2. Move to FreePool

1. New Prewarm created

3. Release Semaphore(0)

Kafka

invoker0

invoker1

completed0

completed1

Controller0

invoker0 2

invoker1 2

Controller1

invoker0 2

invoker1 2

12

ContainerProxy

Running state

Starting state

Ready state

Warmed Flow: What happens in the real scene

Invoker0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

P

Kafka

invoker0

invoker1

completed0

completed1

Controller0

invoker0 1

invoker1 2

Controller1

invoker0 2

invoker1 2

13

ContainerProxy

Running state

Starting state

Ready state

Warmed Flow: What happens in the real scene

Invoker0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

P

Kafka

invoker0

invoker1

completed0

completed1

1. Take WarmedA
2. Move to Busy
3. Skip code initialization
4. Run codesController0

invoker0 1

invoker1 2

Controller1

invoker0 2

invoker1 2

14

ContainerProxy

Running state

Starting state

Ready state

ColdStart Flow: What happens in the real scene

Controller0
Invoker0

invoker0 1

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

No PreWarm
container available yet

15

A

ContainerProxy

Running state

Starting state

Ready state

0. Two previous requests already took all Prewarm containers.

Cold Start Flow: What happens in the real scene

Controller0
Invoker0

invoker0 1

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A

A
Create a new container
(ColdStart)

16

ContainerProxy

Running state

Starting state

Ready state

0. Two previous requests already took all Prewarm containers.

Cold Start Flow: What happens in the real scene

Controller0
Invoker0

invoker0 1

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A
1. Take the container
2. Move to Busy
3. Run codes

17

ContainerProxy

Running state

Starting state

Ready state

Container Deletion Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A

A

1. Acquire Semaphore(0)
(Hash(ActionB) = 0)

18

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Container Deletion Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A

A
1. Busy+Free = 4
2. No WarmedB
3. Remove from FreePool

19

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Container Deletion Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A

1. Take PreWarm
2. Move to FreePool

20

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

B

Container Deletion Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A B

1. Move to BusyPool
2. Run codes

21

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Choose Other than HomeInvoker: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 2

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A B

22

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

0. HomeInvoker is saturated

Choose Other than HomeInvoker: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 1

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 2

Kafka

invoker0

invoker1

completed0

completed1

A A B

3. Receive ActionA

1. tryAcquire(1) Semaphore
(Hash(ActionA) = 0)

23

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

0. HomeInvoker is saturated

Rescheduling Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 0

Kafka

invoker0

invoker1

completed0

completed1

A A B

A A A B

0. All invokers are saturated

24

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Rescheduling Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 0

Kafka

invoker0

invoker1

completed0

completed1

A A B

1. Randomly choose invoker
2. forceAcquire(0)

A A A B

25

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Rescheduling Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 0

Kafka

invoker0

invoker1

completed0

completed1

A A B

A A A B

1. Busy+Free = 4
2. Try removing from FreePool
3. Failed to acquire a container

26

ContainerProxy

Running state

Starting state

Ready state

MaxPoolSize = 4

Rescheduling Flow: What happens in the real scene

Controller0
Invoker0

invoker0 0

invoker1 0

Invoker1

BusyPool

FreePool

PrewarmPool

BusyPool

FreePool

PrewarmPool

P

P P

A

PController1

invoker0 0

invoker1 0

Kafka

invoker0

invoker1

completed0

completed1

A A B

A A A B

1. Reschedule ActionA
(for at most 10 seconds)

27

ContainerProxy

Running state

Starting state

Ready state

Potential issues
in current implementation

28

• Hash is used to choose HomeInvoker.

• When scheduling invoker, capacity of other invoker is not considered.

• Slow Docker command is not considered.

• Docker pause/unpause takes about 130~425ms.

• Docker remove/create takes about 700~1300ms.

Issues in current implementation

29

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

30

A A B A

Running container

Warmed container

Container is still being created

Invoker0 is saturated

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

A A B A

0. ExecutionA finished

31

Running container

Warmed container

Container is still being created

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

A B A

1. ActionB invoked

2. Send to HomeInvoker

3. Remove WarmedA

32

Running container

Warmed container

Container is still being created

A

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A B A

ActionB is running

33

Running container

Warmed container

Container is still being created

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A B A

0. ExecutionB finished

34

Running container

Warmed container

Container is still being created

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to HomeInvoker

3. Remove WarmedB

B A A

35

Running container

Warmed container

Container is still being created

B

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A A A

ActionA is running

36

Running container

Warmed container

Container is still being created

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A A A

37

0. ExecutionA finished

Running container

Warmed container

Container is still being created

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A A

38

1. ActionB invoked

2. Send to HomeInvoker

3. Remove WarmedA

Running container

Warmed container

Container is still being created

A

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

Action A
hash=0,
limit=3

Action B
hash=0,
limit=3

B B A A

Container Deletion(700ms) happens again and again because of same HomeInvoker

39

ActionB is running

Running container

Warmed container

Container is still being created

Problems in real scene – ideal case

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A A

B B B

1.Each actions is always sent to HomeInvoker

2. Containers are fully reused(100%)

40

ActionA
hash=0,
limit=3

ActionB
hash=1,
limit=3

Running container

Warmed container

Container is still being created

Problems in real scene – worst case2: invocation does not wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3 0. Previous requests already took all Prewarm containers

41

P Prewarm container in starting state

Running container

Warmed container

Container is still being created

Problems in real scene – worst case2: invocation does not wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to other than HomeInvoker

4. Prewarm not available
5. ColdStart (700ms)

42

P Prewarm container in starting state

Running container

Warmed container

Container is still being created

Problems in real scene – worst case2: invocation does not wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to other than HomeInvoker

4. Prewarm not available
5. ColdStart (700ms)

43

If execution time of ActionA is 20ms, it takes 720ms to run codes

Problems in real scene – ideal case: wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to HomeInvoker

3. Wait until running action is finished

44

Problems in real scene – ideal case: wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

Reuse WarmedA

45

Problems in real scene – ideal case: wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

WarmedA is reused

46

Wait for previous running(20ms) + Execute new run(20ms) = 40ms

Problems in real scene – ideal case: wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

WarmedA is reused

47

Wait for previous running(20ms) + Execute new run(20ms) = 40ms
720ms vs 40ms -> 18 times more

A A B B

P P C C

Problems in real scene – ideal case: wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

WarmedA is reused

48

If execution time <= 700ms, waiting is much faster than ColdStart.

A A B B

P P C C

Problems in real scene – Invoker coordination: blocking

49

Invoker
(MessageQueue)

Kafka

A

3. Process request in serial order

B

C

D

E

Invoker0ABCDE

1. Request comes

2. Fetch max 5 messages

Invoker servers coordinate all messages in serial order.

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

BCDE

50

Invoker
(MessageQueue)

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0
Send request for ActionC

51

Invoker
(MessageQueue)

CDE

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

DE

52

Invoker
(MessageQueue)

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

E

53

Invoker
(MessageQueue)

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

ABCDE

54

Invoker
(MessageQueue)

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

A

1. It reschedules the request for action A

55

2. Only fetch 4 new messages next time

Invoker
(MessageQueue)

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

ABCDE

56

Invoker
(MessageQueue)

X

Problems in real scene – Invoker coordination: blocking

Kafka

A

B

C

D

E

Invoker0

1. It reschedules requests

If some requests are blocked(rescheduled) for some reasons, it will affect invocation of subsequent requests.

57

2. Only fetch 2 new messages

Invoker
(MessageQueue)

ABC

Problems in real scene – Invoker coordination: repeated logic overhead

Invoker0

Kafka
A

A

AInvoker0AAAAA

1. Check freePool
2. Take Warmed or PreWarm or ColdStart
3. Init code (/init) or skip
4. Run code (/run)

Even though there are jobs for only ActionA, invoker checks/proceeds all logics every time.

Warmed

ColdStart

.

.

.

58

Problems in real scene - action concurrent execution limit

1. Request comes

2. # of Concurrent execution increased

3. Send to Kafka 4. Send to Invoker 5. Send to Container

59

Controller InvokerKafka A

Limit of Action A 1

Limit of Action B 0

concurrentInvocations : 1
invocationsPerMinute : 1
firesPerMinute : 1

Problems in real scene - action concurrent execution limit

9. # of Concurrent execution decreased

6. Send response7. Send response8. Send response

60

Controller InvokerKafka A

Limit of Action A 0

Limit of Action B 0

Problems in real scene - action concurrent execution limit

Controller InvokerKafka A
1-6. Send response1-7. Send response1-8. Send response

61

Limit of Action A 1

Limit of Action B 0

2. Request comes

2-1. 429 Too many requests

Problems in real scene - action concurrent execution limit

Controller InvokerKafka A
1-6. Send response1-7. Send response1-8. Send response

62

Limit of Action A 1

Limit of Action B 0

2. Request comes

2-1. 429 Too many requests

Even though # of concurrent running containers is lesser than limit,
controller always returns 429 Too many requests until it receives completion message.

(When I configured limit as 5, I could only invoke about 3 containers.)

Problems in real scene - action concurrent execution limit

Controller InvokerKafka A
1-6. Send response1-7. Send response1-8. Send response

63

Limit of Action A 1

Limit of Action B 0

2. Request comes

2-1. 429 Too many requests

Even if it is intended behavior, if we can control resources based on real usage(container usage),
it will allow more fine-grained throttling.

Problems in real scene – Nondeterministic performance

• In current architecture, it’s not easy to determine when do we have to add more servers.

• Though other invoker has enough capacity, TPS is less if homeInvoker of actions are same.

• TPS is not proportional to the number of invokers. -> If intervention occurred, TPS decreases, not occurred, TPS increases.

• It’s not easy to advertise our official TPS.

• TPS is highly dependent on container creation/deletion.

• If coldStart is occurred, execution time becomes at least 700ms.

• TPS is changed as the number of users and the number of actions are changed.

64

1 action with 100 users

TPS: 20,000

10 actions with 100 users

TPS: 6,000

100 actions with 100 users

TPS: 30

10 actions with 100 users

TPS: 6,000

10 actions with 200 users

TPS: 2,400

10 actions with 750 users

TPS: 30

We cannot say our system supports
either 20K TPS or 30 TPS.

Problems in real scene – Nondeterministic performance

65

Invoker maxPoolSize = 20

1 Container = 100 TPS
1 Invoker = 2,000 TPS

10 Invokers = 20,000 TPS

Add 10 more invokers
20,000 TPS

New user requirement

• In current architecture, it’s not easy to determine when do we have to add more servers.

• Though other invoker has enough capacity, TPS is less if homeInvoker of actions are same.

• TPS is not proportional to the number of invokers. -> If intervention occurred, TPS decreases, not occurred, TPS increases.

• It’s not easy to advertise our official TPS.

• TPS is highly dependent on container creation/deletion.

• If coldStart is occurred, execution time becomes at least 700ms.

• TPS is changed as the number of users and the number of actions are changed.

It would be great if we can calculate expected TPS arithmetically

• Intervention of actions: Hash(no scheduling based on capacity and status)

• Invocation does not wait for previous run: Wait for coldStart

• Invoker coordinates all messages: blocking, logic overhead

• Action concurrent execution limit: can have more fine-grained control over resources

• TPS is highly dependent on container creation/deletion: Slow Docker command is not considered

• TPS is not deterministic

66

Problem summary

New Scheduling Algorithm

Autonomous Container Scheduling

67

TopicA

• Partition is a unit of parallelism

• Read/Write

• Replication

• Kafka message has key and Kafka supports pluggable partitioner.
• Message with same key can be sent to same partition

Kafka Partitions

partition1

partition2

partition3

message

partitioner

producer consumer

ConsumerGroup1

• ConsumerGroup is a set of consumers which point to same topic

• Each consumers can read message from all partitions

• Based on the number of consumers, assigning plan is changed.

• Maximum parallelism is limited to the number of partitions

Kafka Consumer Group

partition1

partition2

partition3

consumer0

consumer1

ConsumerGroup1

partition1

partition2

partition3

consumer0

consumer3

consumer1

consumer2

TopicA TopicA

• ConsumerLag means the number of not processed messages for the given consumer

Kafka Consumer Lag

TopicA

MMMMMMMMMM

producer consumerA

0123456789

Offset of consumer

ConsumerLag: 5

1. Each actions has its own topic.

2. Each container proxies directly fetches requests from its own Kafka topic.

3. Invokers only manage container creation/deletion.

4. A created container keeps running for the given time(30s ~ 1min).

5. All containers with same topic form a same ConsumerGroup.

6. Limit works in per-action basis.

7. Default limit is 1, so only one container is created for an action at first time.

8. As limit is increased, # of partition for the given topic is also increased.

9. If more TPS is required, invoker create more containers for the topic.

10. If consumer lag is high, controller respond with 429 Too many request .

Autonomous Container Scheduling – Basics

1. Each actions has its own Kafka topic(ex: {namespace}-{name}).

2. Parallelism of action is determined by per-action limit and Kafka partitions.

3. Each Invokers sends it’s status via Health message (every 100~200ms).

4. All controllers keep slots for all invokers.

5. Once request comes, controller checks whether consumer exists for the topic({namespace}-{name}).

1. If exists, controller compares # of consumers , action limit, checks consumer lag and sends request directly to the action topic.

2. If not exist or consumer lag is high, controller sends request directly to the action topic, at the same time, sends container creation request to invoker with
least loads.

3. If # of consumers = action limit, and consumer lag is too high, respond back with 429 Too many requests

6. Once invoker receives container creation message, it creates a container for the given action and initialize it.

1. If busyPool reaches maxPoolSize, it sends failed message back to the controller, then controller reschedules that message to other invokers.

2. If already # of consumers = action limit, it sends SkipMessage back to the controller.

7. Once a container is running ContainerProxy directly reads message from Kafka and execute codes and send results to controller via Kafka.

8. Multiple containers for a specific actions belong to same ConsumerGroup({namespace}-{name}).

9. If limit is changed, # of partitions for the topic should be changed as well. (# of partitions = # of concurrent containers)

10. Optimization: If consumer lag is small enough, new container is not created, though # of consumers < # of partitions

11. A container does not pause or removed though execution is finished for 30s ~ 1min.

12. If no request comes for 30s ~ 1min, invoker terminates/pauses that container.

Autonomous Container Scheduling – Whole Flow

73

Autonomous Container Scheduling: Invoker status via health message

controller0

Kafka

invoker0

invoker1

completed0

completed0

health

Invoker0
(max:4)

Invoker1
(max:4)invoker0 0

invoker1 0

Each invokers send its pool status via health messages

74

Autonomous Container Scheduling: Basic Flow (1/3)

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 1

invoker1 0

ConsumerManager

1. ActionA

Kafka

invoker0

invoker1

completed0

completed0

health

ActionA

2. Ask container creation for ActionA

4. Send ContainerCreation

5. Receive ContainerCreation

A

6. Container(Proxy) for ActionA is created.

3. Check consumer,
limit, lag

75

Autonomous Container Scheduling: Basic Flow (2/3)

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 1

invoker1 0

ConsumerManager

Kafka

invoker0

invoker1

completed0

completed0

health

ActionA

A
8. Execute the codes

10. Receive results

76

Autonomous Container Scheduling: Basic Flow (3/3)

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 1

invoker1 0

ConsumerManager

1. ActionA

Kafka

invoker0

invoker1

completed0

completed0

health

ActionA

A
4. Execute the codes

6. Receive results

Container creation is not required

No invoker server involvement

77

Autonomous Container Scheduling: Container Location Free Scheduling

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 1

invoker1 1

1. ActionA

Kafka

invoker0

invoker1

completed0

completed0

health

Action A

A
4. Execute the codes

6. Receive results

A

No need to send requests to the same invoker.
Controllers can just send requests to action topics.

ConsumerManager

4. Execute the codes

78

Autonomous Container Scheduling: Even load distribution

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 2

invoker1 0

1. ActionA

Kafka

invoker0

invoker1

completed0

completed0

health

Action A

2. Ask container creation for A

A A

A

No need to consider the location of existing containers.
It can just send ContainerCreation to an invoker with the least loads.

ConsumerManager

3. Check consumer,
limit, lag

79

Autonomous Container Scheduling: Performance Isolation

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 2

invoker1 3

Kafka

invoker0

invoker1

completed0

completed0

health

Action A

3-1.1 Ask container creation for B

A
3-2.3 Execute the codes

A

Container creation does not affect the existing container performance

3-1.2 ContainerCreation

3-1.3 Receive ContainerCreation

B

3-1.4 Creation is in progress.

Action B

ConsumerManager

3. Check consumer,
limit, lag

A B

80

Autonomous Container Scheduling: Improved Base TPS

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 3

invoker1 4

1. Action A

Kafka

invoker0

invoker1

completed0

completed0

health

Action A

A
4. Execute the codes

No other logics involved.
Just reads the message and execute it.
Base TPS of one container increases.

6. Receive results

ConsumerManager

I got about 1,500TPS with only 1 container

81

Autonomous Container Scheduling: Deterministic TPS

controller0

Invoker0
(max:4)

Invoker1
(max:4)invoker0 2

invoker1 3

ConsumerManager Kafka

invoker0

invoker1

completed0

completed0

health

Action A

A

Based on performance isolation, TPS becomes deterministic.
Target TPS can be achieved deterministically

1500 TPS

A

1500 TPS

A

1500 TPS

Total TPS for Action A: 4,500
For 6,000 TPS -> Add one more container.

(Note: In real world, containers share host resources, TPS may not be linearly increased.
But anyway, TPS would be much more predictable)

Review previous Issues
with new Scheduling Proposal

82

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

A A B A

83

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

A A B A

0. ExecutionA finished

84

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

A A B A

0. ExecutionA finished

1. ActionB invoked

2. Send to HomeInvoker

3. Remove WarmedA

85

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A B A

ActionB is running

86

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A B A

0. ExecutionB finished

87

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to HomeInvoker

3. Remove WarmedB

B A B A

0. ExecutionB finished

88

Problems in real scene – worst case: intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

B A A A

ActionA is running

89

With new Scheduling Algorithm: Intervention of actions

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

ActionA
limit=3

ActionB
limit=3

B A A A

90

B B No container deletion.

Containers can run on any invokers and directly read messages from Kafka.

Problems in real scene – worst case2: does not wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

ActionA
hash=0,
limit=3

ActionB
hash=0,
limit=3

1. ActionA invoked

2. Send to other than homeInvoker

4. Prewarm not available
5. ColdStart (700ms)

91

If execution time of ActionA is 20ms, it takes 720ms to run the code

With new Scheduling Algorithm: does not wait for completion

Invoker0
(slots: 4)

Invoker1
(slots: 4)

Invoker2
(slots: 4)

A A B B

P P C C

Action A

Action B

92

Inherently wait for previous execution.

Problems in real scene - action concurrent execution limit

Controller InvokerKafka A
1-6. Send response1-7. Send response1-8. Send response

93

Limit of Action A 1

Limit of Action B 0

2. Request comes

2-1. 429 Too many requests

With new Scheduling Algorithm: action concurrent execution limit

Controller InvokerKafka A

2. Check consumer lag

94

1. Request comes

3. 429 Too many requests

0. Process requests on a best efforts basis

Throttling is performed based on real processing speed

Problems in real scene - action concurrent execution limit

Controller InvokerKafka

A

3. Compare # of consumers and and limit

95

1. Request comes

2. Try to create containers

A

A

Exactly same number of containers with limit is guaranteed under heavy loads

4. Create more containers

More fine-grained control over resources

Problems in real scene - action concurrent execution limit

Invoker1
(max: 3)

A

96

A

A

Easy to resource planning

Invoker0
(max: 3)

A

A

A

Invoker2
(max: 3)

A

MAX: 9
Current: 7

Need to add more invokers

Easy to figure out current resource status and decide to add more servers

• Pros

• No need to send request to same invoker

• No need to coordinate requests: container itself read messages from Kafka.

• Can send less requests to the invoker.

• Container creation/deletion/pausing/resuming is minimized.

• Request processing is not affected by container creation/deletion.

• Under max loads, exactly same number of containers with limit is guaranteed.

• More fine-grained controller for target TPS (Base TPS x # of containers)

• At some point, it’s easy to figure out node addition is required or not. (Easy resource planning)

97

Pros and Cons of new Scheduling Proposal

• Cons

• Controller should check consumer lag for every requests. -> increase execution time.

• Same number of topic with the number of actions are required.

• Action container can be reserved for 30s ~ 1min.

• All runtimes should include Kafka client.

• If limit changed, # of partitions should be also changed.

98

Pros and Cons of new Scheduling Proposal

99

Cons - Controller should check consumer lag for every requests.

Took about 1ms to check consumer lag

100

Cons - Same number of topic with the number of actions are required.

• The number of active topics will not be huge.

• The number of active topics is limited to the maximum number of concurrent containers.

• Benchmark results with 3 Kafka nodes:

• 1,000 active topics = 1,000 concurrent containers = 62.5 invokers(8 cores, 10GB memory, MaxPoolSize=16)

• If we need to have 62.5 invokers, surely we will have more number of Kafka nodes than 3 nodes.

• Kafka nodes can be horizontally scaled-out.

of topics Kafka TPS

50 34,488

100 34,502

200 31,781

500 30,324

1,000 30,855

101

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Run every 1 min

Run every 1 min

Reserved: 1min

102

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Run every 1 min

Run every 1 min

Reserved: 10s

103

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Run is over
Run every 1 min

Run every 1 min

104

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

After 10s, it is removed
Run every 1 min

Run every 1 min

105

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) B

A

B

B is invoked
Run every 1 min

Run every 1 min

106

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) B

A

B

Run is over
Run every 1 min

Run every 1 min

107

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) B

A

B

Container is removed
Run every 1 min

Run every 1 min

108

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Run every 100ms

Run every 100ms

Reserved: 40ms

109

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Run every 100ms

Run every 100ms

Container deletion/creation takes 700~1,300ms

110

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Running interval can be changed.

Run every 4s

Run every 4s

Container deletion/creation takes 700~1300ms

Reserve: 2s

111

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 1) A

A

B

Running interval can be changed.

Run every 100ms

Run every 100ms

Container deletion/creation takes 700~1300ms

If interval is slow enough and not occurred at the same time, all requests will be properly served.
But if interval is lesser than 700~1,300ms, we cannot guarantee execution for multiple actions.
-> Overcommit. Tradeoff: Resource utilization vs Performance guarantee

If we allow this, we can serve more actions with 1 container but can not guarantee performance.

Reserve: 2s

112

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 4)

A

B

C

D

Invoker1
(max: 4)

E

F

G

H

Invoker2
(max: 4)

I

J

K

L

Invoker3
(max: 4)

M

N

O

P

Invoker4
(max: 4)

Q

R

S

T

Invoker5
(max: 4)

U

V

W

X

Cluster is saturated at some point.

Which one is more proper approach under this situation?

1. To control wait time to maximize resource utilization
2. To add more servers to guarantee performance

113

Cons - Action container can be reserved for 30s ~ 1min (Overcommit)

Invoker0
(max: 4)

A

B

C

D

Invoker1
(max: 4)

E

F

G

H

Invoker2
(max: 4)

I

J

K

L

Invoker3
(max: 4)

M

N

O

P

Invoker4
(max: 4)

Q

R

S

T

Invoker5
(max: 4)

U

V

W

X

Furthermore, it only happens under the situation that the
number of concurrent actions reaches the maximum
number of concurrent containers.

Anyway we need to find optimal reserving time.

Cluster is saturated at some point.

Which one is more proper approach under this situation?

1. To control wait time to maximize resource utilization
2. To add more servers to guarantee performance

Performance guarantee is more important from the
perspective of users. (consistent performance)

114

Cons - If limit changed, # of partitions should be also changed.

Kafka

ActionA - Partion1 A

Kafka

ActionA - Partion1 A

A

ActionA – Partion2

Rebalancing is required

115

Cons - If limit changed, # of partitions should be also changed.

Kafka

ActionA - Partion1 A

Kafka

ActionA - Partion1 A

A

ActionA – Partion2

Rebalancing is required

• We can limit retention(bytes, duration)

• Once action is invoked, data is less meaningful.

• Rebalancing takes not much time.

• Lesser than 1s.

• Rebalancing only happens when changing limit.

• Limit is not frequently changed

116

Cons - # of partitions cannot be decreased.

Kafka

ActionA - Partion1

AActionA – Partion2

• Though there are multiple partitions, one consumer can read data from all of them

• Decreasing limit may not happen frequently.

• One option: We may explicitly delete and recreate topic when limit is decreased.

ActionA – Partion2

Performance Evaluation

With prototype

117

118

Environment – BMT Environment

Controller01

C0 C1 C2

Controller02

C3 C4 C5

Controller03

C6 C7 C8

Kafka01

Kafka02

Kafka03

Invoker01

I0

Invoker02

I1

Invoker03

I2

Invoker04

I3

Invoker05

I4

Invoker06

I5

Invoker07

I6

Invoker08

I7

Invoker09

I8

Invoker10
3 machines, 9 containers

8 cores, 16GB MEM, 100GB HDD

3 machines, 3 containers

40 cores, 128GB MEM, 2TB SSD

10machines, 10 containers

8 cores, 16GB MEM, 100GB HDD

I9

maxPoolSize: 20

Total Capa: 180

(1 for blackbox)

119

Performance comparison - 1 action test

1 action with 180 containers 1 action with 100 containers

Current implementation New implementation

1.33 times more TPS
1.26 times faster execution

120

Performance comparison - 100 actions test

100 actions with 180 containers 100 actions with 1 containers each(100 containers)

Current implementation New implementation

163 times more TPS
158 times faster execution

121

Performance comparison - 100 actions test with more loads

100 actions with 1 containers each(100 containers)

New implementation New implementation

Just increased the number of Vusers
It showed similar performance with 1 action case
Even 80 containers were not utilized

100 actions with 1 containers each(100 containers)

122

Performance comparison – Long running tests(8 hours)

New implementation

100 actions with 1 containers each(100 containers)

Steady performance

