
KIP-467: Augment ProduceResponse error messaging for
specific culprit records

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: link

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Today when a ProduceRequest containing multiple partition data is received, the following validation logic will be executed before appending the data to
corresponding partition logs:

Messages has valid magic number compared with its outer record batch; if not throw .InvalidRecordException
Messages for compacted topics must have keys; if not throw InvalidRecordException.
When magic value >= 1, messages must have monotonically increasing (relative) offsets starting from 0; if not throw InvalidRecordException.
When magic value >= 1 and validate that timestamp Type is CREATE_TIME; and also message's timestamp is within the range of configured
DiffMaxMs. If not throw InvalidTimestampException.
When magic value <= 1, validate message CRC (for magic > 1 there's no record-level CRC); if not validate throw .InvalidRecordException
When magic value >= 2, check that record batch has valid offset range, count, sequence number and are not control records; if failed throw Invali
dRecordException.
For transactional / idempotent record batch, also validate the following:

Configured magic number should >= 2, if not throw .UnsupportedForMessageFormatException
Producer epoch should be larger than or equal to book-kept epoch, if not throw .ProducerFencedException
If producer epoch is larger than book-kept epoch, check sequence is 0; if not throw or OutOfOrderSequenceException UnknownProdu

.cerIdException depending on epoch
If producer epoch is equal to book-kept epoch, check that sequence is continuous; if not throw or OutOfOrderSequenceException Unk

.nownProducerIdException depending on sequence number
NOTE that can only be thrown from the callback, while can be OutOfOrderSequenceException UnknownProducerIdException
thrown directly from the caller of send() / commitTxn() etc as well.

And the above exceptions would cause the whole batch (and therefore the whole partition data) to be rejected with the corresponding error code – note
that the only exception is , which inherits from CorruptRecordException and hence would result in InvalidRecordException CORRUPT_MESSAGE (2) whi
ch is a retriable error, but many of those cases above are actually not-retriable at all. All other error codes correspond to an InvalidRecordException
APIException and hence thrown to user's callbacks / Future object directly.

However, a lot of those errors above are actually triggered by a single record, not at the record-batch level; but nevertheless when the whole batch was
rejected, and all record's Future callback will throw the same exception which is very confusing (think: a send() call of record B failed because another
record A is corrupted, but the same exception would throw for record B's callback indicating corrupted error). So we'd like to 1) introduce more information
in the returned error message of the ProduceResponse to improve such cases; also 2) introduce a separate error code from the retriable CORRUPT_MES

 which indicate fatal errors from invalid record.SAGE

Public Interfaces

 Unable to render Jira issues macro, execution

error.

https://www.mail-archive.com/dev@kafka.apache.org/msg98615.html

1.

2.
a.

b.

i.

ii.
3.

a.

b.
i.

ii.

4.

We propose to add the following new fields into the produce response:

Produce Response (Version: 8) => [responses] throttle_time_ms
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition error_code base_offset log_append_time log_start_offset
 partition => INT32
 error_code => INT16
 base_offset => INT64
 log_append_time => INT64
 log_start_offset => INT64
 error_records => [INT32] // new field, encodes the relative offset of the records that caused
error
 error_message => STRING // new field, encodes the error message that client can use to log itself
 throttle_time_ms => INT32

Also a new error code:

INVALID_RECORD(85, "Some record has failed the validation on broker and hence be rejected.",
InvalidRecordException::new);

Proposed Changes
Let to not inherit from CorruptedException anymore, instead inherit from ApiException directly (which is non-retriable). InvalidRecordException
And also moved it to " " to become a public class.org.apache.kafka.common
On the broker side:

For the above cases which throws that indicates fatal errors (i.e. except the case of CRC checksum failures InvalidRecordException
which we would change the error code to), return the new error code INVALID_RECORD.CORRUPT_MESSAGE
When setting the error code, if there are multiple types of errors within a single batch, since for most cases we will throw the exception
right away, we would only indicate one error code which would be the first error encountered while validating the batch.

For that error code to set, we will try to encode the list of error_records as relative offsets of the records that are causing the
whole batch to be rejected (again, in most cases this would be empty since we throw immediately after the first error).
For that error code to set, optionally try to encode the customized error message (in most cases it would be empty).

On the client side, augment the error handling so that:
If the error_code's corresponding exception is re-triable, follow the current behavior to retry the whole batch as-is (so far the only case
would be);CorruptedException
If the error_code's corresponding exception is not re-triable, check if error_records is empty or not:

If it is empty, reject the whole batch and set the exception for all the records' future (e.g. UnsupportedForMessageFormatExc
).eption or ProducerFencedException

If it is not empty, only remove those records in the field, and then retry by creating a new batch with those error records
removed (for idempotent producers, also reset the sequence number as well as offset). In this way, records in the same batch
would not be rejected as a whole, but some records may still succeed while those culprits be rejected (since this KIP cases
would include and).InvalidRecordException InvalidTimestampException

Improve the metrics on broker-side for better user visibility for different types of errors that log-validator would expose under " ":BrokerTopicStats

-- NoKeyCompactedTopicRecordsPerSec: counter of failures by compacted records with no key
-- InvalidMagicNumberRecordsPerSec: counter of failures by records with invalid magic number
-- InvalidMessageCrcRecordsPerSec: counter of failures by records with crc corruption
-- NonIncreasingOffsetRecordsPerSec: counter of failures by records with invalid offset

Compatibility, Deprecation, and Migration Plan
For old client, instead of returning the error code of which is concrete but incorrect, brokers would return a different CorruptRecordException
error code for , which is more general than InvalidRecordException but is at least not mis-leading.InvalidRequestException
Old versioned broker would not be a problem since client can still handle all the existing error code normally.

Rejected Alternatives
None.

	KIP-467: Augment ProduceResponse error messaging for specific culprit records

