
1.

2.

3.
4.

5.

6.

7.
8.
9.

CodeStyle
Code Style (DRAFT)
This page is the place where we collect and evaluate code style rules for Commons. The goal is to use this document as a base for a Commons wide
Checkstyle configuration, and perhaps templates for IDE's as well.

Feel free to add new rules to the table below. The rules will be tagged, now or later, on its severity. The proposed tags are:

info - Follow this if you like. If you don't it's no big deal
warning - You should consider following this rule
error - This must must be fixed before the next release

Rules Severity

No tabs allowed in source files error

Each statement should be on a separate line (simplifies debugging) error

Imports: No wildcards error

Imports: Order by groups: java, javax, org, com warning

Imports: Order in alphabetical order with a group warning

Indentation: (Java) use 4 spaces warning

SVN keywords: $Date$ should not be used warning

Indentation: (POM) prefer 4 spaces, allow 2, but be consistent within a file (1) info

JavaDoc: @author Tag should not be used info

JavaDoc: @deprecated Tag must include version where first deprecated, and a link to the replacement (if any) warning

JavaDoc: @since Tag must be used to document new classes and methods where these form part of the public
API

warning

Object visibility should be the minimum required (See notes) warning

Prefer immutable classes as these are automatically thread-safe info

Mutable fields must be private (See notes) error

Mutable fields (except primitives) should not be exposed via getters/setters (See notes) warning

Add your rule here warning

Notes:

POMs tend to have quite deeply nested elements, and many elements can be long and awkward to wrap, so using 2 spaces is sometimes easier
to read.
The SVN $Date$ keyword should not be used, because it relies on the clients locale. Use the Id keyword instead (see http://markmail.org

)./message/zx4ii6pq4iin2tol
Document authors in POM, not in source files (see).http://markmail.org/message/k34w6gsx5iic45z2
Object visibility: once code is released, it can be impossible to reduce the visibility of fields, classes, methods without breaking compatibility, so
initial releases should use the minimum visibility possible.
Mutable data: this increases the difficulty of ensuring thread-safety (including safe publication of changes). Data should be confined to a class;
mutation should only be allowed via a setter which can ensure thread-safety. Be careful that the getter does not expose array contents (which are
always mutable)
Even constants can cause problems: the Java compiler can inline constant values from another class. So if the constant should ever change,
classes that are not recompiled could contain the old value.
Array entries are always mutable. Only empty arrays are immutable; they can be safely shared.
If a reference to a mutable object is exposed via a getter, then it can be modified in a way that breaks thread-safety.
If a mutable object is saved by a setter and the caller keeps a reference to the object then it can be changed without using the setter, bypassing
any restrictions the setter would have enforced.

http://markmail.org/message/zx4ii6pq4iin2tol
http://markmail.org/message/zx4ii6pq4iin2tol
http://markmail.org/message/k34w6gsx5iic45z2

	CodeStyle

