
Dynamically Adjust Log Levels in Connect

Status
Motivation
Proposed Changes
Public Interfaces
Example Usage
Breaking Changes
Rejected Alternatives

Status
Current state: Draft (WIP).

Discussion thread: here

Vote thread: here

JIRA: KAFKA-7772

Released: AK x.y.z

Pull request: https://github.com/apache/kafka/pull/6069

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka Connect does not provide an out-of-the-box facility to change log levels. When debugging connectors or the Connect framework, one has to update
the file and restart the worker to see new logs. This is cumbersome in most cases, and restarting the worker sometimes hides bugs log4j.properties
by resetting the internal state.

Proposed Changes
The Kafka broker currently has a to adjust log levels via MBeans. This is a scala utility, that we will rewrite in Java, move to kafka-clients package utility
and use this utility to initialize JMX interface in the Kafka broker and Connect worker upon startup.

Public Interfaces
We propose adding the following log4j controller:

https://issues.apache.org/jira/browse/KAFKA-7772
https://github.com/apache/kafka/pull/6069
https://github.com/apache/kafka/blob/2.3.0/core/src/main/scala/kafka/utils/Log4jController.scala

1.

2.

public interface Log4jControllerMBean {

 /**
 * @return a list of all registered loggers
 */
 List<String> getLoggers();

 /**
 * Get the effective log level for a given logger
 *
 * @param logger name of the logger
 * @return its log level ("INFO", for example)
 */
 String getLogLevel(String logger);

 /**
 * Set the log level for a logger
 *
 * @param logger name of the logger
 * @param level desired level ("INFO", for example)
 * @return true, if successfully set, false otherwise.
 */
 Boolean setLogLevel(String logger, String level);
}

Applications will register this mBean with the mBean server via a utility class:LogLevelManager

public class LogLevelManager {
 /**
 * Create and register a JMX mBean called Log4jController in the specified domain
 *
 * @param domain domain of the mBean
 */
 public static void registerLog4jController(String domain) {
 // implementation
 }
}

Example Usage
An application (such as the Connect worker) will use the utility to initialize dynamic logging as follows:LogLevelManager

LogLevelManager.registerLog4jController("kafka.connect");

This will provide a JMX bean in the domain, that will include a attribute, along with two operations: Log4jController kafka.connect Loggers getLo
 and that we can use to get or set log levels for individual loggers in the process.gLevel setLogLevel

Breaking Changes
Although it was not formally introduced via a KIP, Kafka brokers already provide a similar feature. With this change, we bring about the following changes
in it.

The name of the JMX bean changes from to simply . However, the bean will continue to be kafka.Log4jController Log4jController
present in the domain.kafka
The operation now returns the . This means that previously, this operation could return null, if a log level was not getLogLevel effective log level
explicitly set on the given logger. With the proposed changes, the log level of the parent logger will be queried until a non-null level is found (if
none of the parents have their levels set, the root logger's level is returned).

Rejected Alternatives

Changing log levels in a single node of an application will affect other nodes in the cluster (for example, changing log level of a class in one
Connect worker will update levels in all workers in a Connect cluster) and this new level will be persisted across node restarts. This is beyond the
scope of this proposal.
Rest extensions were rejected, as Kafka doesn't offer a REST server and we are aiming for a consistent experience across Kafka and Connect in
this proposal.

	Dynamically Adjust Log Levels in Connect

