
KIP-479: Add StreamJoined config object to Join

Status
Motivation
Public Interfaces
Proposed Changes
Semantics of StreamJoined

Serdes
Naming
Store Suppliers

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

: Vote thread here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
In the 2.2 (KIP-372 ) release of https://cwiki.apache.org/confluence/display/KAFKA/KIP-372%3A+Naming+Repartition+Topics+for+Joins+and+Grouping
Kafka streams, we added the Grouped class, which gave users the ability to name a repartition topic for aggregation operations. In that KIP, we 
piggybacked a change also to allow users to provide a name for the repartition topics of join operations.

In KIP-307 ( ), we https://cwiki.apache.org/confluence/display/KAFKA/KIP-307%3A+Allow+to+define+custom+processor+names+with+KStreams+DSL
decided to use the same base name users provided for the repartition topic from KIP-372 to extend to naming the join operator as well as the state stores, 
hence changing the name of the changelog topics.  Naming the state store for a join will not expose them for IQ. But it is a recommended practice to keep 
the changelog topic names stable in the face of upstream changes in the topology.

One point we overlooked when discussing KIP-307 is the  method does not take a  object; thus, users could never name KStream#join Materialized
the state store hence the changelog topic. Due to the scope of changes in KIP-307, it was broken up over several PRs, and the first two were included in 
the 2.3 release. Having the partially implemented KIP does not in and of itself represent a problem as only internal classes were added needed for the 
ability to name operators. But since KSTream#join does not take a Materialized object if users elect to name the Join processor (hence naming the 
repartition topics as well). When 2.4 is released, the provided name will automatically extend to the state stores for the Join and change the changelog 
topics as well. This sudden state store name change represents a breaking change that might catch users by surprise.  

Additionally, users currently can't configure the state stores involved in a stream - stream join.  In some cases, users may want to use in-memory stores or 
custom stores for the join.  But with the API in its current state, this isn't possible.  But simply adding a single Materialized object won't solve the issue fully 
for the users wanting to customize the stores used in a join.  When performing a stream-stream join, Kafka Streams requires two state stores, one for the 
calling side and another for "other" stream participating in the join. 

While a StoreSupplier will return a unique StateStore instance with each invocation of StoreSupplier.get(), the names need to be unique as well.  Hence 
we need to provide users a way to 1) Name the state stores to prevent shifting of names with upstream topology changes or 2) fully customize the join by 
delivering their StoreSupplier instances.  While we could add another Materialized parameter, doing so is starting to go against the grain of using 
configuration objects in the first place; reducing the number of overloads. Also, for users wishing to name the stores, we don't need 2 Materialized 
instances, just the base name will suffice.

Public Interfaces
This KIP will add the following methods to the KStream interface. 

https://www.mail-archive.com/dev@kafka.apache.org/msg98777.html
https://www.mail-archive.com/dev@kafka.apache.org/msg99742.html
https://issues.apache.org/jira/browse/KAFKA-8558
https://cwiki.apache.org/confluence/display/KAFKA/KIP-372%3A+Naming+Repartition+Topics+for+Joins+and+Grouping
https://cwiki.apache.org/confluence/display/KAFKA/KIP-307%3A+Allow+to+define+custom+processor+names+with+KStreams+DSL


Methods Added to KStream

<VO, VR> KStream<K, VR> join(final KStream<K, VO> otherStream,
                             final ValueJoiner<? super V, ? super VO, ? extends VR> joiner,
                             final JoinWindows windows,
                             final StreamJoined<K, V1, V2> streamJoined);

<VO, VR> KStream<K, VR> leftJoin(final KStream<K, VO> otherStream,
                                 final ValueJoiner<? super V, ? super VO, ? extends VR> joiner,
                                 final JoinWindows windows,
                                 final StreamJoined<K, V1, V2> streamJoined);

<VO, VR> KStream<K, VR> outerJoin(final KStream<K, VO> otherStream,
                                  final ValueJoiner<? super V, ? super VO, ? extends VR> joiner,
                                  final JoinWindows windows,
                                  final StreamJoined<K, V1, V2> streamJoined);

This KIP will also add a new configuration object StreamJoined.

StreamJoined

public class StreamJoined<K, V1, V2> implements NamedOperation<StreamJoined<K, V1, V2>> {

public static <K, V1, V2> StreamJoined<K, V1, V2> with(final WindowBytesStoreSupplier storeSupplier,
                                                       final WindowBytesStoreSupplier otherSupplier){}

public static <K, V1, V2> StreamJoined<K, V1, V2> as(final String storeName) {}

public static <K, V1, V2> StreamJoined<K, V1, V2> with(final Serde<K> keySerde,
                                                       final Serde<V1> valueSerde,
                                                       final Serde<V2> otherValueSerde) {}
 // The withName method will name the process and provide the base name 
 // for any repartition topics if required

 public StreamJoined<K, V1, V2> withName(final String name) {}

 // The withStoreName is used as the base name for stores provided by Kafka Streams
 // If users provide state store suppliers, then the name in the store supplier is used
 public StreamJoined<K, V1, V2> withStoreName(final String storeName) {}

 public StreamJoined<K, V1, V2> withKeySerde(final Serde<K> keySerde) {}

 public StreamJoined<K, V1, V2> withValueSerde(final Serde<V1> valueSerde) {}

 public StreamJoined<K, V1, V2> withOtherValueSerde(final Serde<V2> otherValueSerde) {}

 public StreamJoined<K, V1, V2> withThisStoreSupplier(final WindowBytesStoreSupplier storeSupplier) {}

 public StreamJoined<K, V1, V2> withOtherStoreSupplier(final WindowBytesStoreSupplier otherStoreSupplier) {}

Proposed Changes
With this in mind, this KIP aims to add a new configuration object . The  configuration allows users to specify Serdes for StreamJoined StreamJoined
the join, naming of join processor, the base name of the default state stores, and provide store suppliers.  Essentially a merging of Joined and Materialized 
configuration objects.  We'll add an overloaded  method accepting a  parameter without a  parameter. The KStream#join StreamJoined Joined
overloads will apply to all flavors of  (join, left, and outer).  Due to the significant overlap of the new  configuration, we'll KStream#join StreamJoined
also deprecate the  join methods taking the   parameter.KStream Joined

This will allow for users who wish to upgrade to 2.4 without having to make a breaking change. Now the  method will only name the Join Joined#as
processor and repartition topics and no longer name the associated state stores and changelog topics. So if users wish to upgrade to 2.4 and don't provide 
a name for the states stores, it will continue to use the auto-generated name in 2.3. Of course, if users elect to name the state stores, they can do so via St

 is recommended to pin the changelog topic names in case of any upstream topology reamJoined#as("store name"). Naming the store
changes.



We should note that providing store suppliers to the join   interactive queries over the join state stores. We'll update the documentation will not enable
stating as much.

Semantics of StreamJoined
With the ability to provide so many configuration items, we should probably discuss the semantics of the new configuration.

Serdes

If users do not provide serdes then Kafka Streams uses the default key and value serdes specified in the configs .
KafkaStreams will use the serdes to configure both stores regardless if the stores are the default or come from user provided  StoreSupplier
instances.

Naming

The  method will name   the join processor and the base name of any required repartition topics.  Not using the StreamJoined#withName only St
 will result in Kafka Streams auto-generating names for the join processor and any repartition topics.reamJoined#withName

The  will provide  the base name for the state stores of the join.  If users pass in   (s), StreamJoined#withStoreName only StoreSupplier
then the name of the StoreSupplier is used. The StoreSupplier names always take priority over names coming from StreamJoined#withStore

.Name

Store Suppliers

Users can provide 0, 1 or 2  instances.StoreSupplier
The provided  instances must implement StoreSupplier WindowBytesStoreSupplier.
In the case of providing  StoreSupplier(s), KafkaStreams will create two persistent state stores as it does now.  The names for the zero
stores will be auto-generated unless the user gives a name with the  method. StreamJoined#withName
In the case of providing  StoreSupplier, KafkaStreams will create one persistent state store, and the  will create one one StoreSupplier
state store. The name for the default store will be auto-generated unless the user gives a name with the  StreamJoined#withName
method. 
When providing  StoreSuppliers, the state stores for the join will come from the suppliers, and the names will come from the names two
given to the suppliers.

There will be a runtime check to ensure that the values of JoinWindows match those of the provided StoreSuppliers.
The name of the StoreSupplier will take priority over the name given via StreamJoined#withStoreName.

Compatibility, Deprecation, and Migration Plan
Since the changes are additions in a strict sense, there are no compatibility issues with existing code.

For users that have not named the Join repartition node, then there are no migration concerns.
For users that previously have named the Join repartition node and want to upgrade to 2.4, a rolling restart should be possible since the store 
name will not change.
Users electing to add a name to the state store will need to stop all instances and redeploy the new code. Then reset the application before 
starting to ensure no data is unprocessed.
We'll deprecate the Stream-Stream join methods using Joined object.  These items will be removed in a later major release.

Rejected Alternatives
Adding a configuration to indicate if the Joined.named should be used for the state store name.  Adding a configuration was ruled out as it's not a 
best practice to add configs for this type of change.
Adding a method to the Joined config item as it seemed to clutter the API.


	KIP-479: Add StreamJoined config object to Join

