
KIP-418: A method-chaining way to branch KStream

Status
Motivation
Public Interfaces

Description
How the resulting Map is formed

Usage Examples
Simple Example: Direct Branch Consuming
More Complex Example: Merging Branches
Dynamic Branching

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

Voting thread: here

JIRA:
 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Pull request: PR-9107

Motivation
KStream#branch method uses varargs to supply predicates and returns array of streams ('Each stream in the result array corresponds position-wise
(index) to the predicate in the supplied predicates').

This is poor API design that makes building branches very inconvenient because of 'impedance mismatch' between arrays and generics in Java language.

In general, the code have poor cohesion: we need to define predicates in one place, and respective stream processors in another place of code.
In case of change we must remember to edit two pieces of code.
If the number of predicates is predefined, this method forces us to use 'magic numbers' to extract the right branch from the result (see examples h

).ere
If we need to build branches dynamically (e. g. one branch per enum value) we inevitably have to deal with 'generic arrays' and 'unchecked
typecasts'.

Public Interfaces
In accordance with , we introduce the following new elements:KStreams DSL Grammar

 split DSLOperation
 BranchedKStream DSLObject with following DSLOperations:

branch
defaultBranch
noDefaultBranch
 Branched DSLParameter.

Description

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201901.mbox/%3C98157749-00eb-6883-6f6e-002d80ec0b81%40mail.ru%3E
http://mail-archives.apache.org/mod_mbox/kafka-dev/202005.mbox/%3C126ff47b-8a0d-abbf-6ad1-e0599a38af4e%40mail.ru%3E
https://github.com/apache/kafka/pull/9107
https://kafka.apache.org/23/javadoc/org/apache/kafka/streams/kstream/KStream.html#branch-org.apache.kafka.streams.kstream.Predicate...-
https://stackoverflow.com/questions/48950580/kafka-streams-send-on-different-topics-depending-on-streams-data
https://stackoverflow.com/questions/48950580/kafka-streams-send-on-different-topics-depending-on-streams-data
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+DSL+Grammar

1. The operation returns . Named parameter is needed so one can name the branch operator itself, split(Named named) BranchedKStream<K,V>
and then all the branches might get index-suffixed names built from the branch operator name.

The overloaded parameterless alternative is also available.split()

2. has the following methods:BranchedKStream

BranchedKStream<K,V> branch(Predicate<? super K, ? super V> predicate, Branched<K,V> branched) -- creates a
branch for messages that match the predicate and returns in order to facilitate method chaining.this
Map<String, KStream<K,V>> defaultBranch(Branched<K,V> branched) -- creates a default branch (for messages not intercepted
by other branches) and returns the dictionary of named KStreams.
Map<String, KStream<K,V>> noDefaultBranch() -- returns the dictionary of named KStreams.

Both and operations also have overloaded alternatives without the parameter.branch defaultBranch Branched

3. parameter extends and has the following static methods:Branched NamedOperation

as(String name) -- sets the name of the branch (auto-generated by default, when operation is named, then the names are index-split
suffixed).
withFunction(Function<? super KStream<K, V>, ? extends KStream<K, V>> chain) — sets an operation with a given branch.
By default, it is an identity function. Can be complex, like , a composition of functions etc.s->s s->s.mapValues....
withConsumer(Consumer<? super KStream<K, V>> chain) — sets a consumer for a given branch.
withFunction(Function<? super KStream<K, V>, ? extends KStream<K, V>> chain, String name) — sets both an
operation and a name.
withConsumer(Consumer<? super KStream<K, V>> chain, String name) — sets both a consumer and a name.

The Map returned by / allows us to collect all the KStream branch objects in a single scope.defaultBranch noDefaultBranch

How the resulting Map is formed

The keys of the Map entries are defined by the following rules:

If parameter was provided for , its value is used as a prefix for each key. By default, no prefix is usedNamed split
If a is provided for the , its value is appended to the prefix to form the Map keyname branch
If a is not provided for the branch, then the key defaults to prefix + position of the branch as a decimal number, starting from "1"name
If a is not provided for the call, then the key defaults to prefix + "0"name defaultBranch

The values of the Map entries are formed as following:

If no chain function or consumer is provided, then the value is the branch itself (which is equivalent to identity chain function)ksks
If a chain function is provided and returns a non-null value for a given branch, then the value is the result returned by this function
If a chain function returns for a given branch, then the respective entry is not put to the mapnull
If a consumer is provided for a given branch, then the the respective entry is not put to the map

For example:

var result =
 source.split(Named.as("foo-"))
 .branch(predicate1, Branched.as("bar")) // "foo-bar"
 .branch(predicate2, Branched.with(ks->ks.to("A")) // no entry: a Consumer is provided
 .branch(predicate3, Branched.with(ks->null)) // no entry: chain function returns null
 .branch(predicate4) // "foo-4": name defaults to the branch position
 .defaultBranch() // "foo-0": "0" is the default name for the default branch

Usage Examples

The following section demonstrates some standard use cases for the proposed API

Simple Example: Direct Branch Consuming

In many cases we do not need to have a single scope for all the branches, each branch being processed completely independently from others. Then we
can use 'consuming' lambdas or method references in parameter:Branched

source.split()
.branch((key, value) -> value.contains("A"), Branched.with(ks->ks.to("A")))
.branch((key, value) -> value.contains("B"), Branched.with(ks->ks.to("B")))
.defaultBranch(Branched.with(ks->ks.to("C")));

More Complex Example: Merging Branches

1.

In other cases we want to combine branches again after splitting. The map returned by / methods provides access defaultBranch noDefaultBranch
to the branches in the same scope:

Map<String, KStream<String, String>> branches = source.split()
 .branch((key, value) -> value == null,
 Branched.with(s->s.mapValues(v->"NULL"), "null")
 .defaultBranch(
 Branched.as("non-null"));

branches.get("non-null")
 .merge(branches.get("null"));

Dynamic Branching

There is also a case when one might need to create branches dynamically, e. g. one per enum value. This can be implemented the following way:

BranchedKStream branched = stream.split();
for (RecordType recordType : RecordType.values())
 branched.branch((k, v) -> v.getRecType() == recordType,
 Branched.with(recordType::processRecords));

This is why 'starting' operation is necessary and it is better to have it rather than add new method to directly.split() branch KStream

Otherwise we should treat the first iteration separately, and the code for dynamic branching becomes cluttered:

RecordType[] recordTypes = RecordType.values();
if (recordTypes.length != 0) {
 BranchedKStream branched = stream.
 branch((k, v) -> v.getRecType() == recordTypes[0],
 Branched.with(recordType::processRecords));

 for (int i = 1; i < recordTypes.length; i++)
 branched.branch((k, v) -> v.getRecType() == recordTypes[i],
 Branched.with(recordType::processRecords));
}

Proposed Changes

Add the following methods to :KStream

BranchedKStream<K,V> split();
BranchedKStream<K,V> split(Named n);

2. Deprecate the existing method.KStream#branch

3. Add and implement the following Branched class:

class Branched<K, V> implements Named<Branched<K,V>> {
 static Branched<K, V> as(String name);
 static Branched<K, V> withFunction(Function<? super KStream<K, V>, ? extends KStream<K, V>> chain);
 static Branched<K, V> withConsumer(Consumer<? super KStream<K, V>> chain);
 static Branched<K, V> withFunction(Function<? super KStream<K, V>, ? extends KStream<K, V>> chain, String
name);
 static Branched<K, V> withConsumer(Consumer<? super KStream<K, V>> chain, String name);
}

Add and implement the following BranchedKStream interface:

https://kafka.apache.org/23/javadoc/org/apache/kafka/streams/kstream/KStream.html#branch-org.apache.kafka.streams.kstream.Predicate...-

1.

interface BranchedKStream<K, V> {
 BranchedKStream<K, V> branch(Predicate<? super K, ? super V> predicate);
 BranchedKStream<K, V> branch(Predicate<? super K, ? super V> predicate, Branched<K, V> branched);
 Map<String, KStream<K, V>> defaultBranch(Branched<K, V> branched);
 Map<String, KStream<K, V>> defaultBranch();
 Map<String, KStream<K, V>> noDefaultBranch();
}

(See for a very rough draft).https://github.com/apache/kafka/pull/6512

Compatibility, Deprecation, and Migration Plan
The proposed change is backwards compatible.

The old KStreams#branch method should be .deprecated

Rejected Alternatives
A KStreamsBrancher class that works the same way, but does not require KStream interface modification:

new KafkaStreamsBrancher<String, String>()
 .branch((key, value) -> value.contains("A"), ks->ks.to("A"))
 .branch((key, value) -> value.contains("B"), ks->ks.to("B"))
 //default branch should not necessarily be defined in the end!
 .defaultBranch(ks->ks.to("C"))
 .onTopOf(builder.stream("source"));

Rejected because of violation of method-chaining (new auxiliary object is needed).

2.

source
 .split()
 .branch((key, value) -> value.contains("A"), ks->ks.to("A"))
 .branch((key, value) -> value.contains("B"), ks->ks.to("B"))
 .defaultBranch(ks->ks.to("C"));

Here the new KStream#branch() method returns object, which, in turn, contains <K, V>KBranchedStream `branch` and `defaultBranch` methods. This is
critical that KStream consumers in .branch methods should be invoked immediately during the `branch` methods invocation. This is necessary for the case
when we need to gather the streams that were defined in separate scopes back into one scope using auxiliary object:

@Setter
class CouponIssuer{
 private KStream<....> coffePurchases;
 private KStream<....> electronicsPurchases;

 KStream<...> coupons(){
 return coffePurchases.join(electronicsPurchases...)...
 }
}

CouponIssuer couponIssuer = new CouponIssuer();

transactionStream.branch()
 .branch(predicate1, couponIssuer::setCoffePurchases)
 .branch(predicate2, couponIssuer::setElectronicsPurchases);

KStream<..> coupons = couponIssuer.coupons();

https://github.com/apache/kafka/pull/6512

This was rejected because of the difficulty of having branches in the same scope.

	KIP-418: A method-chaining way to branch KStream

